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Abstract

The influence of humps and steps on the stability
characteristics of a 2D laminar boundary layer is
investigated by means of Direct Numerical Simu-
lations (DNS). The localized surface irregularity is
hereby modeled within the cartesian grid by assign-
ing body forces over surfaces that need not coincide
with grid lines. Compared to the use of a body fit-
ted coordinate system this method saves memory
and computation time. The method is validated by
grid refinement tests as well as by a comparison with
water channel experiments. The DNS results for the
steady flow over a rectangular hump as well as for
an instability wave traveling over a hump show a
good agreement with the experimental ones. Sim-
ulation results show that a localized hump desta-
bilizes the laminar boundary layer, whereas a for-
ward facing step stabilizes it. The destabilization is
stronger when the height or the width of the local-
ized hump are increased. A rounded shape of the
hump is less destabilizing than a rectangular shape
with sharp corners. The parameter which shows
the strongest influence on the stability characteris-
tics of the boundary layer is clearly the height of
the localized hump.

1 Introduction

The specific fuel consumption of any aircraft is di-
rectly related to its drag. A major portion of air-
craft drag is due to friction which is confined to the
wall boundary layer of the flow. Since a turbulent
boundary layer produces higher skin friction than
a laminar one, the overall skin friction is highly in-
fluenced by the location of laminar-turbulent tran-
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sition. By means of control (i.e. delay) of laminar-
turbulent transition a reduction of the wall friction
is possible. A better understanding of the mecha-
nisms of laminar-turbulent transition is the key for
being able to actively or passively delay transition
on an airfoil.

The process of laminar-turbulent transition can
be subdivided into four main stages. The first stage,
the so called receptivity, is the penetration of ex-
ternal perturbations into the boundary layer where
they are tuned to boundary layer disturbances. The
second stage is the linear amplification of these ini-
tially created disturbances, the third one is the non-
linear development and the last one the breakdown
to turbulence. Within the paper presented here we
focus on the influence of surface discontinuities on
the stability characteristics of a 2D boundary layer
within the linear range of instability.

In the manufacturing process of an airfoil, surface
discontinuities such as steps at junctions or small
humps are unavoidable. These surface discontinu-
ities can influence the location of transition on the
airfoil via two dominating mechanisms.

First, they are possible sources of receptivity,
which means that they provide the small length
scale which is necessary for the conversion process
of large scale external perturbations into small scale
boundary layer disturbances (see [1], [2] or [5]). A
second aspect is however, that they are also able to
either locally stabilize or destabilize the boundary
layer.

The study presented here shall provide an insight
into the influence of surface irregularities on the
amplification of Tollmien-Schlichting waves in a 2D
laminar boundary layer. This subject is studied by
means of Direct Numerical Simulations (DNS). A
similar study was carried out by Gaster & Wang [3].
They experimentally investigated the influence of
surface steps on the value of N factors used in esti-
mating the position of transition on airfoils. They
found an empirical correlation of experimental mea-
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surements of transition on a flat plate containing
various steps. Within their study it was not pos-
sible to distinguish the newly created disturbances
by means of receptivity at the step from the change
in stability of the boundary layer created by the
presence of the step. This is only possible by us-
ing numerical simulations where one aspect can be
artificially isolated.

2 Numerical Method

The DNS-code used for this investigation is based
on a code first developed by Fasel and further im-
proved by Rist, Kloker et al. which is used for the
investigation of transition phenomena in a flat plate
boundary layer.

2.1 Governing Equations

The DNS are based on the vorticity-velocity for-
mulation of the complete Navier-Stokes equations
for incompressible fluids. All spatial scales are non-
dimensionalized using a reference length L̃ and all
velocities using the freestream velocity Ũ∞, where˜
denotes dimensional variables.

x =
x̃

L̃

y =
ỹ

L̃

t = t̃
Ũ∞

L̃

u =
ũ

Ũ∞

v =
ṽ

Ũ∞
(1)

Re =
Ũ∞L̃

ν̃

Here x denotes the wall-parallel and y the wall-
normal direction. u is the velocity parallel to the
flat plate, v the wall-normal velocity, t the time, Re
the Reynolds number and ν̃ the kinematic viscosity.

