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1. SUMMARY

Direct Numerical Simulations of a laminar separation bubble
are presented, where the bubble is generated by prescribing
a locally decelerated free-stream velocity along a flat-plate.
Controlled disturbances are introduced into the flow field up-
stream of the bubble by suction and blowing through the wall
in order to study the linear and nonlinear stability character-
istics of the flow. A number of generic cases with different
two-dimensional (2-D) and three-dimensional (3-D) initial
disturbance amplitudes are investigated, (i) a linear case, (ii)
a case subject to secondary instability (strong amplification
of 3-D disturbances by resonance with a large amplitude 2-D
wave), (iii) a 3-D nonlinear case (interaction of two oblique
waves), and (iv) a nonlinear case combining the interaction
of two oblique waves with a 2-D wave. Good quantitative
agreement of the numerical results with (local) linear stabil-
ity theory is observed throughout case (i) and for the initial
disturbance development of the priming waves in the other
cases despite the nonparallel base flow. For the nonlinear
disturbance development, however, unexpected results are
obtained: Secondary instability is hard to distinguish from
primary instability and apparently breaks down as soon as
the priming 2-D disturbances saturate. However, the nonlin-
ear mechanism identified in cases (iii) and (iv), is obviously
much more likely to produce large amplitude 3-D disturb-
ances necessary for the generation of a transitional laminar
separation bubble. The mechanism leads to a nonlinearly
saturated regime with reasonably turbulent mean-flow char-
acteristics as well as longitudinal vortices in the reattachment
zone.

2. INTRODUCTION

Laminar separation bubbles may occur at low Reynolds num-
ber under certain operating conditions, especially on laminar-
flow airfoils (cf. [1]). Due to a strong adverse pressure gradi-
ent downstream of the minimum pressure point the laminar
boundary layer may separate before undergoing transition.
Most separation bubbles are transitional, i.e., the bubble is
closed by turbulent reattachment. Improving flight and per-
formance characteristics of laminar-flow airfoils and compres-
sor blades requires an accurate prediction of separation bub-
bles. However, all present models used for the prediction of
separation bubbles rely on empirical relations derived from
experiments, since the flow physics are not yet fully under-
stood. Turbulence models good enough for predicting tran-
sitional flows are not available and most Direct Numerical



Simulations (DNS) of laminar separation bubbles are, so far,
only based on the 2-D Navier-Stokes equations. 2-D inves-
tigations were justified due to the observation of 2-D effects
dominating the flow in the separation zone and inside the
bubble. For the generation of turbulence, however, 3-D ef-
fects are necessary. In addition, longitudinal vortices have
been observed in some experiments (e.g., [2]) in the reattach-
ment zone behind the bubble.

The present work is a continuation of earlier (2-D) investiga-
tions by Gruber et al. [3] (2-D) and Rist [4] (3-D) with the
aim of obtaining deeper insight into the transition and reat-
tachment process in laminar separation bubbles. Based on
the experience gained from the DNS of flat-plate boundary-
layer transition [5] where transition in a low turbulence en-
vironment is initiated by a sequence of instabilities, e.g., pri-
mary instability (instability of the base flow versus Tollmien-
Schlichting waves) and secondary instability (instability of
the flow in the presence of finite-amplitude 2-D waves ver-
sus small amplitude 3-D disturbances), a number of generic
disturbance combinations are investigated in the present pa-

per.

3. NUMERICAL METHOD

Only a general outline of the method will be given here, de-
tails are available in [5] — [9]. The latest version of the DNS-
scheme developed by Fasel et al. [5], improved by Kloker et
al. [6] and more recently by Kloker [7], is used. It is based
on the numerical solution of the complete 3-D Navier-Stokes
equations in vorticity-velocity formulation for incompressible
unsteady flow. The flow is split into a two-dimensional steady
base flow and a three-dimensional unsteady disturbance flow
in such a way that no linearization occurs. This allows the
calculation of different base flows by prescribing different free-
stream velocity distributions without altering the boundary
conditions for the calculation of the disturbance flow. Thus,
compared to earlier simulations of boundary layer instability
and transition, only the base flow had to be changed for the
calculations presented in this paper.

