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Introduction

Airfoils are a special class of ”streamlinéd" shapes which are
able to produce large 1lift forces at the expense of small drag
values. Selecting an airfoil for a certain engineering applica-
tion has mostly been done in the past by comparing the qualities
of different airfoils gathered in airfoil catalogues.. Today the
availability of a large body of knowledge and of fast computers
has changed the situation.

However, the o0ld question: is this airfoil for this purpose
nearly the best one, can very often hot be answered because an
airfoil is mostly a compromise between conflicting requirements.
Because the number of possible modifications is infinite, it is

certainly not enough to compare ons solution with another one.

Considering modifications, we should know which way is the most
promising, which gives the best, overall compromise and how clo-
se do we come to the physical limits? A deepe; understandlng of

the flow phenomena and their 1nterdppendence is surely neces-—

sary for any decision.
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It is hoped that the following compilation which contains some
basic and simplified facts of the potential and boundary layer
flow over two-dimensional airfoils may be helpful to select or
synthesize improved and better adapted airfoils.

I. Boundary layer behaviour

a) Laminar flow

If we exclude strong turbulence of the freestream, excessive
roughness on the surface or the turbulent contamination along a
swept-back wing nose, then a boundary layer starts with a lami-
nar state at the stagnation point even at very high Reynoldsnum-
pers. For instance, it is hard to get turbulence in front of the
instability point and on a conventional aiffoil of medium thick-:
ness this point lies at Rec = 108 between 4-6% chord. It needs
only a smooth surface and a suitable pressure distribution to

ensure a reliably laminar flow far beyond the instability point.

In order to get a quick impression of the boundary layer, we re-
member for the momentum thickness the wellknown formula of Walgz

(1) or Thwaites (9 )
>.
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for the shape parameter.

Very often it is easy to approximate the velocity in the front
part of the airfoil by distribution of the type

_.D(.E"() | o Pt T R

Such velocities produce so-called similar sclutions with con-

stant shape parameters. The momentum thickness now becomes

(4)
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The constants of Equ. (1) are in Equ.(4) slightly changed to im-
prove the accuracy with respect to the exact Hartree solution:

iy
- 4 >0
A= T35 %5m "
For airfoils the values of m are mostly between m = -0,09 for

the separating boundary layer
and m = 1 for the stagnation

m |
flow. Some values of A are Table I ? :
given in Table 1 and show 1
that the momentum thickness " Ao A/A ;
does not change very much 1.0 [ .11 ! .%65 .25
: 5 4 170 . 23506 i
in the case of an accelera- R - N T
ting flow (m 0). -05} .379 . .86

. iz ) (O., .88 :31.0
The shape parameter is now - .05! .555 11.26
independent of x/c. - .07 .618 [1.40

7 - 09 -703 ;1-59

[=HR-wm

(6)
Since in boundary layer theory several shape’ parameuers are
I L
used Fig.1l shows the relationship between H g;:gi P szzégfg;
FTos and m. Typical points in Fig.1 are H:Z= 1,572 ({flat
plate} and Hin = 1,515 (separation). ‘
From (4) we get . .ﬁé}nﬂ.ﬂe
TT € e ¢
2 X U o

These simple formula give an immediate answer how the laminar
boundary layer will develop on an airfoil when the velocity
distribution is known.

Often there is an interest to prescribe a velocity distribution
which produces certain boundary layer qualities. A typical ex-
ample is given in Fig.2. In the front part the velocity is

u/U, = Uy/U, = const up to x/c = x,/c. Now behind this point

we want a boundary layer which runs with a constant sShape para--

meter, say m = -.09 or [ = -.068.
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The velocity 5‘-&: 0<(~’2-
e (8)

with another length scale X yields such a boundary layer. To join
: " iboth solutions at x = Xy , Wwe need

. I ;
U 3 I \ ’ i o
- | % iequal reg in x, . _
Us U=C | éa I!"I‘his condition requires a shift of
a ; N | the X scale:
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Equ.(8) and (9) describe a velocity distribution along which

the boundary layer will everywhere separate.

b) Stability and transition

For subsonic flow the stability of a laminar boundary layer is
well understood as long as the perturbations of the freestream
or the surface are very small. Then the stability is only in-
fluenced by the Reynoldsnumber and the pressure gradient. In
terms of boundary layer the momentum Reynoidanmber and the sha-

pe parameter reflect this influence. Fig.3 shows a theoretical

‘result which separates the unstable conditions above from the

stable ones below the line.

For the flat plate momentum Reynoldsnumber and length Reynolds-

number are connected by Equ.(7)

g
R =22 o 2,97 (10)
o

Near the stagnation point the instability meomentum Reynoldsnumber
is nearly 50 times higher than on the flat plate. A similar so-
lution with m = + .07, which resembles an airfoil nose region,
yields re{%£?2000 i, Re, = 107 . This shows the extreme sensi-
tivity of the laminar stability due to the pressure gradient.

The same fact is illustrated in Fig.4 for a 15% Joukowsky air-
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foil at'severai-CL—values.

In contrast to the well established results of the linear stabi-
lity theory which started nearly half a century ago the predic-
tion of tran51t10n is still an open gquestion and will be so in
the future. The reason is very simple: the laminar boundary layer
downstream the instability point is a strong amplifier for in-
¢oming pevturbatibns The ampllflcatlon depends in the same way
as the instability point on the boundary layer Reynoldsnumber and
the pressure gradient or shape parameter. However, we do know
neither the structure and size of these perturbations nor how
they match with the amplifier characteristics, nor do we know the
- type and size of amplitude which finally yield turbulence.

There is enough experimental evidence to show that with smooth
surfaces in the free atmosnhere the ampllflcatlon rate is rather
high of the order 5 - 10. 10 Due to the fact, that the amplifi-
cation grows exponential in time or length, a high amplification
rate implies very small changes in the transition length positi-
on, when the input amplitude is variable. A.M.O.Smith (3 ) and
independently v.Ingen ( 3 ) have shown that the transition very
often takes place when the amplification rate reaches values

9.

about e
This is the basis of all of the so-called transition criteria
which search for an empirical relationship for the position of

transition as function of Re, or reg and shape parameter.

Michel (4 ) has given an empirical relationship‘
-22 % Re, ]  0%< Re < 307

Re <

which could be interpreted by A.M.0.Smith as a manifestation of
the e? criterion, see Fig.s, '

- Another empirical criterion was given by Granville, see ( 3 ), who
plotted the difference in ref between the 1nstab111uy and trans-
ition point as function of an average shape parameter between
these points. His results which are based on experimental re-

sults in free flight or in low turbulence tunnels are included

in Fig. 3.
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Fig.6 gives the values of{?El along the airfoil chord for K = 1

and three m values. This figure can be used to get an impression
how the velocity distribution can be used to control the trans-
ition positioh; The Granville criterion needs in the regipn of
adverse pressure gradients a = AY€3=L400. It can easily be seen,
that even with a nearly separating laminar boundary layer it is
difficult to produce at low Re,-numbers a Ay of 400. At Re. =10
more than half of the chord is needed for an instability

range. We can draw the conclusion that for conventional airfoils
with smooth surfaces and low freestream turbulence the transition

will usually not take place in front of the separation point.

In this connection it may be useful to correct some observations
of the Tamous NACA laminar airfoil developments in the forties:
they were not able to verify laminar flow beyond length Reynolds
numbers of 5—8-106. There are some later examples which show
clearly that with low disturbances extremely high Reynolds num-
bers can be realized: on the flat plate Wells (5 ) from LTV ob-
served transition at 5-106 in contrast to the 2,8~10£ of Schu-
bauer and Skramstad ( 3). W.Pfenninger verified laminar flow up
to 1,3-10; in his suction experiments and Carmichael (6 ) de-
monstrated length Reynoldsnumbers of 1,6_-105z on an underwater
body . |

The following conclusions can be made:

1) The pressure gradient has an overriding effect on the trans-
ition as long as the perturbations in the boundary layer are
small. Such conditions are given for smooth surfaces and

free flight in the atmosphere or deep sea.

~2) When the pressure gradients before and behind the minimum

~point are not small (|m|> .1), the instability, separation
and transition point are all close to the minimum, at least
at 10° ¢ Re < 10 .

