Airfoils with high lift-drag ratio at a Reynolds number of about one million

by

F.X.Wortmann

Institut für Aerodynamik u.Gasdynamik der Universität Stuttgart

There seems to be a growing interest in a special type of aircraft which can stay in the air at the lowest expenditure of energy, i.e. at the lowest possible sinking speed. Obviously such aircraft need airfoils with high lift-drag ratios. To be more exact, it is the ratio $c_L^{1.5}/c_D$ which should attain the highest possible values. In the following, two airfoils are described which, as a first approach, fill the gap of suitable airfoil data.

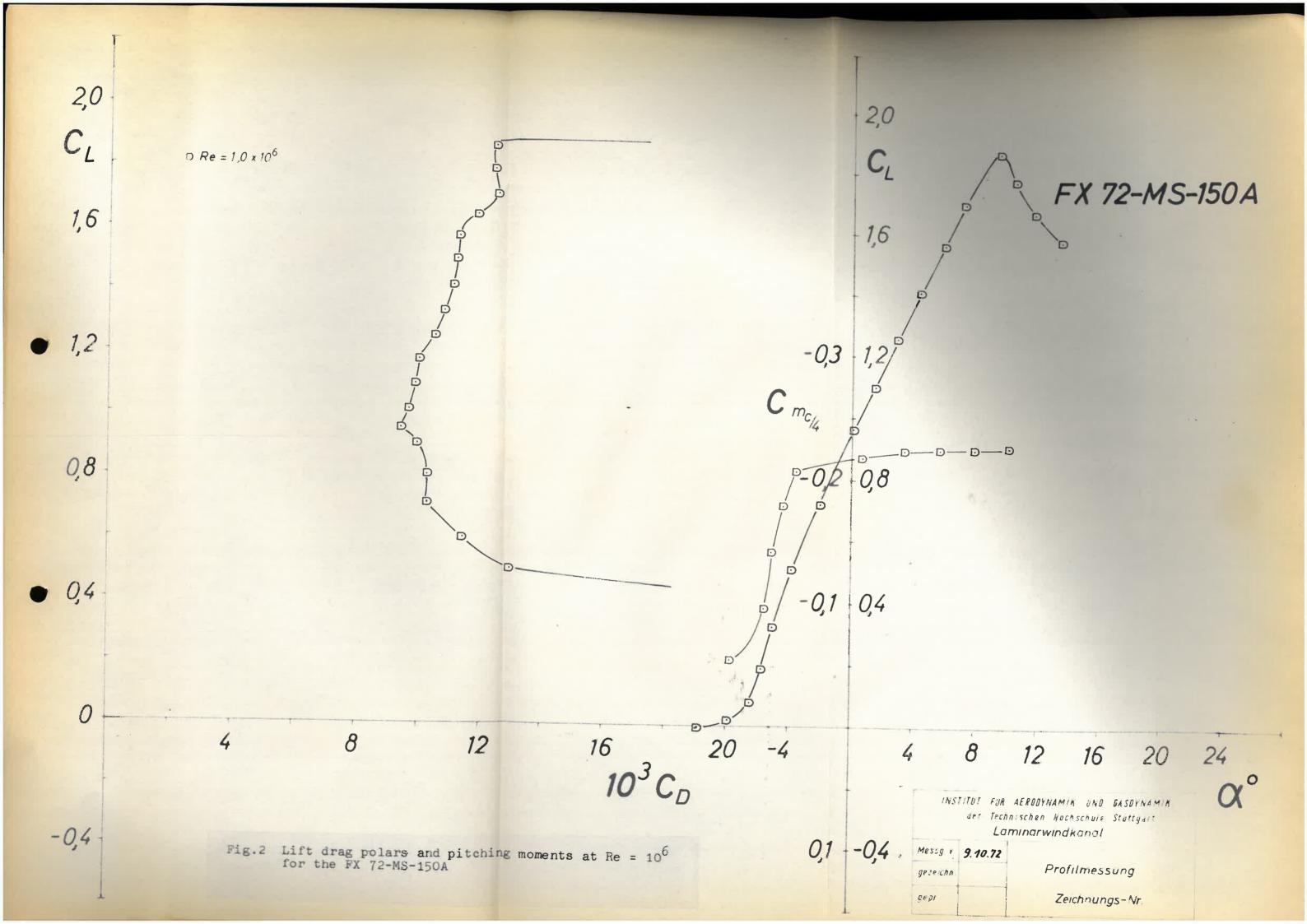
Before designing such airfoils some short remarks may be necessary. In the ratio $c_L^{-1.5}/c_D$ the lift has more weight than the drag. Therefore the desired airfoil will have in all cases an unusually high degree of camber. On the other hand, when the aircraft has to "float" only on straight courses or wide circles, the optimum aspect ratio will also be high and structural strength and stiffness call for a thick airfoil. In my previous paper [1] I have mentioned that the combination "thick and cambered" poses a serious difficulty for the boundary layer on the upper side. The situation is aggravated by the low Reynolds number as one would expect for such a slow and/or high flying machine.