3.1 Governing equations

The flow over a flat plate is considered (see Figure 1) where
the streamwise, wall normal, and spanwise directions are de-
noted by x, y, and z, respectively with their relevant velocity
components denoted by u, v, and w. All variables are nondi-
mensionalized by the free-stream velocity U, upstream of
the separation bubble and by a reference length L, where
overline denotes dimensional variables

.T:x, y:VR%a Z = ) (1)
= v:\/Rer—oo, w:Uw—oo,

and Re = U, L/7 is the global Reynolds number. For all
investigations presented here, Re = 10° (U = 30m/s, 7 =
1.5-107°m?/s, and L = 0.05m).
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With the vorticity defined as & = —rot(zz), the vorticity
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Figure 1: Integration domain for the DNS of a laminar sepa-
ration bubble. S = separation point, R = reattachment point.

transport equations for the calculation of the x-, y-, and z-
vorticity components are

a;x N a%(wx — uwy) — %(uwz —ww,) = Aw,,
% B ag (0we — 0y) + ai’z(wwy —w.) = Aw, (2)
8522 n %(uwz — ww,) — %(wwy —ww,) = Aw,,
where 19 1 0?
A~ Reorr oy T Reo ¥

The velocity components are calculated from

Fu B 0u o
ox? = 022 0z  Oxz0y’

~ Ow, Ow,

Av = 0z Oz (4)
0w N Pw  Ow, B 0%
oz 022 Or  Oyoz

Next, the flow is split into a steady, two-dimensional base
flow (index B), and an unsteady, three-dimensional disturb-
ance flow (denoted by primes)

v=up+u, v=vg+v, w=uw, (5)
_ ! _ ! _ !
Wg = Wy, Wy = Wy, W, = WyB + W,.

Inserting equation (5) into equations (2 — 4) and sorting out
the equations to be fulfilled by the base flow yields two sets of
equations for the calculation of the base and for the disturb-
ance flow, respectively. The boundary conditions are split
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Figure 2: Velocity distribution along the free-stream bound-
ary of the integration domain.

accordingly, and both flows are computed separately, as de-
scribed in the next two sections.

3.2 Calculation of the base flow

The integration domain is divided into N and M equally
spaced intervals in x and y direction, as shown in Figure 1.
Blasius boundary layer profiles are prescribed at the inflow
boundary A-B, the no-slip boundary condition applies at the
plate’s surface at y = 0, and at outflow (C-D) the governing
equations are solved with the assumption of 1/Re-0*f /0z* =
0, where f = [up, vg, w,5]. The “relaminarization zone” and
the “disturbance strip” shown in Figure 1 are not used for
the calculation of the base flow. Along the upper boundary
B-C a free-stream velocity distribution is prescribed contain-
ing a smooth step by Auys between x; and zy (cf. Figure 2).
A steady finite difference solution to the 2-D base flow equa-
tions is seeked by using an O(Az?*, Ay?*, At?)-accurate finite
difference x-implicit, y-explicit splitting method.

3.3 Calculation of the disturbance flow

After the base flow has been calculated, disturbances are
introduced into the integration domain by timewise peri-
odic blowing and suction upstream of the bubble within the
“disturbance strip”, and their downstream development is
obtained by solving the 3-D disturbance flow equations.

Periodicity in spanwise direction is assumed, and an effective
pseudospectral /finite difference scheme is constructed by us-
ing a Fourier ansatz in z-direction

K
f(x,y,z,t) = Z Fk(xayat)eiszv (6)

k=—K

where f = [u/, V', W', wy, wy, W], Fy = Uy, Vi, Wi, Qar, Qu,
.k, and v = 27/, is the spanwise wave number. Since f
in equation 6 is a real quantity, only those modes with k£ > 0
need to be calculated, the others are defined by F , = Fj,
where — stands for the complex conjugate. O(Axz?, Ay?)-
accurate finite difference expressions are used for discretiza-
tion on the grid already used in section 3.2 for the calculation
of the base flow. Time integration is performed by an explicit,



O(Ath)-accurate four stage Runge-Kutta scheme using cen-
tral, upwind, downwind, and again central finite differences
for the x-convection terms, in each stage, respectively. The
sequence of upwind and downwind differences is altered for
every time step. It can be shown that this technique ef-
fectively damps out small scale oscillations that cannot be
accurately discretized on a given grid [7].