"3) When the pressure gradients are small the prediction of trans-
ition needs a criterion. Up %o now, only a restricted informa-
tion is available for low freestream turbulence and smooth

surfaces.
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¢c) Separation bubble

Very often, especially at low Re.-numbers, the laminar boundary
layer will separate before it becomes turbulent. At high angles
~of incidence this happens at the airfoil nose even when the chord
Reynoldsnumber is high, because the length Reynoldsnumber of the

separation point is an order of magnltude lower.
transition

Fig.7

separation ) - reattachment

The s paﬁ‘ted boundzry lzyer stays laminar fcr a'while, lea ing the
wall in a nearly straight- l1ine. Downstream of the tran31t10n
‘point the turbulent m1x1ng is able to bend the average stream-

line towards,the wall and to build up a certain pressure recovery

0}

up to the reattachment point (Fig.7).

Below the separating streamline the flow forms a closed region of
dead air, the separation bubble. Fig.7 illustrates the situation
and Fig.8 is a photographic side view of a bubble.

The pressure difference, which the fturbulent m1x1ng can reallze
is restricted to values below say 35% of the dynamic head at the
separation point - a situation similar to the Carnot shock in

plpe flow with a dlSCOHtlHUlty in area.

- e A T et

In the case of airfoils the final pfessure recovery is equivalent
to a certain streamline contour which in turn may be compatible

wWith the geometric airfoil contour or not. Now the bubble beha-
viour can develop into two different types: the first occurs typi-
cally on thin and low cambered airfoils: with increasing angles '
of incidence the turbulent part of the,bﬁbble spreads out more or
less along a line of constant pressure. The fluid contour on the
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upper side resembles a cavitating bubble and redistributes the
whole pressure distribution far away from the potential solution.
The maximum 1ift will pe reached when the bubble extends to the

‘tralling edge.  porivate For |

iW—iO 102 INVISCIO FLOW iWhen the bubble is embedded
g 0.88 © EXPERIMENT fin a softer overall pressure
Sr o Ugep ‘gradient and the curved
U2 Streamline of the turbulent
{5 T part of the bubble can meet
Cpf .:gg ;the airfoil contour immedia-
5p 49 0.88  Itely, then the bubble looks
- ':gg like Fig.7 or 8: 80% of the
-, ~DEGION WITH af i (=
g Sggééiﬁﬁég{;ggaL§6UNDAR{bubblelength are laminar and
LAYER TRAVERSES. ‘the rest turbulent. The ef-
" 06 0:002 6.004 5.605 0608 T 010 fect on the overall pressure
‘ x/¢ ‘ fdistribution is small as can

Fig.9 be seen from Fig.9.

With increasing angles of incidence the bubble length reduces due
to a faster transition downstream of the separation. The main
reason for the quicker transition is the increasing wedge angle
of the separation streamline. However, with higher incidences the
overall pressure gradients become steeper and steeper and it is
questionable whether the transitién can be fast enoughrto avoid
an unduly strong pressuré recovery in the turbulent part of the

bubble.

When this happens at high angles of incidence the tiny bubble
suddenly explodés, but now there is no chance to reattach the
surface in front of the trailing edge. There is no longer a clo-

sed bubble, only a completely separated flow.

Besides this dramatic effect on the stall of airfoi®B tha separa-
tion bubble has a more subtle influence on the development of
the following turbulent boundary layer. ‘

.The'turbulent reattachment process constitutes an initial thick-
ness for the turbulent boundary layer whose details are not very
well understood.  Tn any way we must be interested to hold this in-
itial thickness as small as possible in order to avoid an unfavou-
rable interaction with the'following turbulent boundary layer.
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The question whether the separation bubble harms the turbulent
boundary layer or not may be answered by considering the turbu-
lent boundary layer thickness at the reattachment point. If the
wedge angle of the laminar separation is large any forward shift
. of the transition point due to’say higher noise, roughness or
'Reynoldsnumber"will reduce the initial thickness of the turbulent
boundary layer. At small wedge angles of the bubble it is better
not to shift the transition forward. Obviously, we haWe to compa—
re the gradient of the turbulent momentum th;cxnessgg. orgg '

with the wedge angle of the separation bubble.
For the latter the author (7 ) found an approximate relationship

0% p '
Tow ¥ = — - (12)
.{693

;A '
where chg.&g is a measure for the Dressure gfadlenu between

the separation and reattachment point.

d) Turbulent boundary layer

If we exclude the possibility to maintain the laminar state by
suction, the main pressure recovery in the rear part of an air-
foil has to be done by the turbulent boundary layer. Today there
ex1st many sophisticated methods to calculate the turbulent boun-
dary layer, however, for our purposes a 51mp1e quadrature formula

given by Truckenbrodt ( ) is good enough:
Kl

- 333 o357
e s a4 ]
L (13)
c :L(&&))? ;]Mei,

with
. COFL

« itk
ﬁ%c

B s

For the fully turbulent flat plate X, = 0 with %? = 1 = const and

C, = 0 we get

1 .., $57
g 0152 X)
C o, P 143 (c
A T
* . (14)
U, ¥57 ,
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For the turbulent boundary layer we are interested in the fol-

lowing questions:

What is the influence of the Pressure distribution and the
initial values on the development of the boundary layer?
Will the boundary 1ayer separate? What is the influence of
the Reynolds and Mach number? To begin with the last: for
Mach numbers below one and adiabatic wall the influence on ~o
can be neglected. Only the displacement thickness is due to
the heating somewhat larger than in incompressible flow and

the separation occurs slightly earlier.

With respect to separation it is convenient to compare the
kinetic energy at the start cof the pressure rise to the rest
of the flow. Before separation occurs, it is usually possible
to recover 50% to 80% of the entry energy. Therefore it is
reasonable to investigate boundary layers in terms of( )‘ or{aj

A
and not oy *

Fig.10 gives an example of the behaviour of turbulent boundary
layers, taken from A.M.O0.Smith (8 ). The type of pressure dis-
tribution and the initial values of the'momentum thickness chan-
ges. It can be seen that all pressure distributions do not se-
parate before (m-)z is less than .5. However, the concave dis-
tributions can rgalize'a far greater pressure recovery especial-
1y when the initiallboundary layer thickness is small.

In selecting suitable velocity distributions we are naturally in-
terested into the special cases which produce the so-called "equi-
librium" boundary layers. Such velocity distributions are concave
all the way, starting with steep and ending with soft pressure
gradients. Similar to the laminar counterpart a constant shape pa-
rameter 1s the trademark of such boundary layers. AiEBI the momen-
tum and displacement thickness grow llnearly wWith _length. One ex-
treme example, the turbulent boundary layer which comes everywhere

close to separation, was 1nvest1gated by Stratford (g e

Velocity distributions for equilibrium boundary layers can easily

be calculated, depending on the initial values:

if U; is the velocity at the start X, of the pressure rise the
concave velocity distribution may be described by

u. ey N2 | _
g+ 9150 |
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The constant a depends on the Reynoldsnumber of the turbulent
rart of the airfoil between X4 and 1 at the trailing edge:

Re, = (1-x,)Re -

and the Reynoldsnumber of the initial momentum thickness (16)
HH}. U« ")( R
<4 = — = = --—=.NINe
i -3; r Uy € C

and the shape parameter. Here the parameter H32 is used with
H:;o = 1.732 for the turbulent flat plate and 1.515 for separa-

tion. Fig.11 gives the connection to Hoy
Now for the factor a We can use

019 N2, U mialle]: il f o | 67
Yey,

(17)

-~

This simple formula gives a fast guess of the type and size of
pressure rise which can be realized for a given initial condi-
tion and Reynoldsnumber. The thickness increase of v is given

by 9T g [2=22)
v, (18)

Because the value of the constant a changes from the flat plate
condition to separation by a factor of three, the last equation
gives again a fast Survey on the boundary layer development.

‘For the trailing edge we have
%(ra):040+a)=-ﬁ(g )
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turbulent boundary layérs

e) Longitudinal curvature

Because turbulent boundary layers are relatively thick they are
sensitive to longitudinal curvature. A curved flow usually deve-
lops a quality which is not always recognized: the fluid is no

longer homogeneous, but is stratified due to centrifugal forces.

Only the potential vortex is an exception.

Boundary layer on walls convex to the mainflow are stable strati-
fied like fresh water over salt water or heated gas over cold gas.
The turbulent mixing has not only to work against V1sc081ty but
also against the stratification. Reducing the mlxlna means less

impuls transport, less skin friction and a smallera— .