The first step in the numerical calculation is the
solution of the vorticity transport equation, which
can be written as:

∂ωz
∂t

+
∂

∂x
(u · ωz) +

∂

∂y
(v · ωz)

=
1
Re

(
∂2ωz
∂x2

+
∂2ωz
∂y2

)
(2)

ωz denotes the spanwise vorticity, which is defined
as:

ωz =
∂u

∂y
− ∂v

∂x
(3)

Then, the wall-normal velocity v can be calcu-
lated by solving the following Poisson-equation:

∂2v

∂x2
+
∂2v

∂y2
= − ∂ωz

∂x
(4)

The continuity equation

∂u

∂x
+
∂v

∂y
= 0 (5)

is then used to calculate the wall-parallel velocity
u.

2.2 Discretization and Boundary
Conditions

The flow field is discretized using fourth-order ac-
curate finite differences in streamwise (x-) and wall-
normal (y-) direction on a cartesian grid. A sketch
of the integration domain is shown in figure 1. The
time integration is done using a fourth order, four
step Runge-Kutta scheme. The v-Poisson equation
is solved with a multi-grid method, using a vectoriz-
able, stripe-pattern SOR line-iteration technique on
each grid. Details concerning the numerical method
can be found in [9].
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Figure 1: sketch of the integration domain

At the freestream boundary the vorticity is set to
zero since this boundary lies in the region of poten-
tial flow. For the wall-normal velocity v exponential
decay is assumed

∂v

∂y
= −α · v. (6)

Here α denotes a streamwise wavenumber, which is
considered to be representative for the whole inte-
gration domain. In the potential flow, this condition
derives the exact solution for linear TS-waves with
the streamwise wave number α.
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At the inflow boundary, steady Falkner-Skan pro-
files, usually Blasius profiles are prescribed.

Disturbances are forced by wall-normal periodic
suction and blowing in a disturbance strip at the
wall. Except in the disturbance strip, the no-slip
and no through-flow condition is applied at the wall.

Upstream of the outflow boundary the unsteady
vorticity is smoothly damped to the steady-state
value in a buffer domain [6]. Consequently, the
unsteady velocity components also decay exponen-
tially in streamwise direction and vanish at the out-
flow.

2.3 Modeling of the Surface Irregu-
larity

The localized surface irregularity within the carte-
sian grid is modeled using a technique which is
related to Peskin’s immersed boundary approach,
used for example by Goldstein et al. [4], Linnick [7]
or von Terzi et al. [10]. In this approach, the effect
of the surface irregularity on the surrounding flow
field is modeled with an external force field which
enforces no-slip and no-through-flow at selected grid
points or at selected points between the grid points
at every time step.

The vorticity transport equation for the 2D case
with an external force field F = (Fx, Fy) can be
written as

∂ωz
∂t

+
∂

∂x
(u · ωz) +

∂

∂y
(v · ωz)

=
1
Re

(
∂2ωz
∂x2

+
∂2ωz
∂y2

)
+

∂Fx
∂y
− ∂Fy

∂x
. (7)

The force term on the right hand side is the force
exerted by the surface irregularity on the fluid and
can be written as

F =
∮

f (xS , t) · δ(x − xS) dS. (8)

For numerical reasons, the delta function is approx-
imated by a Gaussian function as follows:

δ ≈ e−( x−xSσx
)2
−
(
y−ys
σy

)2

(9)

The surface body force f is determined from the
relation

f (xS , t) = α ·
∫ t

0

v(xS , t
′) dt′ + β · v(xS , t) (10)

for surface points xS , velocity v , time t and nega-
tive constants α and β which represents a feedback

scheme in which the velocity is used to iteratively
approach the desired value.

If the surface of the irregularity is located be-
tween the grid points, the velocity at this location
is interpolated from the values at the neighboring
grid points using a 4th order Lagrangian interpola-
tion procedure.

3 Validation

To validate this method of modeling a solid surface
within a cartesian grid, the DNS results were com-
pared with experimental results obtained by Lang
in the laminar water channel of our institute. Ad-
ditional grid refinement tests were performed.

3.1 Comparison with Experiments

Figures 2 to 4 show a comparison of the DNS with
the water channel experiment of the steady flow
over a 2D rectangular hump. The center of the
hump is located at Reδ1 = 1070. It’s height is
3mm, it’s width 155mm, giving h/δ1 = 0.37(ReH =
U∞h/ν = 387) and b/δ1 = 19.1. Plotted is the
streamwise velocity u versus y for three different
streamwise positions, one at 105mm upstream of
the center of the hump, one above the hump (at
20mm upstream of the center), and one at 120mm
downstream of the center of the hump, approxi-
mately at the location where reattachment takes
place.
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Figure 2: baseflow upstream of the hump;
comparison DNS-experiment
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Figure 3: baseflow above the hump; compar-
ison DNS-experiment
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Figure 4: baseflow downstream of the hump;
comparison DNS-experiment

The agreement found between the DNS and the
experiment is quite good, which proves that the ef-
fect of the rectangular hump on the surrounding
flow field was correctly modeled by the numerical
approach using an external force field.