The boundary conditions for the disturbance flow are: no
disturbances at inflow (A-B), no slip at the plate (A-D),
except for the wall-normal velocity within the disturbance
strip

Vi(z,0,t) = ApV Re vy, () sin(5t), (7)

where v, (z) is a “wall-forcing function”, and § is the di-
mensionless frequency related to the frequency parameter
F = pv/U io - 10* usually used in boundary-layer stability
theory by = F - Re - 10~ % w,(x) is zero everywhere, ex-
cept within the disturbance strip, where a point-symmetric
amplitude distribution with respect to the strip’s center is
constructed from the 5™-order polynomial v,(¢) = 20.25 -
£ —35.4375 - €1 +15.1875 - €2 with £ running from 0 to 1 in
the first and from 1 to 0 in the second half of the disturbance
strip.

The vorticity at the wall is calculated from

0*w, N 0w, o O*w, N QAU
or2 ly—o 022 ly—o  0x0yly—o 0z ly—0’
Yyl T 0, (8)
ow, _ Ow,, ~ Aw

At the upper boundary of the integration domain (B-C) an
exponential decay of the disturbances in y-direction is al-
lowed, and hence a relatively small integration domain of
only a few boundary layer thicknesses can be used. Start-
ing already upstream of the outflow boundary (C-D), the
disturbances are forced to decay by gradual suppression of
the disturbance vorticity (with x) [6]. This technique has
been carefully tested, it works for boundary layers as well as

for strongly nonparallel base flows, like e.g., free shear layers
or bluff body wakes.

4. NUMERICAL RESULTS

The integration domain shown in Figure 1 begins at Res;, =
1.72077\/x¢ - Re = 331, extends over 186; in y-direction (un-
til y = 18.84) and from zy = 0.37 to xy = 5.06. A velocity
step by Auy = 9% is prescribed between z; = 0.71 and
Ty = 2.43 according to Figure 2. Except where noted, 697
and 96 equally sized intervals are used for discretization in
x- and y-direction, respectively for a discretization using ap-
prox. 25 grid points per TS-wavelength in x-direction and
100 time steps per period. With the disturbance strip placed
between x = 0.55 and x = 0.70 and the “relaminarization
zone” beginning at x,, = 4.67, the spanwise wave number in
equation (6) is set to v = 20.



67 up
y, H,
61 T 10
4,
+ 0.8
2,
+ 0.6
ysep
0 T T T 1
0 1 S 2 R ¢ 3

Figure 3: Base flow parameters: free-stream velocity wu,y,
shape factor H, displacement thickness 6, separation stream-
line ysep, separation point S, and reattachment point R.

4.1 Base flow

Characteristic features of the base flow are given in Figure 3.
They allow the comparison of the prescribed free-stream ve-
locity uy(x) with the displacement thickness 6; (), the shape
factor H(x) (displacement thickness/momentum thickness),
and the separation streamline corresponding to ¥ = 0 where
VU is the (2-D) stream function. Here and in all subsequent
figures S and R mark the separation and reattachment of the
base flow, they are repeated to facilitate comparison between
different figures. The shape factor starts with the Blasius
value H = 2.59 at inflow, increases to a maximum around
4.8, and decreases again in the reattachment region. The
strong increase of §; and hence H begins already upstream
of the bubble. Separation and reattachment, however, oc-
cur downstream of the largest gradient of wuy,(x) at those
positions where H ~ 4. With 6,5 ~ 4.0 at separation ac-
cording to Figure 3, the Reynolds number based on the dis-
placement thickness at separation Res,s =vRe - 015 ~ 1265
turns out to be quite large compared to the Blasius value of
Res, = 1.72077y/xg - Re ~ 715 for the same x. Behind the
bubble, the flow asymptotically recovers to a Blasius bound-
ary layer indicating that the laminar separation bubble has
primarily a local effect on the base flow. Since 6; decreases
downstream of the bubble until the decrease is superseded by
the growth of the flat-plate boundary layer, Res, would also
decrease and the presentation of the results further down,
based on a local normalization by 6; would be equivocal. It
is therefore better to keep to the “global normalization” in-
troduced in equation (1).