The boundary layer on convex walls behaves to a certain degree
like a laminar boundary layer and will separate much earlier than'
a normal turbulent boundary layer. The contrary is true for the
boundary layer on concave walls. The mixing is enhanced often
with regular and counterrotating rolls (Taylor-Gértler vortices).
On concave walls the separation is definitely delayed.



) Roughness

Roughness can have a considerable influence on the drag of an
airfoil. We have to distinguish between laminar and turbulent
boundary layers. For turbulent boundary layers roughness will
be felt, when the roughness height K becomes higher than the
viscous sublayer. Eherefore K has to be smaller than
- : ‘
5 A5 (19)

The friction veloc1ty v ~0‘”’ can be replaced by the lccal skin

friction coefficient .
$+ i i
U= umyf}

9

—

with
Cp = 2237 for the flat plate.
Re -=
The roughness Reynoldsnumber has to stay below
RN 20
v Vet s
Since Cg‘changes only weakly with Reynoldsnumber we may write
= " T I
Rx Rc and get Table II U K 1
ae Re <
c . v |
107 91
10° 114 !
100 1ny
108_ 181 !
If we are interested in the small variation of the allowable
'roughness EqQu.(20) may be written in the form
W
C e e C o
[

In the region of pressure rise the cg‘—value may be reduced to
half the flat plate value.

An important question is how much does the drag increase if the
roughness is larger than the allowable limit. If the #alues of
TableIl are doubled, then the drag will be about 209 higher.

If the roughness is five times larger, the additional drag will

grow to
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50 - 70% of the smooth value. Now the drag becomes 1ndependent of

the Reynoldsnumber at all, see Fig.12. For a given value of %

‘the Reynoldsnumber is the most important factor, as can be seen
L{ . . -

for other & in Fig.12. ( Sesle /rDa—)

In the laminar case, roughness plays a completely different role.
Now roughness may shift the transition position. A two-dimensional
roughness like a transition wire works primarily due to the small
separation bubble it creates. In the reattachment region a much
stronger'amplification takes place than without the roughness.

If the height of the roughness is plotted in terms of displacemeht
thickness we observe a continuous changing transition position,
see Fig.13. A rearward facing step in the contour has a very simi-
lar effect. For three-dimensional rou ighness the behaviour is
slightly different. Up to a ratio of ?2 < .5 the transition will
not be influenced. For higher roughness the transition jumps imme—

diately to the roughness position.

Small surface waves are not important in regions with strong fa-
vourable pressure gradients. For flat plate conditions a single

wave will also destabilize the laminar boundary layer.

A stronger effect has a sequence of waves, because the boundary
layer develops a memory for the waves and dependent on the wave
amplitude will separate after 5 - 8 waves, even when the ampli-
tude is as low as f?4<i.15.

' If we compare the roughness height, which will not shift the
transition and not increase the turbulent skin friction we find
for higher Reynoldsnumbers that the turbulent bounaary layer
requires usually a smoother surface than the laminar flow, see
Fig.14. It shbuld be mentioned that leakages are also a sort of

roughness.

Sometimes it is of interest to provoke transition. Three-dimen-
sional roughness with supercritical height along a small strip
may do- it. For low Reynoldsnumbers a three-dimensional roughness
of special form (see Fig.15) may be more effective than other
types of roughness. The helght of the forward facing step may be

K. Then a Reynoldsnumber

% > 120 = 150
v

seems to be necessary.
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Fig.13 Influence of twodimensional roughness on.transition

Fig.14 Critical roughness for a flat plate at two Reynolds-
; numbers for the laminar and turbulent boundary layer
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double vortices in the Shearlayer which are followed by small

local separations., The spanwise wave length of this device seems
not to be critical,

| 7

I3

Fig.1i5 Threedimensional roughness
to trigger transition



II. Potential flow over single element airfoils

rIn this chapter we will learn about the connection between the
Preéssure distribution and the shape of the airfoil and the implieq
constraints. In order not to ask the computer any time it is helpf

a) Symmetrical airfoils at zero angle of incidence

The most simple airfoil in a theoretical sense is the €lliptiecal
airfoil. If we denote the felated'coordinates and velocities

2= X
‘c‘:" T
2o “ ) : .

i'=>/ _Z%§_:B J airfoil thickness

s

G~ H

- i 3 - :
and X = ilf-i- c.c_of) (22)

wherel? is a cirecular angle, de-
fined as in Fig.16, then the

shape of the ellipse-is given by

V=dx (1= xT?%s;f

The velocity distribution comes

‘ ’ as
Fig.16 yu Akd - ::2(4+éf-§7ﬁrrjzji:fj
| Ve (& bampy? == 35>

and Upax = 1 +&
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There are two extremes of the elliptical airfoil: the circular
cylinder with { = 1 and the flat plate with £ = O. Fig.17 shows
the velocity distribution of several elliptical airfoils. The
supervelocity due to the thickness depends immediately on § , the

x = 0; ¢ 0
X=1;\F I

1
the values of cotarnf become large against 1, therefore the velo-

relative thickness. Near the ends

i n

city gradient can be approximated by

4l 1+ & . .

—_— & o f-l. {a"' = 1

dy § T ¢>0 14
Yra

Another simple airfoil is the linearized Joukowsky airfoil. The

shape and’ velocity are given by

y_‘-:‘2£[/;\'(4_ x )3 = ‘?:‘*;"T’ (1= Cenp)
E""e?? cY
b = 1+ (1= 2Zecenp)

o s=nsy

Both the maximum thickness and the maximum velocity are shifted

forward to x = .25 and x = .15 respectively. Joukowsky airfoils
have ‘a cusped tail and zero trailing edge angle yielding a final
trailing edge velocity Us1-& =1- 778§ . Fig.18 shows the

velocity distributions for some { -values.

The well-known NACA thickness distribution of the four- and'five—
digit airfoils is given by

V= 258 (L2767 /X 126X — 3576 x © 4+ L 2843x7 ~ oIS x*)

The maximum thickness lies at x = =304,
A number of velocity distributions is given in Fig.19.

The velocity distributions of the NACA-6 series airfoils for
different positions of the maximum veloeiby and for £ = .12 are

given in Fig.?20.

With respect to the velocity gradient at the nose all airfoils
exhibit an increasing gradient with decreasing thickness. The
contrary is true for the trailing edge velocity gradient (with
the ekception of the blunt elliptical airfoils).
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Fig.17 Velocity distribution of several elliptical airfoils
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Fig.18 Velocity distribution of Fig.19 Velocity distribution of
Several Joukowsky airfoils Several NACA 00XX airfoils
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Fig.21 illustrates the velocity gradients at the nose for the
Joukowsky airfoils and gives also some values of the elliptiec and
the NACA-6 airfoils.

In Fig.22 the maximum supervelocity of these different airfoils
is shown as function of the relative thickness § . Again it can
be seen that the Joukowsky airfoils, with a maximum thickness
position at x = .25, and the elliptic airfoil withé%ﬁgt midchord
encompass other more practical airfoils.

M‘.' N7
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I

Fig.22 Supervelocity of several
' airfoil clases

b) Angle of Incidence

Airfoils with sharp trailing edge usually satisfy the so-called
Kutta-Joukowsky condition which means a smooth trailingnedgé flow.
Then any‘deviétion from the zero 1ift angle produces a circulation
‘and hence 1ift. The same is true for airfoils with blunt trailing
edges, . when the rear stagnation point is fixed. For elliptiecal
airfoils the change in 1ift coefficient is

el o e )
du
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Fig.20 Veloecity distribution of several
NACA 6X-012 airfoils
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Fig.21 Velocity gradients near the nose
: of Joukowsky airfoils .
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7 (28)
i.e. 2W for the flat plate and 4T for the circualr cylinder.
For Joukowsky airfoils wé have
| s (e TR 2w | (29)

dx

In viscous flow the increase of‘jL due to thickness is practi-
cally cancelled by the thicker boundary layers of these airfoils.
-For fully‘turbulent flow and for J§= .2 ‘?% may be even 5% 1less
than with thin airfoils. Generally in real flow a cusped trailing
edge satlsfles the Kutta-Joukowsky conditions better than a wedge

n;ped

The pressure distribution due to the angle of 1n01dcnce for a

“flat plate is == .
X + = upper side
B ey (30)
ov aU = Z*""“XI/T— - = lower side

yielding a pressure difference of

449 20(‘/ — < ! B
Tt RS EES ook, T B

which'by integration leads to ¢, = 2Tsin«,

Fig.23 shows the function“ﬂ‘* . The center of 1ift acts on the
point X = ..25. The stagnatlon point on the lower side is shifted
tos :wi( This type of pressure distribution is typical for all

thin airfoils with fixed trailing edge conditions. However, the
well rounded nose shape of real airfoils reduces the flow veloci-

ties there to finite values.

