
Accuracy of Local and Nonlocal Linear Stability Theory
in Swept Separation Bubbles

T. Hetsch∗

Aircraft Research Association, Ltd., Bedford, England MK41 7PF, United Kingdom

and

U. Rist†

University of Stuttgart, D-70550 Stuttgart, Germany

DOI: 10.2514/1.37997

A series of swept laminar separation bubbles is used to investigate the principle applicability of the eN method to

laminar separation bubbles in swept configurations. To this end the effect of sweep and of the propagation direction

of disturbance waves on the accuracy of linear stability theory and solutions of the parabolized stability equations is

studied systematically. Direct comparisons of spatial linear stability theory and linear parabolized stability equation

solutions to results of direct numerical simulations allow for a qualitative and quantitative evaluation of their

performance in the presence of sweep, flow separation, and local backflow. A variety of Tollmien–Schlichting waves

aswell as themost amplified stationary crossflowvortex is analyzedwithin a sweep angle range between 0 and 45 deg.

It turns out that even though linear stability theory works satisfactorily, parabolized stability equations are clearly

preferable in terms of accuracy, especially for very oblique modes or larger sweep angles.

Nomenclature

A = amplitude distribution of a disturbance wave
Amp = local value of the amplification curve, maximal wave

amplitude at given x position
L� = reference length
N = N factor
Re = Reynolds number
U, u0 = leading-edge normal velocity component of base

flow and disturbances, respectively
V, v0 = wall-normal velocity component of base flow and

disturbances, respectively
W, w0 = leading-edge parallel velocity component of base

flow and disturbances, respectively
x, y, z = leading-edge normal, wall-normal, and leading-edge

parallel coordinates
xm = position of maximal DNS amplitude of mode in

question
xn = neutral point
xreatt = reattachment position
xsep = separation position
�i = spatial amplification rate in chordwise direction
�r = chordwise wave number
� = spanwise wave number
� = phase of a disturbance wave
� = kinematic viscosity
�i = chordwise wave number for PSE
�r = spatial amplification rate for PSE
� = propagation direction of a boundary-layer

disturbance
�1 = sweep angle
! = angular frequency

Subscripts

e = quantity at upper domain edge
max = maximum value of a quantity
n = quantity at neutral point of a disturbance wave
s = quantity in streamline-orientated coordinate system
(!=�) = quantity of the mode with frequency ! and spanwise

wave number �
0 = quantity at inflow
1 = quantity in potential freestream ahead of flat plate
* = special value of quantity

Superscripts

u = property of a quantity evaluated from the u-velocity
component

* = dimensional quantity
^ = property of a Fourier mode

I. Introduction

M ODERN variants of the eN method based on linear stability
theory (LST) still represent the most common tool for

transition prediction in aircraft industry [1,2]. For such tasks it
is possible to substitute LST by the linear parabolized stability
equations (PSE), which essentially can be viewed as a consistent
extension of the linear stability theory by nonlocal, nonparallel,
and curvature effects. The application of PSE may lead to improved
N-factor correlations [3], but the key question is whether possible
gains in accuracy through PSE are significant enough to compete
with the robustness and the user friendliness of a local LST analysis.
The user must be aware that there is in principle an inherent step-size
restriction for classical PSE and it additionally requires an initial
condition for each mode due to its parabolic nature, which is often
provided by LST. To address the potential step-size restriction,
strategies have emerged in the past years to ease or remove them
through modifications of the PSE equations. Employing them
implies, on the other hand, accepting that a single or a few offending
terms are neglected, whereas other terms of the same magnitude are
contained. For details about the elliptical nature of this step-size
restriction and suggestions how to overcome it the reader might want
to refer toHerbert [4], Andersson et al. [5], Chang andChoudhari [6],
or Li and Malik [7].
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A stability analysis of swept wings will frequently encounter
swept separation bubbles. For instance, the flow phenomenon was
detected on the slat of an Airbus A310 in landing configuration [8].
An application of the eN method in such a context therefore depends
on the ability of LST and PSE to model the propagation of low-
amplitude disturbances in the vicinity of swept laminar separation
bubbles realistically. Swept laminar separation bubbles represent a
demanding base flow for both methods due to the presence of
sweep, flow separation, and local backflow. The rapid growth of the
boundary-layer thickness inside the bubble violates the parallel flow
assumption of LST and might conflict with the PSE requirement of
a slowly changing base flow in the streamwise direction. Note that
the presence of a moderate backflow, on the other hand, does not
inhibit an application of linear PSE: the disturbance waves, which
PSE is solving for bymeans of a chordwise marching procedure, still
propagate in that direction.