4.2 Choice of disturbance frequency

Linear Stability Theory (LST) calculations based on the Orr-
Sommerfeld equation and using ug-velocity profiles calcu-
lated in the previous section, revealed that the flow was most
unstable with respect to 2-D disturbances with frequencies
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Figure 4: Amplification curves for small-amplitude disturb-
ances (case L), 3 = frequency, v = spanwise wave number.

around 3 = 18 (F = 3/Re - 10* = 1.8 in the stability dia-
gram). This was verified in the DNS with small amplitude
wave packets centered at § = 7,14, and 28, respectively.
In all three cases the most amplified disturbance occured at
[ =~ 18. The disturbance frequency for all subsequent studies
using periodical forcing was therefore set to g = 18.

4.3 Discussion of Results

Depending on the choice of the disturbance amplitudes A in
equation (7), different cases can be investigated: a “linear”
case (L) with a 2-D and two pairs of 3-D T'S-waves each with
such a small amplitude that no relevant nonlinear interac-
tions occur; a “fundamental” case (F') with a large amplitude
2-D TS-wave together with small amplitude 3-D TS-waves;
an “oblique” case (O), where only one large-amplitude 3-D
wave pair is introduced; and a “combined” case (C), where
an equally large 2-D T'S-wave is introduced together with the
oblique wave pair of case O. In the first two cases, the spec-
tral ansatz (6) is truncated at K = 2, and disturbances are
introduced for £ = 0, 1, and 2, i.e., v = 0, 20, 40, respec-
tively. In the other two cases, eqn. (6) is truncated at K = 4
or larger.

4.3.1 Linear case

Amplification curves of the u’-disturbance maxima vs. x are
shown in Figure 4 for the 2-D wave and the 3-D wave pairs.
Generated at the disturbance strip (0.55 < z < 0.70) with
Ag = Ay = Ay = 107 in (7), the waves undergo a strong
amplification over several orders of magnitude, starting al-
ready upstream of the separation point. The amplification
is strongest for the flat wave, it decreases with increasing
spanwise wave number. Downstream of the bubble, the am-
plification is reduced due to the relaxation of the base flow
to a Blasius boundary layer. It is important to note that the

magnitude of the amplification rate a; = —d/dz(lnw! ) is
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Figure 5: Comparison of DNS-amplification rates from case L
with Linear Stability Theory (LST), § = frequency, v = span-
wise wave number.

more than ten times larger in presence of the bubble than
without it. In addition, 3-D waves are nearly as amplified as
2-D waves.

A quantitative comparison of the amplification rates extract-
ed from Figure 4 with results of LST using local base flow
profiles, i.e., parallel-flow assumption, is given in Figure 5.
Remarkably good quantitative agreement is observed, small
differences can be attributed to the nonparallel base flow,
since the disturbance amplitudes are too small for nonlinear
effects (O(107*)). Closer investigation of these nonparallel
effects showed that the v'-disturbance maximum agrees bet-
ter with LST in the downstream part of the bubble, whereas

Upnqg agrees better in the upstream part. Such quahtatlve be-
havior is plausible, since the streamlines have different (con-
cave/convex) curvature before and after the bubble. On the
whole, nonparallel effects are surprisingly small.

4.3.2 Fundamental case
The only difference of this case to the previous one is a much
larger amghtude of the 2-D wave at the disturbance input,
Ay = 107 (compare above). The intention is to simulate a
combination that will lead to K-type transition in a Blasius
boundary layer. In such a case, a tenfold increase of the
3-D amplification rates can be expected due to secondary
instability [10]. As long as the amplitudes of the 3-D disturb-
ances are very small, no interaction is expected among these,
and the simultaneous introduction of two oblique wave pairs
is considered an effective means of getting an idea about the
sensitivity of the expected resonance to the spanwise wave
number.