For elliptical airfoils the more general velocity dlstrlbutlon

is given by

1+ d . .
U= A b s [ .
Ve Garapyz (oo & [ PR

If we compare this equation with the-flat plate formula we see
the role of the square root: for~f—»r cotany goes to infinity
aﬁd makes the velocity_now finite. Incidentally 6cotany> has a
'geometric interpretation: it is the slope of the airfoil contour.



il B
Veloecity difference of flat plate at
2-8in® = 1/ or ¢ =10

Yo

Fig.24 Potential flow around a circular
cylinder with circulation
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At the nose, where ¢ =7 , the ratioggr@duces to

+ _
ulm) = 1—c£-2 X (33
d
If we connect the 1ift coefficient
¢, =27 (14 d) e X
" and the nose radius Q of the ellipse with the thickness d
J=Vig '
we have : ' ' Ce
S T
(34)
In contrast to the flat plate; the nose velocity is not the peak

O

of the velocity distribution, except at o = 90 This can easily

be seen in the following way: the circular cylinder with circu-

lation, see Fig.24, has the maximum velocity at\fz-g:+ﬂ, Since

the velocity is £ A X
Ul g) = 2[om (-] + e ]

, (35)
the maximum velocity is

l’{ma;: (»OU"ZE‘, + r":"‘ {"‘-7

and the nose velocity at v =

Y (x) = ==X

Only for . X = 900 the maximum velocity coincides with the nose
and this holds for any airfoil, because airfoils work only for
low angles of incidence, say 15 degrees; the nose radius there-

fore is not as significant as is often believed.

It is the shape of the whole nose region which is important for
the type of velocity distribution at such angles of incidence.

In order to have a simple access to the influence of the angle
of incidence, we may take Equ.(35) and formulate the ratio of
velocities at two different angles of incidence, say oy and‘xzi+)

Ul () e (- x1) + 45 om(‘g-“,)j - (36)
(/i{_Kz_lLf) _’ J";;*{‘(’—*’(z) b Ky ) .,_._;{ ) .

+
) In these equatlonsh< is always counted from the zero 1lift

direction.
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If one velocitj distribution is known, say for «;, the other for
of, follows immediately. Since the velocity ratio is invariant
agginst transformations like conformal mapping, the ratio holds
for all airfoils if we know the relationship between a point of
~ the airfoil contour and the associated {¢-value on the circular
cylinder. Equ.(22) is exact for elliptical airfoils and a good

approximation for all other airfoils with nearly elliptical nose
- except for the first few percent of the chord. i

c¢) The influence of camber
on velocity distribution and drag

The singularity method understands the velocity distribution of
a cambered airfoil as composed by the thickness and a camber dis-
tribution and the effect of angle of incidence. This implies a
definition of the latter, which takes the chord of the mean line

as reference.

Now the purpose of the camber is to produce lift without angle

of incidence due to velocity differences on the upper and lower
sides of the airfoil. On symmetrical airfoils the effects of the
angle of incidence can partly be influenced by the thickness dis-—
tribution. Camber however gives a large degree of freedom to
change the velocity distribution on both sides of an airfoil and

partly 1ndependent of each other.

One of the 51mp1est conceivable types of veloc1ty differences is

the constant difference at «f = OO (NACA meanline with a = 1.0).
If Ug is the velocity of an symmetrical airfoil and AU the total

and constant difference between velocities on both sides then U

can be composed by

2
d'.‘

nhd L,ls

C, = 8Cpddx =~ 2(£i) for thin airfoils wit s fs8)

G L

and
: 1
" For other AU-distributions the mean value aU =Jﬁ“dx- can give an

approximation for the 1ift coefficient. °
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The NACA meanline (Fig.26, a = 1,0) has the contour

y=- 5—5’[(«:—-x)£¢~(.4'—x) fxfeﬂ*xj 7 (597

2
Sl 10 . (= )/M:J.x

1

(7o

= .
P 1

Y(O5) = 5. 3465 =

- This type of meanline was introduced in connenction with the NACA 6§
laminar airfoils (10), because it does not change the velocity

gradients of a symmetrical airfoil. Therefore the qualities of

symmetrical airfoils can be transferred more or less unchanged to

cambered airfoils.

The 1lift of the constant loading at K= g2 centers at the mid-

chord point. Any other angle of incidence produces an additional
1ift which centers at the quarter chordpoint. The combined over-
all 1ift therefore shifts fore and aft between these points with

‘the angle of incidence.

Sometimes as with helicopter rotors the pitching moment has to be
nearly zero. Then this type of camber can not be applied. The
rear part of the airfoil has to be unloaded or even downloaded
and the frent part has to carry more 1ift, so the center of the
1ift stays near the quarter chord point.

It is unavoidable that now for a given 1ift coefficient the super-
Velocities go up, see Fig.25.

For higher Mach ﬂumbers the supervelocity should be as small as
possible. This can be achieved by loading the rear part of the
airfoil, where supervelocities due to the thickness diminish.

Now the front part is unloaded leading to the somewhat strange
appearance of the modern transonic airfoils. The large pitching
moments and the associated trim drag of these airfoils partly can-

cel their advantages.

Fig.25 shows how the 1ift loading can be varied from low to large

pitching moments. (12)

For viscous flow the large velocity differences.at the trailing
edge are not possible. The boundary layer displacement-thickness
which is different on the upper and lower side changes the effec~
tive meanline, which changes the pressure distribution and this
in turn the boundary layer. Thérefore it is not possible to in-
crease the 1ift simply by higher and higher cambered meanlines
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of the NACA a = 1.0 type. (See also the section on turbulent
boundary layers.) Some experience seems to indicate that dnsepa—
rated flow is not possible when the camber of the upper surface
itself exceeds 15-17%. However, if drag doesn't matter, even high
cambered‘meanlines up to 25% may be sensible for high 1ift pro-

_duction.

Fig.26 compares the NACA meanlines at a (, = 1,0 for four diffe-

rent a-values.

d) Flaps

Here I would like to restrict myself to the simple plainflaps as: -
one of the most convenient ways to change tho geometry of an airfoil
in order to produce control forces. The availability of variable
geometry adds,andther degree of freedom to the design or selec-

tion of airfoils.

The simplest airfoil with a flap is a flat plate with a kink. If
' we denote the connection

between the endpoints as

chord and the difference
between freestream and chord o¢
(see Fig.27), as angle of

incidence, then with

A=

Fig.27 7 as flap angle and (1—x4) as
flap chord and £¢:(4~x,)v

the velocity distribution (see (12)) becomes

H:c.[{-‘ffl_}‘f— (;-A;f«_:_:} + at(-x)- t%)]m« FESK (40)

For a certain angle of incidence «; the flow at x = O will be

tangential to the airfoil:

s T = =l el fprementan (B 1) 2 030

For ¥, = .5 we have a special type of meanline, symmetrical around
the midchord point. For such meanlines X; is always zero. For X 5

X; is negative. The ratio of X, to the flap angle Y is gi-
ven in Fig.28. The corresponding velocity distribution -
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is given in Fig.29 for x, = .7 and x, = .8 and several y-values.

If we change the angle of incidence to K = £ the freestream has
~ the same direction as the front part of the flat plate. The ve-
locity distributions are given by Fig.BO and the (, -values for
some x; and flap angles in Fig.31.

It is not difficult to imagine that for small flap angles and
angles of incidence between &; and X =& it should be possible to
produce a more or less constant velocity distribution in front
of the kink. With the help of a suitable thickness distribution
this is certainly attainable. This opens the possibility to de-
sign a symmetrical airfoil with a defkcted flap and to have at
the sare time favorable pressure distributions for the boundary

layer control.



