Messungen an einem Flügelprofil mit neuartiger Lagerung der Wölbungsklappen.

D. Althaus *)

Windkanalmodell:

*) Institut für Aerodynamik und Gasdynamik der Universität Stuttgart
vorgetragen auf der Euromech 26. Tagung
v. 5.-9.7.74 in Oberwolfach.
Da der Drehpunkt in der Profiloberseite liegt, muß die Haut an den Lagerstellen unterbrochen werden. Beim Windkanalmodell ist die Klappe nur an den beiden Endseiten gelagert. Die Klappentiefe beträgt wie in der Originalausführung 20%.

Windkanalmessungen:

Die Abbildungen 3 und 4 zeigen den Einbau des Modells im Windkanal. Zur Polarenmessung ist eine automatische Datenverarbeitungsanlage vorhanden mit deren Hilfe die korrigierten Polaren $C_a(a)$, $C_a(C_w)$ direkt bei der Messung an zwei X-Y-Koordinatenschreibern aufgezeichnet werden können. Diese Datenverarbeitungsanlage konnte in den letzten Jahren wesentlich verbessert werden.

Da das Windkanalmodell schon einige Jahre alt ist, wurde es vor dem Umbau mit der Klappe in Originalausführung neu vermessen. Die Polaren sind im Diagramm 1 aufgetragen. Das Diagramm 2 enthält die Polaren des Modells mit der modifizierten Klappe. Im Diagramm 3 sind die Polaren der Klappenstellungen $+5^\circ$ und $+10^\circ$ für $Re = 1.5 \cdot 10^6$ dargestellt. Bei beiden ist im oberen Bereich der Laminardelle eine Verringerung des Widerstands durch die modifizierte Klappe festzustellen. Der nutzbare C_a-Bereich wird nur unwesentlich erhöht, der Maximalauftrieb bleibt unverändert. Das Diagramm 4 zeigt noch Polaren für den Klappenwinkel $+10^\circ$ bei $Re = 1.0 \cdot 10^6$ und den Winkel -10° bei $Re = 3.10^6$. Bei negativen Klappenwinkeln ist praktisch kein Unterschied zwischen den beiden Klappenausführungen festzustellen. Im Diagramm 5 sind Hüllpolaren aus den Diagrammen 1 und 2 für beide Klappenanordnungen eingezeichnet.

Das Profil mit der modifizierten Klappe besitzt im oberen C_a-Bereich (bei positiven Klappenausschlägen und kleinen Re-Zahlen) einen etwa 18% kleineren Widerstand als das Profil mit der Originalklappe. Der C_a-Bereich der Delle ist um $\Delta C_a \approx 0.03$ höher.

Die Verwendung der Klappenaufhängung mit dem elastisch wölbaren Zwischenstück bei Segelflugzeugen kann sich vor allem günstig auf den Steigflug auswirken und damit die mittlere Reise-

Literatur:

[1] F.X. Wortmann und D. Althaus:
Der Laminarwindkanal des Institutes für Aero- und Gas-
dynamik an der T.H. Stuttgart.
ZfW 12 (1964) S. 129 - 134.

[2] F. Thomas und J. Laude:
Vergleichsmessungen an Laminarflügeln mit starrer und flexibler Wölbungsklappe.
Abb. 1: Windkanalmodell des Profils FX 62-K-153 mit der Wölbklappe in Originalausführung. Profiltiefe $t = 0,7$ m, Klappentiefe 20%.
Abb. 3: Einbau des Modells im Windkanal.
Abb. 4: Einbau des Modells mit modifizierter Wölbbklappe im Windkanal mit dem Nachlaufrechen zur Widerstandsmessung.
\(C_a \)

\(C_m_{/4} \)

\(\alpha^\circ \)

\(10^3 C_w \)

\(\text{TX 62-K-153} \)

Original

Klappe modifiziert

\(\text{Re} = 0.7 \times 10^6 \)

\(\text{Re} = 1.0 \times 10^6 \)

\(\text{Re} = 1.5 \times 10^6 \)

\(\text{Re} = 2.0 \times 10^6 \)

\(\text{Re} = 2.5 \times 10^6 \)

\(\text{Re} = 3.0 \times 10^6 \)
\[\Delta C_W = 1.6 \cdot 10^{-3} \pm 18 \% \]

\[\beta = 10^\circ \]

\[\Delta C_m = 0.03 \]