Except for the larger amplitude of the 2-D wave, the 2-D and
3-D disturbances in Figure 6 initially develop in the same way
as in Figure 4. However, when the 2-D wave attains ampli-
tudes of u!, . /Us =~ 20%, nonlinear effects are responsible for
its saturation which persists downstream of the bubble. As
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Figure 6: Amplification curves for large 2-D and small 3-D
disturbance amplitudes (case F), v = spanwise wave number.

already shown in [4] and as will be shown further down, the
flow is qualitatively reasonable for x > 2.0, despite the pos-
sible deterioration of the numerical results due to insufficient
numerical resolution for = > 2.0.

High-frequency harmonics (§ = 36 and § = 54 for the 2-D
wave, (3 = 36 for the 3-D waves) have been included in Fig. 6
as dotted lines in order to give an additional indication of
nonlinear effects. Saturation of disturbance amplitudes at
a high level and generation of higher harmonics are typical
nonlinear phenomena which can also be observed in other
base flows, e.g., in a Blasius boundary layer [8], [9]. In case L,
where no saturation is observed, all higher harmonics stay
below 1077,

As regards the 3-D disturbances, which were supposed to get
in resonance with the 2-D wave and strongly amplified by sec-
ondary instability (cf. Herbert [10]) after the 2-D wave has
attained sufficiently large amplitudes (O(1%)), an unexpect-
edly reduced growth of the 3-D waves is observed as soon as
the 2-D wave saturates. This could again be due to nonlinear
effects since the 3-D higher harmonics shown have approxi-
mately the same amplitude as the fundamentals. However,
the reduced amplification may also be explained by nonlinear
deformation and stabilization of the mean flow due to the
act[io]n of the 2-D nonlinear disturbances, as already shown
in [4].

In order to validate this surprising result, case F has been
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Figure 7: Effect of increasing the 3-D disturbance amplitude
compared to Figure 6, v = spanwise wave number.

re-computed using smaller grid sizes in x and time (i.e., ~50
grid points per wavelength, and 120 intervals/period, respec-
tively). No differences were observed.

Next, the simulation was repeated using larger 3-D disturb-
ance amplitudes. Results of this simulation are shown in
Figure 7 in the same way as in Figure 6. Apart from larger
numerical noise upstream of the bubble, depicted by the high-
frequency harmonics, no significant differences occur for the
2-D and 3-D waves compared to the preceding investigation.
So far, no important contribution of secondary instability to
the transition process could be observed for the laminar sep-
aration bubbles under investigation, even after changing the
scenario from “fundamental” to “subharmonic resonance”, as
reported in [4].

When looking at the amplification rates —a; in Figure 8,
calculated from the data shown in Figure 6, an initially rather
close quantitative agreement between the DNS and LST is
again observed as for the linear case in Figure 5. For clarity
the 3-D «; curves are not shown for x > 2.0, since a; would
overemphasize local oscillations of the amplitudes vs. x in
Figure 6. Starting at x =~ 1.85, the amplification rates begin
to deviate from LST and all waves shown turn towards a
neutral behavior. The 2-D wave experiences a short distance
with slightly increased amplification while the 3-D wave with
the larger spanwise wave number (v = 40) attains a rather
large amplification rate before it decreases.

Comparisons with stability calculations for secondary insta-
bility at x = 1.8, where the 2-D disturbance amplitude is ap-
proximately 1%, yield increased 3-D amplification rates for
~v = 40, thus indicating indeed a possible secondary instabil-
ity just before the nonlinear saturation of the 2-D disturb-
ances. However, identification of a secondary instability in

10
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Figure 8: Comparison of DNS-amplification rates from case F
with Linear Stability Theory (LST), § = frequency, v = span-
wise wave number.

the DNS results is very difficult in the present case due to its
small difference to primary instability, as far as amplification
rates are concerned. In addition, the secondary instability
breaks down soon after its emergence. Similar observations
are made in the subharmonic case S [4].