Fig.30 Lift distribution fop o =€ on a flat plate
with flap at ¥4= .8 and Xg= .7

Gt
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Fig.31 'Lirfs coefficients for of =&
as function of hinge position
31 and flap angle

Y
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e) Compressibility and shockless flow g - QU & B

Increasing the freestream velocity to higher subsonic values
changes the pressure distribution by a similarity factor. As

long as the local Mach number on the surface of the airfoil stays
well below 1.0 the Prandtl-Glauert rule says that the compressi-
ble Ap and cp distribution results fr$m_the incompressible one

by multiplying the latter with B :V;jj%zf“ correspondingly the
c,.- and ¢,-values, but also the pressure gradients go up. For
potential flow, however, the drag remains zero and for a real

flow practically constant.

To transform the incompressible velocity into a compressible one,
there exist several sophistical formula, for instance: the NLR (17)

formula
v:L’w@WQ” —1
Vi gy
V, = incompressible veldcity
& =V 1- M2 (1 = ooy

*?Vu 7{‘_’7‘"

When the local Machnumber exceeds the value 1.0 in front of the
airfoil crest the flow and drag does not change much. If however
the local -supersonic field spreads out beyond the crest, the drag
will usually sharply increase and the associatéd Machnumber is

called drag divergence Machnumber.

The typical development of the pressure distribution is given in
Fig.32. The lower pressures behind the crest constitute a pres-
sure drag. The steep pressure increase at the end of the superso-
nic field is called shock and resembles to some extent the same
‘Phenomena in a one-dimensional flow in a streamtube or Laval-
throat. The two-dimensional flow is however basically different
and offers the possibility of a smooth return from super- .to sub-

sonic flow. The physical interpretation is as follows:
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On the convex surface near the airfoil the flow may.reach the
- sonic point. Now the curved surface requires an outgoing fan of

field are reflected as compression waves. The combined effect of
both wave groups turns the flow and has to be compatibel with the
surface contour. When the whole system of outgoing and incoming

in a continuous fashion and return to subsonic flow without a dis-
continuity in the bressure distribution or the entropy constant.
The pressure distribution then has the same form as for subsonic

flow and the bPressure drag remains zZero.

The possibility or shockless flow was first empirically observed
and understcod in the sixties by Pearcy (13) and around 1967

Nieuweland (14) showed theoretically the ekistence of ‘shockless
flow for the quasi-elliptical airfoils. With shockless flow the

velocities on the surface of airfoils can be higher without a

drag Penalty.

That means that Symmetrical airfoils may be thicker for the sanme
Machnumber or for the same thickness the Machnumber may be higher.
"For lifting airfoils it means more 1ift for the Sare Machnumber

' There exists an upper boundary for the maximum loecal Machnumber
inside the Supersonic field with M, = 1.4 = 1.5. This .fact can be
interpreted by considering perturbation waves travelling upstream
with sonic Speed. Since the flow Speed near the'airfoil surface
and downstream the Supersonic field is higher than farther away
the waves will turn ang entering the supersonic field there is a
chance that the flow_velocity bPerpendicular to the wave front is

and does therefore not gather into one single steep perturbation,

the shock.

The promising features of shockless or supercfitical flow has led
in the past decade to a whole spectrum of computational methods

- for the investigation and the design of such airfoils which cannot
be dealed within the framework of this compilation.
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III. Examples of airfoils

a) Symmetrical airfoils

The drag of symmetrical airfoils can be calculated by the well—

known formula of Pretsch or Squire- Young, see (3 ) %

r‘](p

(44)

8
u'

“.3 w

4] (7 JE‘
The  momentum thickness and the "dumping" velocity at the tralllng
edge determine the drag. Fig.33 gives the drag values of a flat
bplate and shows the large influence of the Reynoldsnumber and the

transition voint on the drag.

It should be noted that the "dumping" V91001ty'bhE has not the
strong 1nfluence .as it seems in Equ. Qu a small increase in 4 by
Ab{reduces the pressure gradient and hence the thickness of the
turbulent boundary layer by(AU),‘see Equ.(13). In the following
it will be assumed that the alrf01l surface is perfectly smooth.

1) Reynoldsnumber u-106

We may start with some of the wellknown NACA airfoils, smooth sur-

faces and a Reynoldsnumber of 44100,
The velocity distribution is given in Fig.?20.

The experimental drag values for free and enforced transition are

. listed in Table ITI.

Table ITII

c..10° equivalent X 10° Cp

D' d T Lp °p* i
airfoil trans.free flat plate E\-_‘:‘,’ fully turbulent Loe¢
NACA B63-015 5.4 +35 A7 9.6 1.37
64-015 _5.1 .41 7208 9.7 1.38

. 86-018 | .4.5 .47 .678 9. 85 1.40
66-015 | 4.3 .52 .614° 10.0 1.42
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The drag of the partly laminar airfoils compared to the complete-
ly turbulent flat plate (Cy= 7-10° = 2Cz, ) is only 60-80%, and
-the fully turbulent airfoil has U40% more drag than the turbulent

flat plate.

At first I would like to discuss the influence of some modifica-
tions on the drag of these NACA airfoils for a fixed position of
the maximum velocity and consider three flow.features: the lami-
nar flow, the transition region and the turbulent boundary layer.

The favorable pressure gradient up to the vechiEy maximum certi-
4=106 laminar flow, in fact at this chord Reynolds-

Iies at Re,
number even a constant velocity may produce a transition as far
back as 60% of the chord. For the 63-airfoil there is a rounded
range between the favorable and the adverse pressure gradient.
Any laminar separation bubble in this region will have an extre-
mely small wedge angle and does not disturb in the initial values
of the turbulent boundary layer. In contrast, the 66-airfoil ex-
hibits a much stronger deceleration and the laminar separaﬁion
bubble here will certainly be a bad feature. The velocity distri-

bution in the following turbulent part is practically linear.
Obviously there exist two possibilities to improve the drag.

1a) a 5etter control of the transition with a region which desta-
bilizes the bOundary layer without separation. Assuming a
stable boundary layer up to the maximum velocity, we need a
;&Yeaj:HOO or ‘?i§§;2'2 behind this point. According to to

Fig.6 this means nearly 30% of the chord.

Sometimes it is not useful to go to the extreme and a shorter

instability range may be helpful, since any following separa-
tion bubble will be drastically reduced due to the amplified

perturbations -in front of the separation.

1b) The second pdssibility aims to a better control of the turbu-
- lent boundary layer. Fig.34 gives an example of this idea:
for the same transition point at X, = .5 and ReC = 1dr the
drag of the modified airfoil is some 13% smaller than the
drag of the NACA counterpart. The large difference in the
boundary layer thickness at the trailing edge is partly can-
celed by the higher trailing edge velocity of the modified

airfoil.
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In both cases the effect of the displacement thickness on the ve-

locity distribution has been included.

2) Reynoldsnumber 40-10°

Now we may change the Reynoldsnumber to M0m106.

If we approx1mate the velocity distribution in the forward paru
by U~ x" with m = +.05 we have reg .. = 600 which will be rea-
ched at 5% of the chord. In reality the acceleration is usually
higher, and the instability point further aft, compare Fig.}.

In order to certify a transition in the 30 to 40% chord position
it is neéessary to strengthen the favorable pressure gradient.
With m = +.1 the critical chord position is nearly 8% and with a
372 = 1500 the transition can go to the desired position. Now
we do not need any destabilizing 1link and can immediately start
with a concave distribution for the turbulent boundafy layer.

3) Reynoldsnumber O. M-106., mdl 9. 23%

For the low Reynoldsnumber the velocity dgz?;lbutlons of PFig.20
are no longer adequate. Experimental results show that now the
velocity distribution of the NACA 0012 type is one of the best.
The reason is quite obvious: after Granville we need at least a
ave s 3
LYes=400 and —-Y:=.6g?énd Fig.6 tells us that nearly the who-
5 vy & 4

le chord léngth is ﬁécessary for the instability range. Practical-
ly it is hard to provoke transition without separation. '

. . -3
The arag of the 0012 at this Reynoldsnumber is 6.8 .10 or 62% of
the turbulent flat plate. To produce this drag on a flat plate
the transition has to be at 70% chord. On the 0012 the laminar se-

paraticn point Is also near 70%.
Can we conceive a variation of the velocity distribution which may

reduce the drag a little more? Fig.35 gives an alternative, which

avoids separation and transition up to 80% of the chord.

b) Low drag bucket

For Reynoldsnumbers between 1 % 10. 106 alrf01ls as in Fig.20 deve-
lop a typical low drag range with '‘a considerable drag increase at
the edges. This is a consequence of. the angle of incidence which
changes the velocity distribution similar to Fig.23 by an additio-
nal gradient. This has the effect that on one side the stability
is enhanced more than necessary and reduced on the other side.
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At a certain X'and (_ the transition jumps forward on one side
and creeps back very little on the other side. The drag then in-

creases also sharply.