In order to reduce the risk, two airfoils with a medium thickness of 15% were designed which differ only in the degree of camber. Fig. 1 shows the geometry of the two airfoils, A with 8,3% and B with 9,7% camber.

The experimental results are represented in Figs.2 and 3. It can be seen that both airfoils have maximum glide ratios of about 160 at high c_L -values. The sinking speed ratio $c_L^{1.5}/c_D$ of these two and some other airfoils [2] is evaluated for a Rey-

^{*)} These measurements were again performed by Dipl.Phys.D.Althaus

nolds number of one million in Fig.4. Fig.5 exhibits the influence of different Reynolds numbers. The less cambered airfoil 150 A has a single peak of $c_L^{-1.5}/c_D$ over 200, whereas the 150 B reaches the value 180 in a much more extended range of c_L . Both new airfoils exceed the VC-170/136 airfoil which has only 11,4% thickness, as well as the FX 63-137 which was designed for man powered aircraft. The fact that the new airfoils attain the maximum values of $c_L^{-1.5}/c_D$ at higher lift values than any previous airfoils seems to be especially attractive when the flight mechanics of an airplane are taken into account: usually high aspect ratios, which might be easily attainable with future fibre technology, call for high c_L -values and this is even more true when the sinking speed should be minimized in circling flight.


- 1 F.X.Wortmann, "A critical review of the physical aspects of airfoil design at low Mach numbers"

 MIT Symposium 1972 "Technology and Science of Motorless Flight", Cambridge/Mass.
- 2 D.Althaus, "Stuttgarter Profilkatalog I"

 MIT Symposium 1972 "Technology and Science of Motorless Flight", Cambridge/Mass.

Table 1.

		FX 72-MS-150A		FX 72-MS-150B	
No.	<u>x</u>	$\left(\frac{y}{c}\right)_{u}$	$\left(\frac{y}{c}\right)_{l}$	$\left(\frac{y}{c}\right)_{u}$	$\left(\frac{y}{c}\right)_{l}$
2 4 6 8 10 12 13 14 15	.99893 .99039 .97347 .94844 .91573 .87592 .85355 .82967 .80438	.00037 .00331 .00914 .01775 .02901 .04272 .05042 .05864 .06735	.00034 .00236 .00617 .01160 .01793 .02437 .02735 .03005	.00041 .00368 .01017 .01977 .03230 .04756 .05614 .06529	.00042 .00296 .00767 .01430 .02210 .03022 .03408 .03768
16 17 18 19 20	.77779 .75000 .72114 .69134 .66072	.07651 .08607 .09517 .10425 .11294	.03391 .03487 .03522 .03473 .03363	.08518 .09583 .10572 .11554 .12487	.04330 .04507 .04619 .04639 .04591
21 22 23 24 25	.62941 •59755 •56526 •53270 •50000	.12137 .12916 .13631 .14247 .14781	.03170 .02924 .02609 .02266 .01881	.13387 .14213 .14964 .15605 .16155	.04449 .04245 .03962 .03640 .03266
26 27 28 29 30	.46730 .43474 .40245 .37059 .33928	.15175 .15444 .15510 .15434 .15171	.01506 .01090 .00741 .00423	.16553 .16813 .16858 .16753 .16449	.02892 .02463 .02092 .01742
31 32 33 34 35	.30866 .27886 .25000 .22221 .19562	.14813 .14325 .13753 .13084 .12339	00072 00277 00480 00659 00826	.16046 .15503 .14872 .14137 .13321	.01158 .00897 .00626 .00377 .00132
36 37 38 39 40	.17033 .14645 .12408 .10332 .08427	.11528 .10657 .09733 .08773	00975 01113 01231 01328 01407	.12433 .11484 .10474 .09430 .08352	00098 00324 00527 00716 00886
41 42 43 44 45 46 47 48	.06699 .05156 .03806 .02653 .01704 .00961 .00428	.06777 .05767 .04769 .03791 .02867 .01985 .01252	01461 01485 01486 01432 01380 01246 01056 00596	.07256 .06154 .05072 .04007 .03050 .02150 .01330 .00650	01030 01138 01227 01243 01234 01150 00950 00560