4.3.3 Oblique case

In the past years, a new 3-D amplification mechanism was
found, initially in the transonic flow regime (e.g., [11]) where
3-D waves are equally or even more amplified than 2-D waves.
A somewhat similar situation appears here in the separation
bubble: 3-D (linear) disturbances are approximately as am-
plified as 2-D disturbances (cf. Fig. 4 and 5). Therefore, a
3-D instability (now called oblique breakdown) might be of
relevance here. This possibility is investigated in case O by

means of a pair of oblique waves with § = 18 and v = 420
(i.e., Ay =0, for k # 1, and A; = 1077 in eqn. (7)).

In this case, additional nonlinear effects are expected to oc-
cur among different modes in spanwise direction. Therefore,
in addition to using a finer resolution in x and t (=50 grid
points/wavelength, and 200 time steps/period, resp.), K in
equation (6) is increased compared to the simulations above.
In order to save some computer time, the beginning of the
“relaminarization zone” and the end of the integration do-
main are placed at x,, = 2.52 and zy = 3.17, respectively. In
addition, case O is performed as a “spatial continuation sim-
ulation” using two integration domains overlapping in down-
stream direction, and K = 4 and K = 8 in the two grids,
respectively. Periodic inflow conditions for the disturbances
calculated on the second grid beginning at z = 1.5, are ex-
tracted from the results of the first grid at the same x. z
of the first grid and the height of the integration domain in
y-direction are not altered compared to the simulations dis-
cussed so far, but the number of grid points in x-direction is
reduced to 498 in spite of the finer resolution.

11
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Figure 9: Amplification curves for large 3-D disturbance am-
plitudes (case O), 3 = frequency, v = spanwise wave number.

Amplification curves u, . vs. x from case O are shown in

Figure 9 for some typical spectral modes. A typical feature of
the oblique breakdown is the amplification of modes (n, k),
where n + k is even. These modes include 2-D disturbances,
e.g., mode (2,0), and longitudinal vortices, e.g., mode (0,£2).
The amplitudes of corresponding oblique wave pairs (denoted
by +k9 are added to form single curves in Figure 9. Two
observations are important: first, modes (1,£1) are amplified
according to LST until nonlinear effects lead to saturation
around x ~ 2.0, and second, all other modes are generated by
nonlinear interactions, e.g., modes (0,42), (2,+2), and (2,0)
by modes (1,+1). The second observation is confirmed by the
amplification rates between x = 1.5 and =z = 2.0 in Figure 9:
the nonlinearly generated waves belonging to the interaction
just mentioned, are all amplified with the same rate which is
approximately twice the rate of the forcing waves. Higher-
order nonlinear modes start at an initially lower amplitude
with even larger amplification rates, e.g., (1,£3). It turns out
that the local amplitudes of all nonlinearly generated modes
solely depend on the local amplitude of modes (1,+1) [11].

In principle, the “oblique breakdown” mechanism is opera-
tive for any spanwise wave number v > 0 as long as the
corresponding oblique wave pair is amplified. From the ob-
servations in connection with case L, however, a “preferred”
or “optimal” spanwise wave number 7, can be expected: De-
creasing v from v, to v = 0, the amplification of the 3-D
waves can no longer increase, since the amplification of the
2-D wave is the largest possible, but at the same time the
“oblique” mechanism somehow must decrease due to its ab-
sence in 2-D. Increasing v beyond v, must also decrease the
strength of the mechanism due to the reduced amplification
of oblique primary waves with increasing spanwise wave num-
ber. Taking «; of modes (0,£2) between = 1.5 and x = 2.0

In = frequency index (relative to 3 = 18), k = spanwise wave number
index (relative to v = 20).

12
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Figure 10: 2-D mean-flow parameters in case O: free-stream
velocity uys, shape factor H, displacement thickness 6, sep-
aration streamline y,.,. S, R: separation and reattachment of
the undisturbed base flow.

as a reference, a number of test calculations were performed
using different (global) spanwise wave numbers v in eqn. (6),
and the largest amplification of modes (0,£2) was found near
7p = 20. The “preferred” spanwise wavelength of the longitu-
dinal vortices represented by modes (0,+2) (v & 40) is thus
Azp = 0.157. With 6,5 ~ 4 from Figure 3, A,, can be ex-
pressed as \,, ~ 12.46;5, when the stretching in y-direction

by v/ Re is taken into account.