For the unswept case, both methods turned out to be applicable
despite these difficulties. Marxen et al. [9] have successfully
compared amplification curves and eigenfunctions based on LST
to direct numerical simulation (DNS) results and laser Doppler
anemometry measured profiles up to the middle of an investigated
laminar separation bubble. Hein [10] applied PSE to the unswept
version of the short separation bubble considered here and achieved
excellent agreement for the growth rates of a two-dimensional
Tollmien–Schlichting (TS) wave compared to DNS results by Rist
andMaucher [11]. However, he noted “minor differences” upstream
of the bubble and in its front part for oblique waves, which seem to
increase with the wave angle.

Still unknown, on the other hand, is the general applicability and
overall accuracy of LST and PSE in laminar separation bubbles
in a swept, three-dimensional flow, where oblique modes and cross-
flow influences become increasingly important. To clarify this point
in a systematic and quantitative manner the short laminar separation
bubble of [11] has been extended to swept inflows [12,13]. A varia-
tion of the sweep angles �1 � 0, 30, and 45 deg results in a series
of laminar separation bubbles, which exhibit identical cross sections
in agreement with the independence principle of incompressible
flow in swept infinite geometries discussed in detail in [12]. �1 �
15 deg had been omitted as preliminary studies showed that the
results would be very close to the unswept case. Thus, sweep angle
effects are isolated and the linear disturbance amplification of
low-amplitude Tollmien–Schlichting waves and crossflow vortices
in this base flow can be determined by means of a subsequent
unsteady DNS. Any difference of LST and PSE to this reference
solution is entirely due to the inherent weaknesses of their model-
ing assumptions.

After a brief description of the numerical methods and the base
flow in Sec. II the performances of LST and PSE are evaluated for
Tollmien–Schlichting waves in Sec. III and for the linearly most
amplified crossflow vortex in Sec. IV, followed by the conclusions in
Sec. V.

II. Numerical Methods and Base Flow

TheDNS calculations are split in aDNS of the steady laminar base
flow and a succeeding DNS for the disturbance propagation. These
DNS codes solve the three-dimensional Navier–Stokes equations
for unsteady, incompressible flows in a vorticity–velocity formula-
tion with a fourth- to sixth-order discretization. For an in-depth
description of the DNS algorithms refer to Wassermann and Kloker
[14]. LST results were gained from the same in-house code utilized
in this reference. The PSE results were obtained by the code NOLOT
of the DLR, German Aerospace Center, Göttingen, which was
extensively validated [15]. A comprehensive overview over the PSE
methodology is provided by Bertolotti et al. [16] and Herbert [17].

The most important base-flow parameters already described in
[12,13] are repeated here as follows: All quantities in the paper are
nondimensionalized by the chordwise reference lengthL� � 0:05 m
and the chordwise freestream velocityU�1 � 30 m=s, which are held
constant for all sweep angles. The x and z directions are taken normal
and parallel to the leading edge with U and W being the associated

base-flow velocity components, respectively. Periodicity is assumed
in the spanwise direction only, resulting in a quasi-2-D base flow
with @=@z� 0, but W�x; y� ≠ 0. The calculation domain itself
consists of an infinite flat plate subjected to an adverse pressure
gradient caused by the deceleration of the chordwise potential
flow velocity Ue�x� shown in Fig. 1. Different sweep angles �1
are realized by varying the spanwise freestream velocity W1 �
tan��1� and settingWe�x� �W1 at the upper domain boundary. At
the inflow located at x0 � 0:37, matching Falkner–Scan–Cooke [18]
profiles are prescribed. With a kinematic viscosity of �� � 15 �
10�6 m2=s the flow can be characterized byRe�1 �U�1 � �1�x0�=��
331, based on the displacement thickness at the inflow. In the
chordwise direction the domain ends at x� 5:05, while the wall-
normal coordinate y extends to y� 0:06 or 18 displacement thick-
nesses of the inflow profile.