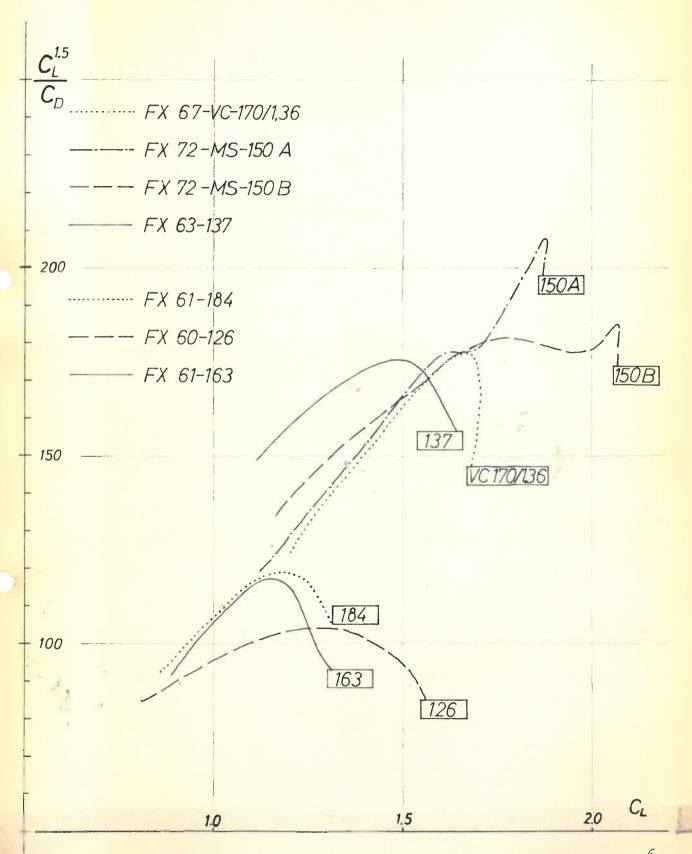


Fig. 4 The value $c_L^{1.5}/c_D$ for different airfoils at Re = 10^6

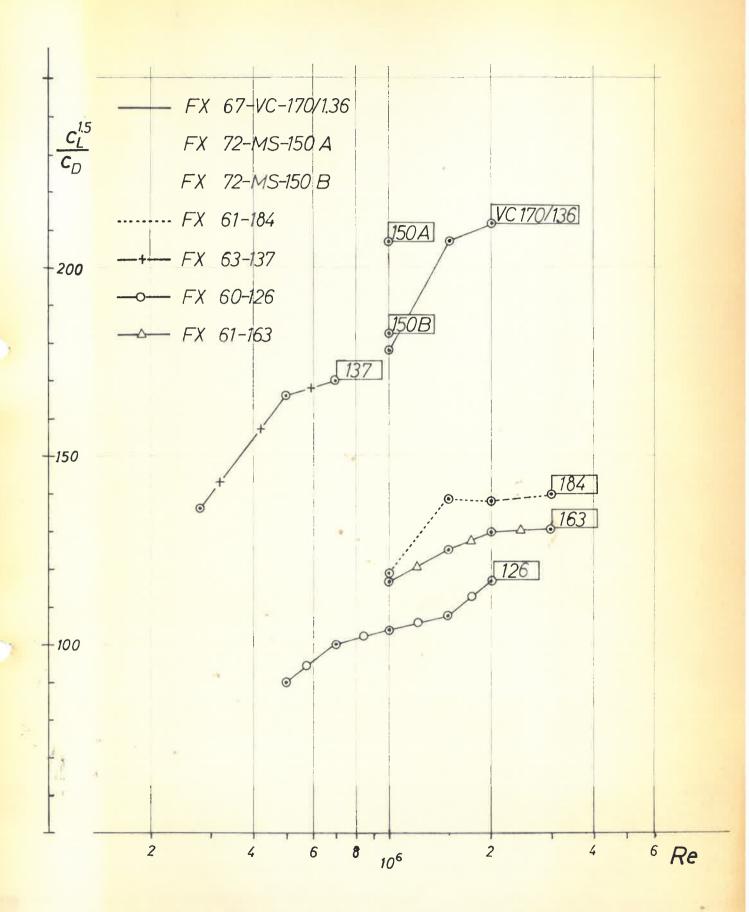


Fig.5 The influence of Reynolds number on the sinking speed parameter $c_{\rm L}^{-1.5}/c_{\rm D}$