The width of the low drag bucket depends obviously'on the. size

of the basic pressure gradient in the front-bart,pf-the S1PFeil,

A large gradient can stand higher 4X before the boundary layer
stability is lost. Therefore in Fig.20 the 63-airfoil must have
wider low drag buckets than the 66- airfoil at the same thickness.
This is a statement which is valid for all types of "lamlnar" air-

foils.

We may change the type of airfoil as iy Nig, 20 and le the Rey-
‘noldsnumber and thickness or we fix the airfoil type and Reynolds-
number and change only the thickness or we have only one airfoil
‘and change the Reynoldsrmuber. Fig.36 gives an evaluation of some

symmetrical NACA 6 series at Re, = 6-10
How are the low drag airfoils designed?

For the front part of the alrf011 it is reascnable to search for

a velocity distribution whkeh gradient does not change sign up to
a certain angle of incidence and chordwise position, where the
instability range or pressure increase begins. With:other words,
 there should be a constant velocity at a certain incidence and
below this the velocity should monotoneously increase. It .is not
difficult to write a computer program which investigates the velo-
cities at different angles of incidence, and to correct the input
velocity to get a fast converging solution for such distributions.

Outside the low drag bucket the drag increases steadily with higher
angles of incidence. The steepness of the drag 1ncreasc depends

heavily on the Reynoldsnumber and thickness.

For a Reynoldsnumber below 106 the optimum velocity distribution

has to be more of the 0012 type. Now with angle of incidence the
transition moves on side forward and by nearly the same amount back-
wards. There exists low drag but there is no sharp increase in

drag with growing angles of incidence. If we exclude the low

drag bucket, the drag due to 1ift increases with AGZ as long as
the flow is attached. For Re = 10/ and d= .12 the drag is prac-
tically doubled at a 2¢ = 1,0,

)
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¢) Airfoils with low drag bucket and small camber

If we apply the NACA a = 1.0 meanline to symmetrical airfoils the
pressure gradients are not changed,only the reg-number of the la-
minar boundary layer is slightly modified. Therefore the transi-

tion position as well as the drag will be similar to the symmetri-

cal counterpart and the momentum thickness at the trailing edge

- is practically the same.
‘The drag coefficient for this case is

: L I '\‘} ...{f‘ e 4 :‘) ..g ‘3.3' ] ¢ ) :
CD"'¢/ Y (LGJ)T'-E- N C(‘-(o:’T.E- “(4s)
{otwe- 26y . B

l—.rr?cv e;dk.

With equal ~* on the lower and upper side at the trailing edge and

3 3~

replacing (&™) by.(qz) we get

e 3 L 3 )
Co= 2¥ne- [(G), * (Z] ] (46)

2 2 Lfa: Tocw

Now for thin airfoils is

(4 . =1 + alY if ol is the total diffe-
. . U 1™ % rence in U between upper
Al and lower side.

If C,, is the drag coefficient for the symmetrical airfoil the

cambered airfoil has

i Alry? '
G, [1+3(5)] . (47)
For CL:= 1 and §f= .25 the value of the parenthesis becomes

1 + .187. For this highly cambered airfoil the additional drag due

to camber is nearly 20%. For a (.= .5 it becomes only 4%.

Therefore all results of the symmetrical airfoils may be trans-
formed to cambered airfoils with a small drag penalty near theCQ;

Outside the low drag bucket the drag polar of -cambered airfoils
1s no longer symmetrical. On the upper side the additional drag
is more. heavily weighted than on the lower side and this diffe-

rence increases with camber.



d) Symmetrical airfoils with flap

Symmetrical airfoils are mostly used for rudders. As such they
usually have a flap. Sometimes the flap is deflected for g large
part of the operation time. Then it makes sense to ask for an

this quality. Fig.37 gives a typical example with the NACA 64-012
airfoil. The surface is émooth and Re. = 106. On the left hand the
drag polar of the airfoil is given with a -25% flap chord and a
flap angle v = 150. Theiz form of the drag polar is not a special
feature of this particular airfoil, but g rather typical feature,

The drag increase above C; = .8 and below C, = 0 is mainly due to
the transition Jump to the nose on the Mouter" side. Starting at
CiL = .9 the drag reaches to the minimum when the transition po-
sition goes to the hinge 1line. Then for 1ower<1 the boundary layer

on on the upper side remains practically unchanged, the boundary
layer thickness behind the reattachment point however changes in
the same way as the drag or the boundary layer close the trailing
edge.

To be sure that no_appreciable contribution to the drag comes from
the lower side, also the transition here was observed. What causes
the strong drag variation for lower 1irt coefficients? There can
be only one reason: the changing separation angle in the laminar
seﬁaration bubble or more Precisely: the height of the transition
nucleus above the airfoil surface determines the initial thickness
of the‘following turbulent boundary layer.

Why does it change this way?

exist in potentiajl flow strong velocity gradients, the Separation
angle of the bubble must be large at'CL = .8. For lower ¢, the 1a-

ry layer. For qL—values below .5 the transition position is un-



Fig.36 Drag polars of different airfoils at Re = 6-106.

Narrow buckets with low drag and wider BSuckets with higher drags
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changed, but the overall pressure gradient behind the hinge is

greatly allevlated Causing a smaller separation angle and better
initial conditions for the turbulent boundary layer, the drag be-
comes again smaller to reach the second minimum before the trans-

ition ShlftS on the lower side.

This 51tuatlon may be improved (15) if we can control the velocity
distribution and hence the transition and the turbulent boundary
layer. This can be done in a similar way as designing a "laminar"
airfoil. At first a symmetrical airfoil is generated, then the
flap is deflected and this cambered version is analysed to check
the velocity distribution. This cutput is corrected with respect
to laminar boundary layer stability and transition control. The

correction goaq to the original input and so on.

Fig.38 gives a result and & comparison with the NACA 64-012. e
most striking feature of the airfoil shape is the concave kink at
the hingeline, which makes for i smooth "upper" side if the flap
is deflected by small angles, say 10-12 degrees. More subtle
changes are in the nose region to counteract the Veloc1ty peaks

a85001ated with the flap deflection.
Fig.39 gives the drag polar of boeth airfoils and shows that at
the same drag the width of the low drag bucket is a little larger
for the FX airfoil. Deflecting the flap simply shifts the whole
drag polar to positive €, without any irregularities.

e) Transonic airfoils & gt 8. 28

Transonic flow will develop when the local Machnumber on the sur-
face exceeds values over one. For freestream Machnumbers above
<75 this is already the case if the CP4va1ue reaches values of
Gp= —_.8. In terms of airfoils this needs only a thickness near
é = .12 and a small angle of incidence. For a freestream Mach-
'number of .5 as happens on the retreating blade of a hellcopter
rotor a LF“ - 2.1 is necessary, which means an angle of inciden-
ce around 10° and €. around 1.0. Even for a freestream Machnumber
of .2 local Machnumbers of. one may be reached if on the slat of a
multlelement high 1ift configuration the (p-value goes fo. €p="16.

The local supersonic field is usually terminated by a shock a
steep pressure increase, which leads very soon to a drag. dlvergen—
ce. The drag is caused by the entropy increase in the shock,
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transferred to the airfoil via the pressure distribution and by
the interference with the boundary layer which looses very soon

its ability of pressure recovery.

The Machnumber therefore puts a more severe constraint to: the

airfoil flow than any other parameter.

There are two possibilities to shift the drag divergence Mach-
number to slightly higher values, say Allee = .05. The first tends
to avoid a supersonic field at all by reducing the top velocity
on the airfoil upper surface as much as possible: the airfoil
thlckness is reduced to the structural minimum and the thickness
is evenly distributed along the chord to get a roof top type of
airfoil. Flpally, the 1ift distribution is shifted to the rear,
where the thickness contribution to the supervelccity dlmlnlohes
(see Fig.25). Since this implies high pitching moments and some
trim drag, it is a good example for the willingness to trade any-

thing, if the drag divergence Machnumber could be increased a
little. '

The second possibility may retain all the advantages of the first
type but strives aadltlonally to allow for supersonic fields with-
out shocks at higher freestream Machnumbers. The fact that such
”flows are possible at all was long doubted until a decade ago
Nieuveland (14) gave an exact solution for such shockless flows.
Certainly there were many experimental observations before, espe-
cially in England by Pearcy (13), which evidenced the same fact: to

a more or lesser degree.

