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Abstract A new code for direct numerical simulations solving the complete com-
pressible 3-D Navier-Stokes equations is presented. The scheme is based on 6th-
order compact finite differences and a spectral ansatz in spanwise direction. A hybrid
MPI/shared-memory parallelization is implemented to utilize modern parallel vector
computers as provided by HLRS. Domain decomposition and modular boundary con-
ditions allow the application to various problems while keeping a high vectorization for
favourable computing performance. The flow chosen for first computations is a mixing
layer which may serve as a model flow for the initial part of a jet. The aim of the
project is to learn more on the mechanisms of sound generation.

1 Introduction

The parallel vector computers NEC SX-6 and NEC SX-8 recently installed at
HLRS led to the development of a new code for spatial direct numerical sim-
ulations (DNS) of the unsteady compressible three-dimensional Navier-Stokes
equations. DNS simulations require high order schemes in space and time to
resolve all relevant scales while keeping an acceptable number of grid-points.
The numerical scheme of the code is based on the previous compressible code
at the Institut für Aero- und Gasdynamik (IAG) and has been further improved
by using fully 6th-order compact finite differences in both streamwise (x) and
normal (y) direction. Computing the second derivatives directly leads to a bet-
ter resolution of the viscous terms. By the means of grid transformation in the
x-y plane one can go beyond an equidistant cartesian grid to arbitrary two-
dimensional geometries. The parallelization concept of both MPI and shared
memory parallelization allows to use parallel vector machines efficiently. Com-
bining domain decomposition and grid transformation enhances the range of
applications furthermore. Different boundary conditions can be applied easily
due to their modular design.

The verified code is applied to a plane subsonic mixing layer consisting
of two streams with unequal velocities. The intention is to model the ini-
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tial part of a high Reynolds number jet and to investigate the process of
sound generation inside a mixing layer. By understanding its mechanisms,
we want to influence the flow in order to reduce the emitted noise. Aeroa-
coustic computations face the problems of i) the large extent of the acous-
tic field compared to the flow field and ii) the low amplitudes of the emit-
ted sound relative to the instability waves’ pressure fluctuations inside the
shear region. Therefore, a high-order accurate numerical scheme and appro-
priate boundary conditions have to be used to minimize spurious numerical
sound.

2 Computational Scheme

2.1 Governing Equations

The DNS code is based on the Navier-Stokes equations for 3-d unsteady com-
pressible flows. In what follows, velocities are normalized by the inflow velocity
U∞ and all other quantities by their inflow values, marked with the subscript ∞.
Length scales are made dimensionless with a reference length L and time t with
L/U∞. Symbols are defined as follows: x, y and z are the spatial coordinates
in streamwise, normal and spanwise direction, respectively. The three velocity
components in these directions are described by u, v, w. ρ, T and p represent
density, temperature and pressure. The specific heats cp and cv are assumed to
be constant and therefore their ratio κ = cp/cv is constant as well. Temperature
dependance of viscosity µ is modelled using the Sutherland law:

µ(T ) = T 3/2 · T∞ + Ts

T + Ts
(1)

with Ts = 110.4K. Thermal conductivity ϑ is obtained by assuming a constant
Prandtl number Pr = cpµ/ϑ. The most characteristic parameters describing
a compressible viscous flow field are the Mach number Ma and the Reynolds
number Re = ρ∞U∞L/µ∞.

We use the conservative formulation described in [13] which results in the so-
lution vector Q = [ρ, ρu, ρv, ρw,E] containing the density, the three momentum
densities and the total energy per volume

E = ρ · cv · T +
ρ

2
·
(
u2 + v2 + w2

)
. (2)

The continuity equation, the three momentum equations and the energy equation
can be written in vector notation

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0 (3)
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with the flux vectors F, G and H:

F =

⎡

⎢
⎢
⎢
⎢
⎣

ρu
ρu2 + p− τxx

ρuv − τxy

ρuw − τxz

u(E + p) + qx − uτxx − vτxy − wτxz

⎤

⎥
⎥
⎥
⎥
⎦

(4)

G =

⎡

⎢
⎢
⎢
⎢
⎣

ρv
ρuv − τxy

ρv2 + p− τyy

ρvw − τyz

v(E + p) + qy − uτxy − vτyy − wτyz

⎤

⎥
⎥
⎥
⎥
⎦

(5)