The domain is resolved by 2786 � 193 grid points in x and y.
This resolution stems from transitional scenarios concerning the
interaction of Tollmien–Schlichting waves with swept laminar
separation bubbles [19] and is more than sufficient for the purely
linear disturbance amplification sought here. A typical oblique TS
wave, for instance, is resolved with about 85 grid points per wave-
length in x and the representation in span is exact due to the employed
Fourier ansatz. A successful validation and a grid verification of
the 45 deg separation bubble calculated on a grid with half the
current resolution in x and y can be found in [12,13]. Thus, a family
of swept laminar separation bubbles with laminar reattachment
is obtained, which exhibit identical separation and reattachment
positions at xsep � 1:75 and xreatt � 2:13 for arbitrary sweep angles.
The base flow reaches its steady state, if the differences in all
flow quantities of two consecutive pseudotime levels are smaller
than 10�10.

III. Linear Stability Theory and Parabolized Stability
Equation Results for Tollmien–Schlichting Waves

In the following, the notation (!=�) is adopted for discrete modes
in the frequency-spanwise wave-number spectrum. For the DNS-
reference solution a packet of TS waves with varying spanwise
wave numbers ����40;�30;�20; 0; 20; 30; 40	 was excited in the
disturbance strip displayed in Fig. 1a. Within, local periodic suction
and blowing in the wall-normal direction through the surface allows
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velocity Ue.
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for the excitation of arbitrary two- or three-dimensional disturbance
waves that are enforced with momentum input but no net mass
flow [14]. The TS waves share the frequency !� 18 of the most
amplified mode (18/0) of the 0-deg base flow. They are represented
in Fig. 1a through arrows which indicate their propagation direc-
tions � according to LST at x� 1:4. The angle �s expresses the
same information in a streamline-orientated coordinate system.
Small initial amplitudes of Au � 10�9 grant a purely linear develop-
ment throughout the domain despite a considerable amplification
of up to 4.5 orders of magnitude in the separated shear layer of the
separation bubble.

Although the separation bubble is small, it has a noticeable effect
on the overall flow stability as demonstrated by Fig. 2. It shows a
direct comparison of a linear stability diagram for the 30 deg case
with the attachedflowobtained under the identical inflow conditions,
but without the freestream deceleration. Amplification rates inside
the separation bubble are up to 16 times higher, the frequency
spectrum of amplified disturbances is significantly broader, and flow
instability starts slightly earlier. The TS waves exhibit typical
wavelengths between one-fourth to one-third of the separation
bubble length LLSB � 0:38. The TS-wave packets were recomputed
with LST and PSE to enable a quantitative comparison. This yields
raw data in the form of amplification rates, wave numbers, and
complex disturbance eigenmodes, which can be recast as wall-
normal amplitude and phase distributions as in Fig. 3.

A. Postprocessing of the Raw Data for Direct Numerical Simulations,
Parabolized Stability Equations, and Linear Stability Theory

After a transient phase the periodic disturbance excitation in
combination with steady boundary conditions of the base flow leads

to a time-periodic flowfield in the unsteady DNS. This enables a
double Fourier analysis of the disturbance velocity component u0

in time and span decomposing the flow into complex Fourier

modes û�!=�� with phases �̂�!=�� and amplitudes Â�!=��. From them,
DNS-amplification curves

Amp DNS�x� �max
y
�Â�!=���x; y�� (1)

as well as the local amplification rates �i;DNS and chordwise wave
numbers �r;DNS

�i;DNS ��
@�ln �AmpDNS��

@x
; �r;DNS ��

@��̂�
@x

(2)

may be obtained. The general theoretical framework does not
provide a preferred wall-normal distance y� above the wall for
the evaluation of the wave number �r;DNS. Systematic comparisons
with LST yielded that the dependency on y is only moderate so
that the question is not decisive. The best agreement, however,
was obtained in the potential freestream, for example, at y� � ymax

as done throughout this paper, with the first grid point above the wall
being the second best choice. See Fasel and Konzelmann [20] for an
in-depth discussion of this topic in two-dimensional boundary layers.