To investigate whether unsteady effects are also
correctly modeled, a second experiment was con-
ducted in the water channel. A TS-wave with a
non-dimensional frequency of F = 2πfν/U2

∞ ·106 =
49.34 and an amplitude of 1% of the freestream ve-
locity U∞ was created upstream of the hump, using
a vibrating ribbon. This TS-wave has a wavelength
of 310mm, which shows that the width of the hump

was chosen to be one half of the TS-wavelength.
Two different cases were studied. First, the TS-
wave traveled along a smooth plate, whereas in a
second experiment the TS-wave traveled across the
rectangular hump of height h/δ1 = 0.37, located at
Reδ1 = 1070. For both experiments the amplitude
profiles of the TS-wave versus y at 535mm down-
stream of the center of the hump were measured.
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Figure 5: amplitude change of a TS-wave
traveling across a rectangu-
lar hump; comparison DNS-
experiment

Figure 5 compares these amplitude profiles with
DNS calculations for the same two cases. In the
DNS, the increase in amplitude, which is caused
by the presence of the hump, is approximately 7 %
higher than in the experiment. This discrepancy
can to some extend result from the fact that only a
few periods were time-averaged in the experiments
and that there were already remarkable 3D distur-
bances visible in the experiment at this location.

3.2 Grid Refinement Tests

Results of the grid refinement tests are shown in
figures 6 and 7. Here amplification curves for a 2D
TS-wave traveling across a rectangular hump are
shown, which means that the maximum of the am-
plitude of the streamwise disturbance velocity u′

versus y is plotted against the streamwise coordi-
nate x. In figure 6 the streamwise grid spacing
is varied, whereas in figure 7 the wall-normal grid
spacing is changed.
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Figure 6: grid refinement tests in x-direction
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Figure 7: grid refinement tests in y-direction

From these two figures it is clear that the solution
converges, and that a resolution of 100 grid points
in streamwise direction per TS-wave length(∆x =
0.004002) and 15 grid points in wall-normal direc-
tion over the height of the hump(∆y = 3.409E−04)
is a sufficient resolution for this problem.

4 Results and Discussion

4.1 Localized Hump

Figure 8 compares the amplification curve for a
TS-wave with a non-dimensional frequency F =

2πfν/U2
∞ · 106 = 49.34 traveling across a rectangu-

lar hump located at x = 4.0 (Reδ1 = 1.72·
√
Re · x =

1088;Re = 105) to a TS-wave traveling along a
flat plate without any surface irregularities. The
height of the hump was 0.47 normalized with the lo-
cal boundary layer displacement thickness δ1, which
corresponds to ReH = U∞h/ν = 511, and its width
was about one half of the wavelength of the TS-wave
(b = 0.1). The disturbance strip for the creation of
the TS-wave was located at x = 2.78(Reδ1 = 907).
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Figure 8: amplitude development of a TS-
wave traveling across a rectangular
hump located at x = 4.0

The influence of the hump on the TS-wave trav-
eling across it can be subdivided into two local ef-
fects which finally add up to the global effect of the
hump on the TS-wave far downstream of the local-
ized hump. The local effects can be described as
follows: First, at the rising edge of the hump, the
amplitude of the TS-wave decreases because of the
thinner boundary layer that develops at the begin-
ning of the hump. Second, at the falling edge of
the hump the amplification of the TS-wave is re-
markably increased compared to the wave traveling
along a smooth plate. This second effect probably
results from a small separation zone which forms
behind the rectangular hump. Since the increase in
amplification at the falling edge is stronger than the
stabilizing effect that occurs at the rising edge, the
global effect of a localized hump is a destabilization
of the boundary layer. In the case shown in figure 8
the resulting amplitude of the TS-wave far down-
stream of the hump is about a factor of 3.2 higher
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than the amplitude of the TS-wave traveling along
a smooth plate.

Several parameters of the rectangular hump are
now varied to show their influence on the amplitude
development of the TS-wave that travels across the
hump.