H =

⎡

⎢
⎢
⎢
⎢
⎣

ρw
ρuw − τxz

ρvw − τyz

ρw2 + p− τzz

w(E + p) + qz − uτxz − vτyz − wτzz

⎤

⎥
⎥
⎥
⎥
⎦

(6)

containing normal stresses

τxx =
µ

Re

(
4
3
∂u

∂x
− 2

3
∂v

∂y
− 2

3
∂w

∂z

)

(7)

τyy =
µ

Re

(
4
3
∂v

∂y
− 2

3
∂u

∂x
− 2

3
∂w

∂z

)

(8)

τzz =
µ

Re

(
4
3
∂w

∂z
− 2

3
∂u

∂x
− 2

3
∂v

∂y

)

, (9)

shear stresses

τxy =
µ

Re

(
∂u

∂y
+
∂v

∂x

)

(10)

τxz =
µ

Re

(
∂u

∂z
+
∂w

∂x

)

(11)

τyz =
µ

Re

(
∂v

∂z
+
∂w

∂y

)

(12)

and the heat flux

qx = − ϑ

(κ− 1)RePrMa2

∂T

∂x
(13)

qy = − ϑ

(κ− 1)RePrMa2

∂T

∂y
(14)

qz = − ϑ

(κ− 1)RePrMa2

∂T

∂z
. (15)

Closure of the equation system is provided by the ideal gas law:

p =
1

κMa2
· ρT . (16)
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2.2 Grid Transformation

To be able to compute complex geometries, a grid transformation in the x-y
plane as described by Anderson [1] is applied. This means that the physical x-y
plane is mapped onto an equidistant computational ξ-η grid:

x = x(ξ, η) , y = y(ξ, η) . (17)

The occurring x and y derivatives need to be transformed into derivations with
respect to ξ and η

∂

∂x
=

1
J

[(
∂

∂ξ

)(
∂y

∂η

)

−
(
∂

∂η

)(
∂y

∂ξ

)]

(18)

∂

∂y
=

1
J

[(
∂

∂η

)(
∂x

∂ξ

)

−
(
∂

∂ξ

)(
∂x

∂η

)]

(19)

J =

∣
∣
∣
∣
∣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣
∣
∣
∣
∣
=
∂x

∂ξ
· ∂y
∂η

− ∂y

∂ξ
· ∂x
∂η

(20)

with the metric coefficients (∂x/∂ξ), (∂y/∂ξ), (∂x/∂η), (∂y/∂η) and J being
the determinant of the Jacobi matrix. To compute second derivatives resulting
from viscous terms in the Navier-Stokes equations, Eqs. (18) and (19) are ap-
plied twice taking into account that the metric coefficients and by that also the
determinant of the Jacobi matrix can be a function of ξ and η. It is possible
to compute the metric coefficients and their derivatives analytically if a specific
grid transformation is recognized – if not, they will be computed using 4th-order
central finite differences.

2.3 Spatial Discretization

As we use a conservative formulation, convective terms are discretized as one
term to better restrain conservation equations. Viscous terms are expanded be-
cause computing the second derivative results in double accuracy compared to
applying the first derivative twice. The Navier-Stokes equations combined with
grid transformation lead to enormous terms, e.g. plotting the energy equation
requires more than ten pages. Due to that, code generation had to be done using
computer algebra software like Maple [11].

The flow is assumed to be periodic in spanwise direction. Therefore we apply
a spectral ansatz to compute the derivatives in z direction

f(x, y, z, t) =
K∑

k=−K

F̂k(x, y, t) · ei(kγz) (21)

with f being a flow variable, F̂k its complex Fourier coefficient, K the number
of spanwise modes and i =

√
−1. The basic spanwise wavenumber γ is given by

the basic wavelength λz which is the width of the integration domain.

γ =
2π
λz

(22)



Direct Numerical Simulation of Shear Flow Phenomena 233

Spanwise derivatives are computed by transforming the respective variable into
Fourier space, multiplying its spectral components with the their wavenumber
(i·k·γ) (or square of their wavenumber for second derivatives) and transforming it
back into physical space. Due to products in the Navier-Stokes equations, higher
harmonic spectral modes are generated at each timestep. To suppress aliasing,
only 2/3 of the maximum number of modes for a specific z-resolution is used [2].