As already observed in case F, additional nonlinear effects
lead to the saturation of all disturbance amplitudes at = >
2.0. Although the resolution is still not adequate to resolve
all aspects of the flow in that region, a number of interesting
qualitative mean-flow features can be observed, as will be
shown in the next two figures.

The downstream development of the free-stream velocity uyy,
the shape factor H, the displacement thickness ¢;, and the
separation streamline v, for the mean flow from case O are
given in Figure 10 for comparison with the base flow (i.e., the
undisturbed steady flow) in Figure 3. No differences occur for
x < 1.85 in agreement with the small disturbance amplitudes
observed further above. In the rearward part of the bubble,
however, everything is different from the undisturbed flow:
Reattachment occurs earlier, the bubble’s outline resembles
a triangle, the shape factor and the displacement thickness
both decrease to very low values, and even the free-stream ve-
locity is decreased. The retardation of the outer flow is thus
increased by additional 5% relative to U, by the action of the
disturbances, which have reached such a large amplitude that
they have finite amplitude at y,;, despite their exponentially
fast decay with increasing y. Such a large change of the ve-
locity at the upper boundary of the integration domain could
cause undue influences of the chosen height of the domain

13
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Figure 11: Comparison of 2-D mean-flow profiles at x = 1.0,
1.2,1.4, ..., 2.4.

on the flow, especially for x > 2.1. This would be clarified
by additional simulations using different distances y,, of the
upper boundary from the flat plate. Other investigations us-
ing a viscous-inviscid interaction model of the kind proposed
in [12] are also of interest, they would further remove possible
effects of a finite height of the integration domain.

The sudden jump of all curves back to the undisturbed values
at x = 2.52, however, is due to the artificial suppression of
the disturbances in the “relaminarization zone” beginning at
Ty, = 2.52. This shows the efficiency of the “relaminarization
zone”. Compared to case L, and to the influence of the bubble
on the base flow described in connection with Figure 3, where
only a local influence of the bubble on the flow was observed,
the influence of the large-amplitude disturbances is not lo-
cal, since, once amplified and saturated, a quasi-turbulent
flow would persist for all x downstream of the bubble if no
relaminarization were enforced.

The downstream evolution of the 2-D mean-flow profiles for
the three cases L/F/O are compared in Figure 11. For
x < 2.0, there is no difference due to the small disturbance
amplitudes. Further downstream in the reattachment zone,
the most striking differences appear: the profiles according to
cases with large-amplitude disturbances have different curva-
ture and a much larger du /0y close to the wall. Qualitatively
these profiles look like turbulent boundary layer profiles, and
indeed, calculation of the shape factor H in the reattachment
zone for the nonlinear cases yields H ~ 2.0, and H ~ 1.4
in case F, and O, respectively. Thus, the qualitative and
quantitative resemblance of the mean flow behind the bubble
to a turbulent mean flow is most pronounced in case O (a
typical shape factor for turbulent flat-plate boundary layers
is H ~ 1.5). The apparent difference between case F and
case O is due to different 3-D disturbance amplitudes: the
flow in case F is dominant 2-D and therefore qualitatively
more distinct from 3-D turbulence than in case O.

In summary, the separation bubble in case O yields the best
qualitative agreement with a transitional laminar separation
bubble. In addition, longitudinal vortices which have already
been observed in experiments (e.g., [2]) might be due to the
occurence of modes (0,£2). The calulation of A,, further
above gives an estimate for the spanwise wavelength of such
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vortices. What happens to case O if an even large amplitude
2-D disturbance is present, is investigated in the next section.

4.3.4 Combined case

The results presented in sections 4.3.2, and 4.3.3 show that a
large amplitude 2-D disturbance will not immediately drive
small amplitude 3-D disturbances to large-amplitude satu-
ration, the mutual interaction of 3-D disturbances seems to
be much better suited for that purpose, instead. A problem
with case O, however, is that the flow is dominated by 3-D
disturbances whereas experiments show a dominance of 2-D
effects.