All PSE calculations were started from local solutions obtained
from the built-in LST mode of NOLOT, which provide a complex
eigenvalue–eigenvector pair in the form of the wave number � and
a corresponding eigenvector of the local stream variables. In the
absence of any upstream information additionally @=@x� 0 has to
be assumed, effectively initializing the PSE process from a parallel
flow during the startup phase. Afterward, the local disturbance wave
properties �r and �i of the linear stability theory are corrected by
the nonlocal streamwise influence of a slowly changing flowfield
giving rise to the PSE-amplification rate �r and the corresponding
chordwise wave number �i

�r ���i 
 Re

�
1

û
� @û
@x

�

�i � �r 
 Im

�
1

û
� @û
@x

�
; at y� � fy�jû�y�� � max

y2�0;ymax 	
�û�y�	g

(3)

For a quantitative comparisonwith theDNS these amplification rates
are integrated to calculate the desired N factors, which describe the
disturbance growth in the form of amplification curves AmpPSE

N�x� �
Z
x

xn

�r� ~x�d~x; AmpPSE�x� � AneN�x� (4)

The same applies to the LST results, but due to its local character the
equations simplify to

N�x� �
Z
x

xn

��i� ~x�d~x; AmpLST�x� � AneN�x� (5)

Their free parameter, the initial amplitude An, is fitted to match the
DNS results at the corresponding neutral point, which lies in the
vicinity of xn � 0:95 for the TS-wave package considered here.
Figure 4a shows a direct comparison of the DNS, LST, and PSE-
amplification curves based on Eqs. (1), (4), and (5) for the most
oblique mode (18=40) of the highest sweep angle case. Clearly, LST
is performing poorly for strongly oblique modes in contrast to the
(18=20) in Fig. 4b, which is nearly aligned with the freestream of the
30 deg case. With an eye on its main industrial application, the eN-
based transition prediction, we can now systematically evaluate the
accuracy of PSE as a function of the sweep angle and the propagation
direction of the TS waves in the form of the relative amplitude error

ra�x� �
jAmpDNS�x� � AmpPSE�x�j

jAmpDNS�x�j
(6)

at the point xm, where the DNS solution peaks and can likewise
proceed in a similar manner for LST. Despite its usefulness,

Fig. 2 Linear stability diagram (LST) forwaves propagating normal to

the leading edge (�� 0): Comparison of 30-deg separation bubble with
attached zero pressure gradient flow under identical inflow conditions.

S� separation position; R� reattachment position.

Fig. 3 PSE solution in the middle of the separation bubble at x� 1:93
in 45-deg base flow: wall-normal disturbance amplitude (solid lines) and

phase (dash-dotted lines) distribution of TS mode (18=20).
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however, Eq. (6) represents a point measurement and is as such
unable to give any distributed information about the overall quality
of both solutions within the bubble. Therefore, the L2 norm of these
relative errors has been additionally evaluated at 12 preselected,
equidistant locations starting from the separation and ending at the
reattachment point

krakL2 �
�����������������������
�
X
i

r2a�xi��
r

(7)

All findings of Eqs. (6) and (7) were compiled into Tables 1 and 3,
respectively. Table 2 provides the propagation direction of all modes
at x� 1:4 in a body-fitted and streamline-orientated coordinate
system based on LST, giving rise to the angles

�� arctan��=�r� (8)

and�s as illustrated in Fig. 1a. This allows for the desired correlation
of the amplitude error with the propagation direction. In the present
base flow these angles change only moderately in the streamwise

direction in the vicinity of the separation bubble, so that those values
can be regarded as typical.

B. Effect of Sweep on the Accuracy of LST and PSE Results

As demonstrated by Table 1 and observable in Fig. 4a, the relative
error of the LST-amplification curves is already quite high at the
position of themaximal DNS amplitude. On the average it was found
to be 40% for the 0-deg base flow and about 50% for the sweep
angles �1 � 30 deg and 45 deg. Overall, there is a tendency
toward higher errors for increasing sweep angles �1. Note that the
45 deg mode (18= � 40) exhibits an atypical behavior, as it is nearly
neutrally stable. Table 3 shows that the error distribution through
the bubble, measured in theL2 norm, yields roughly the same trends.
Technically, LST solutions could be obtained for the whole range of
�1 2 �0; 45 deg	, although the oblique modes (18=� 40) showed
first, but still negligible convergence problems in their stable regions
for �1 � 45 deg. Attempts to proceed to higher sweep angles and
to calculate a stability diagram for the 60-deg separation bubble with
LST failed due to considerable problems with the eigenvalue search
already in the unstable regions of the flowfield.

Fig. 4 Comparisons of DNS (solid lines), LST (lines with diamonds), and PSE (lines with circles) amplification curves with position of neutral point xn
and of maximal DNS amplitude xm. a) Mode (18=40) for �� 45 deg; b) mode (18=20) for �� 30 deg.