If a two dimensional baseflow is used and disturbances of u, v, ρ, T , p are
symmetric and disturbances of w are antisymmetric, flow variables are sym-
metric/antisymmetric with respect to z = 0. Therefore only half the points in
spanwise direction are needed and Eq. (21) is transfered to

f(x, y, z, t) = F0r(x, y, z, t) +2 ·
K∑

k=1

Fkr(x, y, t) · cos (kγz) (23)

for f ∈ [u, v, ρ, T, p]

f(x, y, z, t) = −2 ·
K∑

k=1

Fki(x, y, t) · sin (kγz) (24)

for f ∈ [w] .

The spatial derivatives in x- and y-direction are computed using 6th or-
der compact finite differences. Up- and downwind biased differences are applied
to the convective terms which have a non-zero imaginary part of the modified
wavenumber k∗mod. Its alternating usage leads to carefully designed damping and
by that allows the reduction of aliasing errors while keeping the favorable disper-
sion characteristics of a central scheme [8]. Different schemes can be chosen with
respect to the current problem. The real and imaginary parts of the modified
wavenumber k∗mod are shown as a function of the nondimensional wavenum-
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ber k∗ in Fig. 1 and 2 for the implemented schemes. First derivatives resulting
from viscous terms, caused by grid transformation and temperature dependance
of viscosity, as well as second derivatives are evaluated by standard central com-
pact FD’s of 6th order. The resulting tridiagonal equation system is solved using
the Thomas algorithm. The algorithm and its solution on multiple domains is
discussed detailed in Sect. 2.6.

2.4 Time Integration

The time integration of the Navier-Stokes equations is done using the classical
4th order Runge-Kutta scheme as described in [8]. At each timestep and each
intermediate level the biasing of the finite differences for the convective terms is
changed. The ability to perform computations not only in total value but also
in disturbance formulation is provided by subtracting the spatial operator of the
baseflow from the time derivatives of the conservative variables Q.

2.5 Boundary Conditions

The modular concept for boundary conditions allows the application of the code
to a variety of compressible flows. Each boundary condition can either determine
the primitive flow variables (u, v, w, ρ, T, p) or provide the time-derivatives of the
conservative variables Q. The spatial regime for time integration is adapted auto-
matically. To keep the code as flexible as possible, boundary-specific parameters,
such as the introduction of disturbances, are handled by the boundary condi-
tions themselves. Up to now a variety of boundary conditions is implemented, e.g.
isothermal or adiabatic walls containing a disturbance strip if specified, several
outflow conditions including different damping zones or a characteristic inflow
for subsonic flows having the ability to force the flow with its eigenfunctions
obtained from linear stability theory.

2.6 Parallelization

To use the full potential of the new vector computer at HLRS, we have chosen
a hybrid parallelization of both MPI [12] and Microtasking. As shared memory
parallelization, Microtasking is used along the z direction. The second branch
of the parallelization is domain decomposition using MPI. Due to the fact that
the Fourier transformation requires data over the whole spanwise direction, a do-
main decomposition in z direction would have caused high communication costs.
Therefore domain decomposition takes place in the ξ-η plane. The arbitrary do-
main configuration in combination with grid transformation, allows computa-
tions for a wide range of problems, e.g. the simulation of a flow over a cavity as
sketched in Fig. 3.

The evaluation of the compact finite differences, described in Sect. 2.3 re-
quires to solve a tridiagonal equation system of the form

ak · xk−1 + bk · xk + ck · xk+1 = fk (25)
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Fig. 3. Exemplary domain configuration for computation of flow over a cavity consist-
ing of four domains. Hatched areas mark noslip wall boundary conditions

for both ξ and η direction with a, b, c being its coefficients. The computation of
the RHS f is based on non-blocking MPIISEND/MPIIRECV communication [12].
The standard procedure for the solution of Eq. (25) is the Thomas algorithm
consisting of three steps:

1. Forward-loop of LHS:

d1 = b1

dk = bk − ak · ck−1

dk−1
, (k = 2, ...,K) (26)

2. Forward-loop of RHS:

g1 =
f1
d1

gk =
−ak · gk−1 + fk

dk
, (k = 2, ...,K) (27)

3. Backward-loop of RHS:

xK = gK

xk = gk − xk+1 ·
ck
dk

, (k = (K − 1), ..., 1) (28)