Until reliable receptivity studies are available, the initial dis-
turbance spectrum must be estimated and different generic
combinations must be investigated, as it is done here. Due
to the convective nature of the instabilities observed above,
the flow downstream of the separation bubble depends on the
disturbance spectrum introduced further upstream. In order
to check the relevance of case O, a number of additional simu-
lations were performed, where large-amplitude subharmonic,
fundamental or higher harmonic 2-D disturbances were added
to the initial 3-D disturbance in case O. The most “danger-
ous” combination found, was that using fundamental disturb-
ance frequency, since that frequency is the only one that is
comparably amplified as the forcing 3-D modes (1,+1) al-
ready in the “linear region” upstream of the bubble.

The simulation presented in this section is performed using
~50 grid points/wavelength, 200 time steps/period, v = 20,
K = 4in equation (6), and 594 grid points in x. Disturbances
are generated with 8 = 18, A4g = 1.1-107°, and 4; = 107°
in eqn. (7), and zy and the height of the integration domain
are left unchanged compared to the simulations already de-
scribed. The amplitudes Ay and A; are chosen so that mode
(1,0) and the superposition of mode (1,1) with mode (1,-
1) start with equally large disturbance amplitudes at the
disturbance strip.

Amplification curves for the new simulation (case C) are pre-
sented in Figure 12. Figure 12(a) contains only those (even)
modes (n,k) which are also present in case O with the results
from Figure 9 replotted as dotted lines. Compared to case O,
some modes (e.g., (2,0) and (3,£1)) are initially larger while
others remain unchanged until x ~ 1.85. Downstream of
this x-station, the even modes are generally smaller than in
case O, this is especially apparent for the longitudinal vortex
modes (0,£2) and obviously due to the presence of large-
amplitude odd modes shown in Figure 12(b). For x > 1.85
two major qualitative differences between case C and case O
arise from the quantitative differences observed further up-
stream: (i) the flow is dominated by the 2-D wave (1,0) in a
manner qualitatively similar to that in case F, and (ii) the
longitudinal vortices are represented by modes (0,+1) instead
of modes (0,+2), i.e., their spanwise wavelength is halfed.

As already observed in case O (Figure 9), some modes are

again equally amplified between x = 1.5 and = = 2.0, e.g.,
modes (0,£2), (2,0), and (2,£2) in Figure 12(a), and modes
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Figure 12: Amplification curves for large 2-D and 3-D
disturbance amplitudes (case C). (a.) n+k even, (b.) n+k
odd. Dotted lines in (a) represent the results already shown

in Figure 9.
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(0,£1) and (2,£1) in Figure 12(b). Such wave pair triples
or pairs thus belong to the same nonlinear combination in-
teraction mechanism, i.e., mode (1,1) with its complex con-
jugates in the first case, and mode (1,0) with modes (1,£1)
in the second case. Even the increased amplitudes of some
modes (e.g. (2,0)) can be explained by wave (mode) interac-
tion: compared to case O, where it is generated solely by (1,1)
and (1,-1), a self interaction of mode (1,0) also contributes to
this mode in case C and provides for an increased amplitude.

Although the even modes in case C are somewhat smaller
than in case O for x > 1.85, and despite the existence of
odd modes, the underlying instability mechanism appears to
be the same. Namely, the nonlinear interaction of modes
in the frequency-spanwise-wave-number-spectrum. Thus, the
inclusion of 2-D disturbances into the “oblique breakdown”
model does not alter the principle found there.

5. CONCLUSIONS

Inclusion of 3-D disturbances in the DNS of an arbitrarily
chosen laminar separation bubble gave a number of unex-
pected results. Since only one specific base-flow configura-
tion has been investigated so far, it is not yet clear to what
extent the present results may be generalized. Further in-
vestigations using other base flow parameters, e.g., larger
free-stream velocity drop Auwu,s, larger Reynolds number at
separation Res g, larger integration domain in y-direction,
etc. are therefore necessary.
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