Table 1 Relative amplitude errors ra (%) of Eq. (6) as a function of the TS wave (!=�) and sweep angle�1. Left
entry: LST with respect to DNS at peak xm of DNS-amplification curve (see Fig. 4). Right entry: PSE

�1 ra�18= � 40� ra�18= � 30� ra�18= � 20� ra�18=0� ra�18=20� ra�18=30� ra�18=40� Mean, %

0 deg 58=8 55=6 16=5 16=4 16=5 55=6 58=8 39=6
30 deg 51=6 58=4 58=6 19=5 15=1 62=6 73=2 48=4
45 deg 25=6 51=2 59=2 19=5 39=9 81=10 78=11 50=6

Mean, % 45=7 55=4 44=4 18=5 23=5 66=7 70=7 46=6

Table 2 Propagation direction of evaluated TS waves (!=�) fromTable 1 according to LST at x� 1:4. Left entry�: leading-edge

orientated coordinate system. Right entry �s: streamline orientated (see Fig. 1)

�1 ��18= � 40�, deg ��18= � 30�, deg ��18= � 20�, deg ��18=0�, deg ��18=20�, deg ��18=30�, deg ��18=40�, deg
0 deg �41= � 41 �32= � 32 �22= � 22 0=0 22=22 32=32 41=41
30 deg �30= � 61 �25= � 56 �19= � 49 0= � 31 27= � 4 43=12 58=28
45 deg �25= � 71 �22= � 67 �17= � 62 0= � 46 32= � 14 54=8 79=33

Table 3 ThenormkrakL2 of relative amplitude errorswithin the bubble fromEq. (7) as a function of the analyzed

TS wave (!=�) and sweep angle �1. Left entry: LST with respect to DNS. Right entry: PSE

�1 ra�18= � 40� ra�18= � 30� ra�18= � 20� ra�18=0� ra�18=20� ra�18=30� ra�18=40� Mean

0 deg 0:55=0:39 0:26=0:23 0:17=0:15 0:30=0:08 0:17=0:15 0:26=0:23 0:55=0:39 0:32=0:23
30 deg 0:48=0:26 0:27=0:17 0:09=0:21 0:38=0:12 0:11=0:03 0:69=0:18 1:26=0:19 0:47=0:17
45 deg 0:64=0:23 0:37=0:13 0:13=0:10 0:37=0:14 0:25=0:18 1:51=0:24 2:07=0:11 0:76=0:16

Mean 0:55=0:29 0:30=0:18 0:13=0:15 0:35=0:11 0:18=0:12 0:82=0:22 1:30=0:23 0:52=0:19

HETSCH AND RIST 1119



PSE, on the other hand, is able to follow the DNS-reference
solutions quite well through the long regions of pronounced growth
in the separated shear layer. It predicts the total disturbance growth
from the neutral point with a relative error of only 6% in the mean,
nearly unaffected by the sweep angle. In the 45 deg case, beginning
convergence problems made it necessary to double the step size
for the modes (18=30) and (18=40). This coarse discretization led to
higher errors compared to other PSE results.

C. Effect of the Propagation Direction on the Accuracy of LST

and PSE Results

Table 2 demonstrates that the propagation direction � grows
monotonically with the spanwise wave number �. For LST, the
general trend, larger errors for more oblique modes with larger j�j
and therefore larger j�j, is muchmore pronounced than the effect of
a rising sweep angle. The smallest relative errors between 15–19%
are found for TSwaves around � � 0, which propagate broadly in the
chordwise direction. For very oblique modes within the same base
flows, the errors are up to 4 times higher. Note that there is no trend,
larger errors for modes with larger j�sj, with respect to the direction
of the potential streamline. PSE shows the same tendency of higher
errors for more oblique modes, but much less pronounced than for
LST. In the average the amplitude errors are 1.4 times higher than for
two-dimensional waves.

D. Use of LST for the Calculation of Local Quantities

The high relative errors listed in Table 1 should not discourage the
use of LST for oblique modes or swept flows in general. In all
investigated cases LST systematically underpredicts the local DNS-
amplification rates, as demonstrated for the 45 deg case in Figs. 5a
and 5b for the modes (18=40) and (18=0) with the largest

and the smallest relative errors in LST, respectively. Thus, fitting the
amplification curves at the neutral point shows the integrated error
from there up to the point of comparison. However, this is only
necessary in the context of N-factor calculations.