The forward-loop of the LHS requires only the coefficients of the equation system.
This has to be done only once at the initialization of the simulation. As Eqs. (27)
and (28) contain the RHS f changing at every intermediate Runge-Kutta step,
the computation of forward- and backward-loop of the RHS requires a special
implementation to achieve acceptable computational performance. The inher-
ent problem regarding parallel implementation is that both loops require values
from the previous step, gk−1 for the forward-loop and xk+1 for the backward-
loop of the RHS (note that equation (28) goes from (K − 1) to 1). An ad-hoc
implementation would lead to large dead times because each process has to wait
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until the previous one has finished. To avoid that, we make use of the fact that
we have to compute not only one but up to 25 spatial derivative depending on
the spatial direction. The procedure is implemented as follows: the first domain
starts with the forward-loop of derivative one. After its completion, the second
domain continues the computation of derivate one while the first domain starts
to evaluates derivative number two simultaneously. For the following steps, the
algorithm continues accordingly. The resulting pipelining is shown exemplary for
the forward-loop of the RHS in Fig. 4. If communication time is neglected, the
theoretical speedup for forward- and backward-loop of the RHS is expressed by:

speedup =
m · n

m+ n− 1
(29)

with n being the number of domains in a row or column respectively and m
the number of equations to be solved. Theoretical speedup and efficiency of the
pipelined Thomas algorithm are shown in Fig. 5 for 25 equations as a function
of the number of domains. For 30 domains, efficiency of the algorithm decreases
to less than 50 percent. Note that all other computations, e.g. Fourier transfor-
mation, Navier-Stokes equations and time integration, are local for each MPI
process. Therefore the efficiency of the pipelined Thomas algorithm does not af-

Fig. 4. Illustration of pipelining showing the forward-loop of the RHS for three spatial
derivatives on three domains. Green color is denoted to computation, red to commu-
nication and grey colour shows dead time
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fect the speedup of the entire code that severely. The alternative to the current
scheme would be an iterative solution of the equation system. The advantage
would be to have no dead times, but quite a number of iterations would be neces-
sary for a converged solution. This results in higher CPU time up to a moderate
number of domains. As shared memory parallelization is implemented addition-
ally, the number of domains corresponds to the number of nodes and therefore
only a moderate number of domains will be used.

3 Verification of the Code

To verify the code, simulations of a supersonic boundary layer have been pre-
formed and in this chapter two cases of this simulations are presented. The
results from DNS are compared with Linear Stability Theory (LST) and with
a previous results from a DNS. In the first case the linear development of a 3-d
wave in a boundary layer is compared with the results from LST and in the
second case results for a subharmonic resonance case are shown and compared
with the work done by Thumm [13].

In both cases the Mach number is Ma = 1.6 and freestream temperature is
T �
∞ = 300 K. A global Reynolds number of Re = 105 is chosen, which leads to

a reference length scale of L� = 2.963 mm. At the lower boundary (Fig. 6) an
adiabatic wall is modeled (∂T

∂y = 0) and at the upper boundary an exponential
decay condition is used (see [13] for further details). The integration domain
ends with a buffer domain, in which the disturbances are smoothly ramped to
zero. Disturbances are introduced by a disturbance strip at the wall (xDS) into
the boundary layer. The grid resolution for both cases is the same as applied by
Thumm [13]. A streamwise wave number is dissolved with 16 points, leading to
a step size in x−direction of ∆x = 0.037. The step size in y−direction is ∆y =

x
0

x
DS

x
BD

x
N

z =
z

�

z = 0y
0

y
M

disturbance strip

M

8

buffer domain

boundary layer

x
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Fig. 6. Computational domain
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0.00125 and two Fourier modes (Kmax = 2) are employed in the z−direction. The
integration domain starts at x0 = 0.225 and ends at xN = 9.64. The height of
the domain includes approximately 2 boundary layer heights δxN at the outflow
(yM = 0.1).

For a detailed investigation the flow properties are decomposed using a Fou-
rier-decomposition with respect to the frequency and the spanwise wave number

φ′(x, y, z, t) =
H∑

h=−H

K∑

k=−K

φ̂(h,k)(x, y) · ei(hω0t+kγ0z) , (30)

where ω0 is the fundamental frequency at the disturbances spectrum, and γ0 =
2π
λz

the basic spanwise wave number.