Shockless flow is basically a potential flow quality which physi-
cally can be understood as a well structured local superscnic
field: At the forward sonic point of the supersonic field on the
convex airfoil surface expansion waves go out and are reflected
at the sonic line above the airfoil as compression waves. Both
waves groups turn the flow direction along the curved surface and
there is no reason why the compression waves should not be able
to cancel the total expansion completely. The pressure distribu-
tion then looks as a subcritical distribution and in potential
flow there is no drag. Obviously, such a flow field is a special
solution of the underlaying potential equations, holding only for
a certain combination of airfoil form, angle of incidence and
freestream Machnumber. For off—deéign COnditions the internal



however the DPressure récovery Will be less perfect and shocks of
;increasing Strength will appear. The interaction between poten-
tiél flow and boundary layer is sometimes much stronger due to
the delicate nature of the flow behaviour near Ph_x 1s

With respect to boundary control, to strive for a shockless flow

is in general the best one can 4o,

However, not every shockless airfoil is alse a good airfoil, be-
cause any "googd" airfoil has to have some "forgiving" qualities

~establishes the inacceptable buffeting 1imit.

Fig.40 shows the typical changes in the pressure distribution due
to off-design conditions. From the infinite number of solutions
it seems that the so—called]”peaky” airfoil, where the supersonie

to off-design conditions than others. Fig.l1 illustrates the
idea "peaky" which means a concave distribution between Cp?nnqand

the crest.

To calculate shockléss airfoils there exist today rany methods,
which are powerful, mostly reliable, but also eXpensive. For de-
sign purposes, especially when the design procedure is complica-
ted by conflicting requirements, as for instance with the heli-
copter airfoil, it is sometimes useful to have available as g
Tirst approximation a simple analysis, which was proposed by
Pearcy (16). '

Given an incompressible Y&loeity distribution énd the slope‘.}gﬁ/ﬂ){>
‘of' the airfojii surface, this distribution can be transformeq by
several formulas into g compressible one. The NLR formula 173
may be applied even for Weak supersonic Speeds. If this is true,

of the expansion waves e(x)

_ x
E = 260()

X soumie

and the compression waves elx]), yielding

o
(::: Z_C ()()

N .



Fig.40 Typical changes of the desi
due to + AX or iL\Mm -

gn pressur distribution
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which together determine the flow direc-
tion ? at the surface, see Fig.l2.

The difference between E and C eonstitu-

| tes the effective Prandtl-Meyer angle co

_f which causes the supersonic velocity. For
a shockless flow it is necessary, see Fig.
43, that (> diminishes smoothly to zero
near the crest. This condition is here al-

ways satisfied and alone not sufficient.

,(" - As has been pointed out earlier the veloci-
}’ﬂ’\fq i ty inside the supersonic field has to stay
; .’,Z‘ { ; ;
ris ¢ ' below a maximum local Machnumber, say 1.4

5 o= b, or the (C~values shcould not exceed
Figd2 - .. .- v f 12 degrees. Another additional condition
is to avoid that the reflected compression
wavescoalesces inside the supersonic field, which may happen when
the expansion curve E(x) doesn't have a monotoneous increasing

distribution.

The internal structure of the super-
sonic field is the result of the air- .
. foil shape and the velocity distribu-
; tion. There remains the guestion how

o
[
R e

- to correct the airfoil in order to go
" from Fig.42 to Fig.U43. It seems that
the velocity corrections play the most

important part and the associated
changes of the airfoil shape do not
disturb the fast converging iteration.

Fig.43
Airfoils for the helicopter rotor put a special problem of tran-
sonic flow;-which is different from the single purpose design of
a fixed wing aircraft. The most critical conditions emerge from
the high speeds on the advancing side and from the high angle of
incidence on the retreating side of the rotor and additionally

by the general requirement of a rigid airfoil with zero pitching

moment.
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Supersonic field

Fig.ud4 - = ot lowangles, M, 2.85
oot at highengles, M_=.5

nose radius i &, : _
=1% curvalura maximum thickness 8-10% : oft ihickness

Fig.44 shows the typical form of a rotor airfoil and the most
critical regions. For the high speed case these are on the upper
side and on the lower side very close the nose. For high, angles

of incidence the upper nose region is crltlcal

In the following the results of the simple analysis, which was
originally used for the selection process, are compared with la-
ter fesults of the Garabedian-Korn methods. For the high speed
case Fig.l45 and 46 compare for the same airfoil the results of
the mentioned simple analysis and the pressure distribution due
to the Garabedian-~Korn method. Fig.45 shows that the upper side
of this airfoil is not well suited for Machnumbers above .75 and
angles. of incidence higher than -1.41 degrees. The Garabedian
method in Fig.l46 indicates for & = -1.9 degrees and . . = .79
the first appearance of shocks on the upper and lower side and

a wave drag of 6:10 % .

In Fig.47 and 48 the same airfoil is compared at high angles of
incidence and M, = .5. Again the simple analysis indicates that
at this Machnumber an angle of attack o{ = 9.8 degrees is some- ‘
what above the allowed )= 12° and Fig.48 confirms this expecta-
tion. Therefore the simple analysis of Pearcy is an appropriate

-method and convenient for a first selection step.

f) Fully turbulent airfoils

The minimum drag of fully turbulent airfoils can most convenient-

ly be described by
o= 21+ 258 + 0d¥] (48)

Here Ce_ means the surface friction coefficient of the turbulent
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flat plate and § the airfoil thickness. Now the airfecil shape or
velocity distribution looses its significance on the drag. Only
the thickness J and certainly the roughness of the surface are

of importance.

'Fig.49 shows the velocity distribution and. the shape of three
different airfoils with d = .15. The drag calculated for a trans-
T = .05 at Re. = 10 including the wake effect is for
all three airfoils practically the same, see Table IV. It seems
that for fully turbulent flow a position of the maximum thickness
near the 40% chord point has a small advantage.

ition of

Oive

The 1lift dependent drag is more or
' less quadratic with A(_ . As long as

? the Machnumber or the cavitation li-
Table IV i ;

Airfoil céﬁmﬁ'qucpt?

mit are not restrictive, the inten-

=

sitivity of the drag may be used to

1 “8.36 1.417 1 .15 produce other features which favour
2 8.427 1.420: .15 the high 1ift or the stall behaviour.
3 18,58 "1.450! .45

Fig.50 gives an example: for an VTOL

4 ;9.32 : 1.58 : 2 ' airplane the discharge of the jet
NACA 9.52 1.613 .2  engine should be widely deflected by
. ‘2'CFt'5-9 Pl 0. -f a cascade with a large space/chord
: ratio. Since a flapped airfoil was

acceptable an airfoil of the form

shown in the insert of Fig.50 was

chosen. The "Cocacola" bottle form

favours the flow for the deflected
flap and does not chénge the drag at small flap angles because the
turbulent boundary layer is not sensitive to such irregularities,
as seen in Fig.50. The drag of the bottle airfoil was 1. 25 .10 “

and for the other airfoil 1,3. 10 © at Re. = 10°.

The W1ngs of modern transport airplanes are practically fully
turbulent; Mostly due to slat at the nose. The Machnumber is the
predominant selection factor, which leads to thin airfoils be-
‘tween 9-127% thickness. These in turn are not able to make full
use of the powerful high 1ift devices at the trailing edge with-
out the help of the slat at the nose.
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g) Airfoils with fixed transition

In the design of a wing not only airfoil aerodynamics but also
structural and economic reasons establish the standard of surface
quality. With other words, some sort of roughness fixes the trans-
ition position. Can an airfoil be adapted to such conditions, say
for M, < .65? One example may help to illustrate the possibili-

ties.

Fig.51 shows a 17% thick airfoil for which it is assumed that
transition takes place by some structural roughness at A*" 20%.