For the direct results of LST, that is, local growth rates�i andwave
numbers �r, only the error at the place of comparison has to be taken
into account, which is significantly lower. For instance, Hein [10] has
calculated the stability diagram for two-dimensional waveswith PSE
for the present 0-deg separation bubble and the recalculation of the
diagram based on LST in Fig. 2 shows no discrepancy. Especially,
the chordwise LST-wave number �r shows a remarkable degree
of accuracy throughout this study, largely independent of the sweep
angle or the propagation direction of the analyzed mode. Even in
the 45-deg base flow, where the greatest errors with respect to LST
are to be expected, PSE fails to lead to any improvement over LST in
that matter. This is demonstrated by the direct comparisons of
the � distributions in Fig. 5c, which stem from Eq. (8) and thus
depend on �r only. It also shows the moderate dependency of the
propagation direction on x.

IV. LST and PSE Results for Stationary
Crossflow Modes

In the 45-deg base flow the strength of the crossflow (CF) velocity
Ws, the spanwise base-flow velocity in a streamline-orientated
coordinate system, reaches a maximal value of aboutWs;max=Us;e �
9% relative to the streamwise potential flow velocity Us;e.
As expected, the Ws profiles exhibit an inflection point indicating
the influence of an inviscid crossflow instability. Systematic com-
parisons of LST results among stationaryCFmodes yieldedmaximal
growth rates �i of roughly one-third of those of the locally most
amplified TS waves inside the separation bubble. The strongest

Fig. 5 Comparisons of local DNS (solid lines), LST (lines with diamonds), and PSE (lines with circles) results in the 45 deg case. Comparison of

amplification rates from Eqs. (2) and (3): a) mode (18=40) with position of maximal DNS amplification xa; b) mode (18=0); c) comparison of propagation

direction � for modes (18=�) with ���40, �30, �20, 0, 20, 30, and 40 (from bottom to top), computed from local wave number �r utilizing Eq. (8).
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overall amplification is exhibited by the modes (0=40) and (0=50),
which showed nearly identical amplification curves so that (0=40)
was chosen for further comparison. Fitted to the neutral point at about
xn � 1:35 both linear theories follow the DNS result qualitatively
well. Closer investigation, however, yields a specific problem with
each of them.

LST, on the one hand, is not able to predict the actual form of the
DNS curve anywhere, so that PSE solutions of CF vortices are
preferable. This is obvious from Fig. 6a, where we fitted all LST- and
PSE-amplification curves but one individually to the DNS result
in order to compare the form of the amplification curves. After
a transient phase PSE yields excellent agreement with the DNS
solution, whereas LST shows only qualitative agreement. This is
in accordancewith thefindings ofWassermann andKloker [14],who
examined several CF modes in an attached 45 deg boundary layer,
which models a swept wing and showed that the LST systematically
underpredicts the DNS-growth rates. In their study, amplification
curves of DNS and LST differed at the middle of the domain already
by a factor of 3 to 4. In the present base flow the local amplification
rate �i is in turn over- and underpredicted, but never coincides with
the DNS in contrast to PSE as Fig. 6b shows. Nevertheless, for the
chordwisewave number�r LST is in very good agreementwithDNS
and no advantage can be gained through PSE as in the case of the TS
waves.

PSE solutions of CF modes, on the other hand, depend on the
position of their LST-initial condition to a certain degree as demon-
strated by Fig. 6. Contrary to expectation, an early start upstream of
the neutral point xn yields worse results farther downstream, as
the local PSE-amplification rates depart noticeably from the
DNS solution during the first steps in the damped region, which
unnecessarily prolongs the transient phase. This type of behavior
might explain the minor differences especially in the upstream flow
and front part of the separation bubble reported by Hein [10] as
mentioned in the Introduction. The best agreement was obtained for
starting positions xst slightly downstream of the DNS-neutral point
in the amplified region. This approach can be useful, if PSE results
are used to identify the region of purely linear growth during the
postprocessing of DNS data. In Fig. 6a this is demonstrated by the
gray PSE curve with the open gradient symbols, which would
confirm linear growth of the DNS solution throughout the investi-
gated domain. Within the framework of transition prediction by
linear methods with no DNS available, however, integration has to
start at the neutral point itself leading to a prediction as exemplified
by the black PSE curve with the filled circles, Fig. 6a. For the
comparison with DNS, on the other hand, one should take the
enlarged scale of Fig. 6a in comparison to previous plots of TS-
amplification curves into account. To summarize, Fig. 6 emphasizes
that LST-initial conditions are less suitable for CFmodes, contrary to
the behavior of TS waves up to moderate supersonicMach numbers.