3.1 Linear Stage of Transition

In this section, a 3-d wave (Ψ = arctan(γ/αr) � 55◦ ⇒ γ = 15.2) with a small
amplitude (A(1,1) = 5 · 10−5) is generated at the disturbance strip. The develop-
ment of the disturbance is linear, so the results can be compared with LST. The
frequency parameter (F = ω

Re = 2πf�L�

u�∞Re ) is chosen to F(1,1) = 5.0025 · 10−5. In
Fig. 7 the amplification rate αi for the u′-velocity from DNS and LST are plotted
over the x-coordinate. A gap is found between the results, the amplification rates
from DNS is higher then those obtained from LST. This gap is also in the simu-
lation of Thumm [13] and Eißler [5], they shove it to non-parallel effects. Maybe
this is the reason for the discrepancies in the amplification rates of the u′-velocity.
In Figs. 8–10 the eigenfunctions of u′, v′ and p′-disturbance profiles at x = 4.56
from DNS and LST are shown. The agreement between DNS and LST is much
better for the eigenfunctions of the 3-d wave then for the amplification rates.
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3.2 Nonlinear Stage of Transition

For the validation of the scheme in the nonlinear stage of transition a sub-
harmonic resonance case from Thumm [13] has been simulated. The two dis-
turbances, a 2-d and a 3-d wave (Ψ � 45◦ ⇒ γ = 5.3), are now introduced
into the integration domain. The frequency parameter for the 2-d wave is
F(1,0) = 5.0025 · 10−5 and the 3-d wave is F(1/2,1) = 2.5012 · 10−5. The am-
plitudes are A(1,0) = 0.003 and A(1/2,1) = 10−5. When the amplitude of the 2-d
wave reaches 3–4% of the freestream velocity u∞, the damped 3-d wave interacts
non-linear with the 2-d wave and subharmonic resonance occurs (see Figs. 11–
12). This means that the phase speed cph of the small disturbance adjusts to the
phase speed of the high amplitude disturbance. Due to that the 3-d wave grows
strongly non-linear.
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The downstream development of the u′-disturbances obtained from DNS is
shown in Fig. 11, the results from Thumm [13] for this case are plotted as well.
Thumms results differ only slightly. A reason for the small discrepancies is the
different disturbance generation method. Thumm disturbs only v′ while in the
simulations here, (ρv)′ is disturbed at the wall.

In Fig. 12 the phase speed of the v′-velocity over x at y = 0.0625 for the 2-d
and 3-d wave is shown for the DNS and the results of Thumm. The phase speed
of the 3-d wave approach to the 2-d wave further downstream. Although it is
unknown at which y-coordinate, Thumm has determined the phase speed, the
results show a good agreement.

4 Simulation of a Subsonic Mixing Layer

The current investigation is part of the DFG-CNRS project “Noise Generation
in Turbulent Flows” [15]. Our motivation is to simulate both the compressible
mixing layer itself as well as parts of the surrounding acoustic field. The term
mixing layer describes a flow field composed of two streams with unequal ve-
locities and serves as a model flow for the initial part of a jet as illustrated by
Fig. 13. Even with increasing computational power, one is limited to jets with
low Reynolds numbers [6].

4.1 Flow Parameters

The flow configuration is closely matched to the simulation of Colonius, Lele
and Moin [4]. The Mach numbers are Ma1 = 0.5 and Ma2 = 0.25, with the
subscripts 1 and 2 denoting the inflow values of the upper and the lower stream
respectively. As both stream temperatures are equal (T1 = T2 = 280K), the
ratio of the streamwise velocities is U2/U1 = 0.5. The Reynolds number Re =
ρ1U1δ/µ = 500 is based on the flow parameters of the upper stream and the
vorticity thickness δ at the inflow x0

δ(x0) =
(

∆U

|∂u/∂y|max

)

x0

. (31)

Fig. 13. Location of the computational domain showing the mixing layer as an initial
part of a jet
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The initial condition of the mixing layer is provided by solving the steady
compressible two-dimensional boundary-layer equations. The initial coordinate
x0 = 30 is chosen in a way that the vorticity thickness at the inflow is 1. By
that length scales are made dimensionless with δ. The spatial development of the
vorticity thickness of the boundary layer solution is shown in Fig. 13. Velocities
are normalized by U∞ = U1 and all other quantities by their values in the upper
stream. Figure 14 shows the initial values at x0 = 30.