In front of this roughness the velocity gradients are large enough
to certify a laminar boundary layer for Re < 3- .107 and even for
some 1ift variation. The drag values therefore will be conéiderab—
ly better than with & transition at £7».08 < .1. The design 1ift
coefficient is ?5, a relau1Vely hlgh value because the drag at
1ift coefficients near zero is of no interest. Under cruising con-
ditions the 1ift coefficient should be lower. With the help of an
upward deflected flap the low drag bucket can be shifted down to
CL—values of around .3, accordlng to the flight speed and wing
loading. The high camber of the airfoil in front of the flap im-
proves the high 1ift quality of the airfoil. Two further details
will also improve the high 1ift and stall qualities of the airfoil:

At é = 5% there is a hidden velocity hump on the upper side which
forms an instability range at high angles of attack and at == .67
is another hump on the upper side to stop the trailing edge sepa-
ration of the turbulent boundary layer. Both details are further
explainred in the next.section. The velocity distribution in the
region of the flap hinge is not developed because such details de-

pend on the size and type of the flap.

Such airfoils may be useful for the general aviation.

h) Maximum 1ift of airfoils

Any single element airfoil reaches its maximum 1ift at about 150
angle of incidence, if we take reference to the zero 1ift direc-

tion.,

As long as the Xutta-Joukowsky condition at the trailing edge is
more or less satisfied, the nose region will develop high velocity
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peaks and steeﬁ adverse pressure gradients. In general, this oc-
curs in the first few percent of the chord and the boundary layer
will be laminar and form a separation bubble. The steepness of

the overall gradient causes a large separation ahgle, which spoils
the initial thickness of the turbulent boundary layer. The type of

‘Pressure distribution downstream the bubble is clearly a concave

one which, as can be seen from Fig.10, will react very favorable
if we can improve the initial thickness of the turbulent boundary.

layer.

A suitable, but not an oversized roughness may do it. Better seems
the concept of an instability range, to give the laminar boundary
more space or time to develop its instability before it separates.

Fig.52 and Fig.53 illustrate this point. The blunt nosed airfoil
can realize 20% more max1mum 1ift than the NACA 0012 airfoil due
to the better transition control The test Reynoldsnumber Re "1“ﬁ!D
is not high enough to produce transiticn at the edge of
the pressure rise. Despite this 1nab111uy the 1lift difference is
large enough to be conclusive. Fig.54 shows the bubble and trans-

ition of both airfoils.

For the thin symmetrical airfoil-the blunt nose produces also at

low angles of incidence velocity peaks and transition near the

nose. With a free transition this airfoil therefore has more drag
than the NACA 0012. However, for a fixed transition at 7% chord

the drag difference will disappear (see fully turbulent airfoils).

For thicker airfoils the same principle may be applied, but now
the velocity peaks can be partly avoided. The airfoil of Fig.51
has this feature, but the laminar flow up to 20% chord is not dis-

" turbed by the hump at 7% chord.

The second princible to increase the maximum 1ift of single ele-
ment airfoils applies for the turbulent boundary layer'an extreme-
type of concave pressure distribution, which comes close to sepa—'
ration everywhere (Stratford distribution). This was first done

by Liebeck and Ormsbee (18), see Fig.55.
Such designs strive for a high 1ift with a completely attached

turbulent boundary layer on the upper side, which certainly can
achieve high maximum 1ift . However, approaching this 1ift values
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Fig.54 0il flow near the nose ot the two airfoils
of Fig.52 with instability range (upper
picture) and without instability range
(lower Picture). Numbers give the arc length

in percent of chord.
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means also exhéusting the boundary layer everywhere and the stall

behaviour must be unacceptable, see Fig.56.

Similar 1ift coefficients may be reached by a careful transition
control and applying high camber (19). Fig.57 gives an example
where the camber in the last 40% of the upper surface is practi-
cally zero to avoid the influence on the turbulent boundary layer.
The stall behaviour of this airfoil is a little better than in

Fig.56.

Another possibility to increase the 1ift would be to increase the
velocity at the trailing edge by a final thickness. If the trai-
ling edge thickness is greater than about 0,2% it can be felt as

a pressure drag increase. In certain cases, as for ships, the drag
of the rudder may be unimportant and the trailing edge may be
blown up to a square cut off trailing edge. The velocity here goes
up ‘and the same is allowed near tHe nose, as for the boundary lay-
er only the ratio Uﬁju, is important. Therefore the suction force
of such airfoils with thick trailing edges is enlarged. There are
some interesting proposals to reduce the base drag of such air-
foils (20). ' '

In general, the maximum 1ift is intimately connected to a partly
separated flow on the upper side. When this separation overrides
the 1ift increase due to higher angles of incidence, we say the

airfoil has stalled.

i) Stall behaviour

For low speeds and steady flow it is common place to distinguish
the thin airfoil stall, the leading edge stall and the trailing
edge stall. The first is associated to the phenomenon of the long
separation bubble. The second follows, when the tiny laminar se-
paration bubble explodes and the third type of stall is characte-
rized by the slow upstream moving of the turbulent Separation.
It is the boundary layer behaviour which determines the stall.
Therefore the same airfoil may show a leading edge stall at medium
Reynoldsnumbers and trailing edge stall at higher Reynoldsnumbers.

It is not too difficult to change the leading edge stall with the
sudden loss of 1ift into a trailing edge stall by means which have
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been shown above in Fig.52 and 53. This however does not necessa-
rily ensure a soft trailing edge stall, as Fig.511also demonstra-

tes.
The explanation is as follows:

Due to the shallow and short separation bubble higher angles of
incidence are possible. In this special case the stall is a trai-
ling edge stall, because the turbulent separation moves at Re_-=
1.5-106 in a fast but steady manner to the midchord pogition. At
the higher Reynoldsnumber the angle of incidence is three degrees
higher, the laminar separation point now shifts suddenly from the
5% position to a 1% position. The initial conditions become worse
and the highly loaded turbulent boundary layer can no longer stand
the pressure gradient and the stall must become very abrupt.

This example illuminates the wellknown fact that small changes in
‘the surface condition and hence the boundary layer state at the
nose can have drastic effects near the maximum 1ift. Sometimes
one wants designer, builders and users of aircraft would be more

aware of this fact.

The most wanted quality at stall is a hlgh 1ift, which doesn't
change much up to 20 and more degrees. Obviously, some sort of
.bumper is necessary to counteract the ever increasing pressure
peaks at the nose and to enable the boundary laygr on the upper

side to stay attached to'about 2/3 of the chord.

An extended turbulent separation over the last third of the chord
modifies the "fluid airfoil form" drastically and may redistribu-
te the pressure-distribution in the forward part to be acceptable
for the boundary layer. In order to get a nearly constant total

© 1ift beyond the stall, it seems necessary, that the separation
holds near the 70% chord position and only the separation angle
changes at this position with the angle of incidence.

The separated flow acts as a flap which drastically unloads the
velocity peaks at the nose. From Fig.31 we see that with a flap 5§29
chord of 30% and a flap angle of 5° the lift change is —AC,=.35.
With other words, such a flap reduces the 1ift from €, = 2.0 to

1.65, when for instance the separation has started at thls value.
Fig.30 which holds for an unchanged position of the main airfoil

has now to be applied with reversed signs i.e. the velocity peaks
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" due to the flap reduces the velocity peaks due to the angle of
attack, and it is this effect which enables the boundary layer

to stay attached beyond C;T“qx

Tﬁis behaviour of the "fluid" flap can be realized by two methods:
the first investigates the development of the pressure distribu-
tion with separation and strives for a careful COntrol of the
‘transition near the nose region, which in turn has such a strong

influence on the separation position.

The other method takes care of a high velocity hump on the upper
side near the 70% position. Now at high angles of incidence the
separation moves fast to this position, but stays there and is to

some extent insensitive to the conditions at the nose.

Obviously, it is much easier to hit the wanted. result of a constant
€, = CLpmax beyond the first stall with the second method than with
the first one. The airfoil in Fig.51 is one example of a well pro-

ven principle.

Conclusions

Airfoil selection and airfoil design depend besides é clear
defined set of desired qualities largely on the understanding of
‘the environment under which the airfoil has to perform its task.
The Reynoldsnumber and the Machnumber are the flow parameters,
which are often so stringent tﬁat there remains not much to choo-
se, In other cases, especially for Machnumbers below .7 and medi-
um Reynoldsnumbers of 120 millions, there is much freedom to ad-
apt the airfoil also to other constraints as for instance surface
construction, structural simplicity or weight and cost considera-
tions. In such cases, the knowledge of the intimate interaction
of airfoil shape,. pressure distribution and boundary layer beha-
viour will help to judge the airfoil selection or to design a new
one which may be better adapted to the wanted requirements.
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