Instead, alternative approaches such as the usage of multiscale
solutions or nonparallel eigenvalue formulations should be con-
sidered, which have the potential to reduce such transient effects
significantly [21].

V. Conclusions

The applicability and accuracy of linear stability theory and linear
PSE was investigated for a generic series of short laminar separation
bubbles with emphasis on their accuracy for oblique modes and the
effect of sweep. LST and PSEwere both found to be applicable in the
whole sweep angle range of �1 � �0; 45 deg	.

A packet of TS waves with systematically varying spanwise wave
number � was quantitatively compared to DNS results for all sweep
angles �1 � 0, 30, and 45 deg. To mimic an eN-type N-factor
prediction, the amplification curves were fitted to the neutral point
of the corresponding modes and the relative amplitude error at the
position of the maximal DNS amplification were evaluated. In terms
of accuracy, PSE is clearly superior to LST, which systematically
underpredicts the DNS-growth rates. Averaged over all modes and
sweep angles, the integrated error in the disturbance amplification
was 6% for PSE compared to 46% for LST. Details can be found in
Table 1. Note that an error of 64% already results in an amplitude
factor difference of 2.8 between LST and DNS, which would
correspond to an underprediction of LST by �N � 1 in a N-factor
prediction.On the other hand, the amplification in the separated shear
layer is so strong compared to the attached boundary-layer flows—
the maximum growth rate of the present laminar separation bubble is
16 times higher than that of the same inflow without pressure
gradient—that even such an error would results in only a moderate
�x shift of the predicted transition location.

LST works best for the unswept case. The errors increase with a
rising sweep angle, in themean by a factor of 1.25 from�1 � 0 deg
to 45 deg. More pronounced is the dependency of LST from the
propagation direction of the analyzed mode, which follows the
general trend: larger errors occur formodeswith larger propagation
angles. In the present investigation the errors of the most oblique
TS waves are up to 4 times higher than for two-dimensional waves.
In application LST is very robust and easy to handle and automate
because of its local character. It is well suited to obtain an overview,
can be used for qualitative comparisons or predictions, and is es-
pecially useful when a great number of modes has to be calculated,
as for stability diagrams. LST was remarkably accurate for the
streamwisewave number�r, forwhich no advantage could be gained
through PSE. For the calculation of local wave properties based on
�r, such as the propagation direction, wave length, or phase speed,
the use of LST can therefore be recommended even for very oblique
modes in swept base flows.

Fig. 6 Comparisons for steadyCFvortex (0=40)with neutral point xn � 1:35 in 45degbaseflow.DNS (solid lines), LST (dashed lines), PSE started from

xst: 1.26 (delta), 1.35 (circle), 1.41 (square), and 1.51 (gradient). In a) only: the filled circles indicate the PSE solution fitted to the neutral point, and

otherwise the best fit of the curves to the DNS result. a) Comparison of amplification curves. b) Comparison of local amplification rates.
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The accuracy of PSE results, on the other hand, is rather indepen-
dent of the sweep angle, but the most oblique waves also showed
increased errors. In the mean they differed from the minimum error
of the mode (18= � 20) by a factor of 1.75. Because of its step-size
restriction, traditional PSE as utilized here requires more attention
per run. However, this issue can be addressed through modifications
to the PSE equations, as discussed in the references cited in the
Introduction. It is to be expected that this would have reduced the
error for the 45 deg case further and the present case study illustrates
that such an approach is generally desirable for high sweep angles
and very obliquemodes. PSE comes into play when greater accuracy
is desired and is preferable for crossflow instabilities. Note that
the present base flow was a flat-plate boundary layer. In curved
geometries, PSE has the additional advantage of the inclusion of
curvature terms. To summarize, the results show that N-factor
prediction is in principle feasible in swept laminar separation bub-
bles, but should be based on PSE, if oblique TS waves or CF
instabilities are expected to be dominant in the investigated transition
scenario.
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