A cartesian grid of 2300 × 850 points in x- and y-direction is used. In stream-
wise direction the grid is uniform with spacing ∆x = 0.157 up to the sponge
region where the grid is highly stretched. In normal direction the grid is contin-
uously stretched with the smallest stepsize ∆y = 0.15 inside the mixing layer
(y = 0) and the largest spacing ∆y = 1.06 at the upper and lower boundaries.
In both directions smooth analytical functions are used to map the physical grid
on the computational equidistant grid. The grid and its decomposition into 8
domains is illustrated in Fig. 15.

4.2 Boundary Conditions

Non-reflective boundary conditions as described by Giles [7] are implemented
at the inflow and the freestream boundaries. To excite defined disturbances,
the flow is forced at the inflow using eigenfunctions from linear stability theory
(see Sect. 4.3) in accordance with the characteristic boundary condition. One-
dimensional characteristic boundary conditions posses low reflection coefficients
for low-amplitude waves as long as they impinge normal to the boundary. To
minimize reflections caused by oblique acoustic waves, a damping zone is applied
at the upper and lower boundary. It draws the flow variables Q to a steady state
solution Q0 by modifying the time derivative obtained from the Navier-Stokes
Eqs. (3):

∂Q
∂t

=
∂Q
∂t Navier-Stokes

− σ(y) · (Q − Q0) (32)

The spatial dependance of the damping term σ allows a smooth change from
no damping inside the flow field to maximum damping σmax at the boundaries.
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Fig. 15. Grid in physical space showing every 25th gridline. Domain decomposition in
8 subdomains is indicated by red and blue colours

To avoid large structures passing the outflow, a combination of grid stretching
and low-pass filtering [9] is used as proposed by Colonius, Lele and Moin [3].
Disturbances become increasingly badly resolved as they propagate through the
sponge region and by applying a spatial filter, the perturbations are substantially
dissipated before they reach the outflow boundary. The filter is necessary to
avoid negative group velocities which occur when the non-dimensional modified
wavenumber k∗mod is decreasing (see Fig. 1).

4.3 Linear Stability Theory

Viscous linear stability theory [10] describes the evolution of small amplitude
disturbances in a steady baseflow. It is used for forcing of the flow at the inflow
boundary. The disturbances have the form

Φ = Φ̂(y) · ei(αx+γz−ωt) + c.c. (33)

with Φ = (u′, v′, w′, ρ′, T ′, p′) representing the set of disturbances of the primitive
variables. The eigenfunctions are computed from the initial condition by com-
bining a matrix-solver and Wielandt iteration. The stability diagram in Fig. 16
shows the amplification rates at several x positions as a function of the fre-
quency ω. Note that negative values of −αi correspond to amplification while
positive values denote damping. Figure 16 shows that the highest amplification
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Fig. 16. Stability diagram for 2d disturbances of the mixing layer showing the ampli-
fication rate −αi as a function of frequency ω and x-position

αi = −0.1122 is given for the fundamental frequency ω0 = 0.6296. Forcing at
the inflow is done using the eigenfunctions of the fundamental frequency ω0 and
its subharmonics ω0/2, ω0/4 and ω0/8.

4.4 DNS Results

The high amplification rate as predicted by linear stability theory in the previous
Sect. 4.3 leads to a soon roll-up of the mixing layer. Further downstream vortex
pairing takes place. Figure 17 illustrates the spatial development of the subsonic
mixing layer by showing the spanwise vorticity. In the center of Fig. 18 (−20 ≤
y ≤ 20) the spanwise vorticity is displayed. Above and below, the dilatation ∇u
gives an impression of the emitted sound. At the right side, the initial part of
the sponge zone is included. From the dilatation field, one can determine three
major sources of sound:

• in the initial part of the mixing layer (x = 50)
• in the area where vortex pairing takes place (x = 270)
• at the beginning of the sponge region

The first source corresponds to the fundamental frequency and is the strongest
source inside the flow field. Its position is upstream of the saturation of the
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Fig. 17. Instantaneous view of the mixing layer showing roll-up of the vortices and
vortex pairing by plotting spanwise vorticity

Fig. 18. Instantaneous view of the mixing layer showing spanwise vorticity in the
center (−20 ≤ y ≤ 20) and dilatation to visualize the emitted sound. The beginning
of the outflow zone consisting of grid-stretching and filtering is indicated by a vertical
line

fundamental frequency which corresponds to the results of Colonius, Lele and
Moin [4]. The second source is less intensive and therefore can only be seen
by shading of the dilatation field. Source number three is directly related to the
sponge zone which indicates that dissipation of the vortices occurs to fast. Due to
that there is still the necessity to improve the combination of grid-stretching and
filtering. As dissipation inside the outflow region is depending on the timestep∆t,
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choosing the appropriate combination of filter- and grid-stretching-parameters
is nontrivial.

5 Performance

Good computational performance of a parallel code is first of all based on its
single processor performance. As the NEC SX-8 is a vector computer we use its
characteristic values for evaluation: the vector operation ratio is 99.75% and the
length of the vector pipe is 240 for a 2-d computation on a grid having 575 ×
425 points. Due to the fact that array sizes are already fixed at compilation,
optimized memory allocation is possible which reduces the bank conflict to 2%
of the total user time. All this results in a computational performance of 9548.6
MFLOP/s which corresponds to 60% of the peak performance of the NEC SX-
8 [14]. Computing 30000 timesteps required a user time of 5725 seconds, so one
timestep takes roughly 0.78 µs per grid-point.

To evaluate the quality of the parallelization, speedup and efficiency are taken
into account. Again 30000 timesteps are computed and the grid size of each do-
main is those mentioned above. Figure 19 shows the dependance of speedup and
efficiency on the number of MPI processes. The efficiency decreases to 83% for
8 processes. A somehow strange behaviour is the fact that the efficiency of the
single processor run is less than one. Therefore efficiency is based on the maxi-
mum performance per processor. The reason for that is the non-exclusive usage
of a node for runs with less than 8 processors. So computational performance
can be affected by applications of other users. Comparing the achieved efficiency
of 89.3% for four processors with the theoretical value of 78.1% according to
Eq. (29) shows that even for 2-d computations, solving the tridiagonal equation
system is not the major part of computation.

If we extend the simulation to the three-dimensional case, Microtasking, the
second branch of the parallelization, is applied. We still use eight domains and by
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that eight MPI-processes with the same grid-size in x- and y-direction but now
the spanwise direction is resolved with 33 points corresponding to 22 spanwise
modes in the symmetrical case. Each MPI-process runs on its own node having
8 tasks. Computing again 30000 timesteps gives a performance of 380 GFLOP/s
and by that an efficiency of 60%. One reason for the decrease in performance
is the small number of spanwise modes. Best load-balancing can be achieved
for a high number of spanwise modes because the z-resolution in physical space
has to be of the form 2(kexp+1) with kexp depending on the number of span-
wise modes. But the main reason is the poor performance of the FFT routines.
Therefore we plan to implement the machine-specific MathKeisan routines. They
already showed large improvements in the incompressible code N3D of IAG.

6 Outlook

A new DNS code for the unsteady three-dimensional compressible Navier-Stokes
equations has been developed. An improved numerical scheme, based on the
previous compressible IAG code, as well as a hybrid parallelization, consisting
of MPI and shared memory parallelization, has been implemented. This allows
its application to a variety of problems in compressible fluid dynamics while
achieving at the same time high computational performance (≈ 9 GFLOP/s per
CPU). The main characteristics of the code are the following:

• solution of the full compressible three-dimensional Navier-Stokes equations
• 6th-order accurate compact finite differences in x- and y-direction
• spectral ansatz in spanwise direction (symmetric and non-symmetric)
• direct computation of the second derivatives resulting in better resolved vis-

cous terms
• 4th-order Runge-Kutta time integration
• computation in total value or disturbance formulation
• arbitrary grid transformation in the x-y plane
• hybrid parallelization consisting of MPI and shared memory parallelization
• applicable to a wide range of problems: sub-, trans- and supersonic

To increase the performance for three-dimensional simulations, we plan to
implement the FFT routines installed on the NEC SX-8 machine. As commu-
nication is not depending on spanwise resolution, we hope that performance in
3-d computations will be as good as in the 2-d case.

The code has been tested and verified for both linear and non-linear distur-
bances. Comparing the results with reference cases for transitional flows showed
excellent agreement. The computation of a subsonic mixing layer is intended to
model the initial part of a high Reynolds number jet. By choosing appropriate
boundary conditions, it is possible to compute both the flow and the surround-
ing acoustic field. These simulations will be extended in the future to gain more
details on the mechanisms of sound generation with the intention to control
jet-induced noise.
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