Influence of Height. First, the varying param-
eter was the height of the rectangular hump, which
was changed between h/δ1 = 0.235 (ReH = 256)
and h/δ1 = 0.94 (ReH = 1023). All other param-
eters were kept constant. As expected, the high-
est hump has the largest influence on the TS-wave,
traveling across it. The amplitude of the TS-wave
far downstream of the hump increases by a factor
of 1.4 for ReH = 256, 3.2 for ReH = 511 and 26.0
for ReH = 1023 by the presence of the hump. This
shows that up to a height of ReH = 511 the increase
in amplitude of the TS-wave scales approximately
linear with the height of the rectangular hump. For
ReH = 1023 this dependence becomes nonlinear be-
cause the stability characteristics of the boundary
layer are dramatically changed. Another hint for
this large change in the stability characteristics is
the completely different slope of the amplification
curve downstream of the hump, compared to the
cases with smaller humps.
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Figure 9: influence of the height of the hump

Influence of Width. Then, the width of the
rectangular hump is changed. The results of this
variation can be found in figure 10. The width was
varied between b = 0.1 and b = 0.4, the wavelength

of the TS-wave is approximately λTS = 0.2. The
height was h/δ1 = 0.47 (ReH = 511). The largest
influence on the TS-wave is observed for the hump
with the largest width. Nevertheless, the param-
eter that has the most influence on the amplitude
increase of the TS-wave is clearly the height of the
hump, the width of the hump plays only a minor
role.
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Figure 10: influence of the width of the hump

Influence of Shape. In figure 11 the amplitude
development of three TS-waves can be observed.
One travels over a rectangular hump, one over a
rounded hump, the shape of which is a quadratic
function of x, and one travels over a smooth plate.
The height of both humps is h/δ1 = 0.47 (ReH =
511), the width is b = 0.1. The rectangular hump
with its sharp corners has, as could be expected,
the most influence on the stability characteristic of
the boundary layer.

4.2 Forward Facing Step

Figure 12 shows the amplification curve for a TS-
wave traveling across a forward facing step com-
pared to a TS-wave traveling along a perfectly
smooth flat plate. The non-dimensional frequency
is the same as before. The forward facing step is lo-
cated at x = 4.0 which corresponds to Reδ1 = 1088.
It’s height normalized with δ1 is 0.235 (ReH = 256).
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Figure 11: influence of the shape of the hump
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Figure 12: amplitude development of a TS-
wave traveling across a forward
facing step located at x = 4.0

As can be seen, the amplitude of the TS-wave is
now reduced by the forward facing step because the
thinner boundary layer evolving on the step is more
stable than the boundary layer on the smooth plate.
The separation zone in front of the step is very small
and has therefore merely no influence on the TS-
wave. This reduction in amplitude seems surpris-
ing, but results from the fact that freestream dis-
turbances are absent in the simulation. This means
that no receptivity can take place which in reality
would add additional disturbances.

5 Conclusions and Outlook

By means of direct numerical simulations, the in-
fluence of humps and steps on the stability charac-
teristics of a 2D laminar boundary layer has been
investigated. The localized surface irregularity was
modeled within a cartesian grid using an immersed
boundary technique, where the influence of a solid
wall on the surrounding flow field is modeled by
using an external force field which enforces no-slip
and no through-flow on the solid wall. This ap-
proach was validated by comparing the DNS results
with measurements conducted in the laminar wa-
ter tunnel of our institute. For a steady as well
as an unsteady test case, the DNS results were in
good agreement with the experimental results. This
showed that the effect of a localized hump on the
surrounding flow field was correctly modeled by the
immersed boundary technique.

A localized hump was found to have an overall
destabilizing effect on the laminar boundary layer,
whereas a forward facing step showed a stabilizing
effect. The destabilization of the boundary layer by
the presence of a hump results from the combina-
tion of two local phenomena. The TS-wave is first
damped by the stabilizing effect of the rising edge
of the hump with it’s thinner boundary layer, as it
can be also seen for the forward facing step. At the
falling edge of the hump the amplification is locally
highly increased by the presence of a small separa-
tion zone behind the hump. This increase in ampli-
fication is much stronger than the damping caused
by the rising edge of the hump. Therefore, the over-
all effect of a localized hump is a destabilization of
the boundary layer. For the localized hump, the in-
fluence of several parameters on the destabilization
was investigated. Up to a height, normalized with
the local displacement thickness, of approximately
h/δ1 = 0.5 the increase in amplitude of a TS-wave
traveling across the hump was found to depend lin-
early on the height of the hump. For a height of
h/δ1 = 0.97 this dependence was clearly nonlinear.
If the width of the hump was increased, the effect
on the TS-wave was also found to be larger, but the
influence of the width was weaker than the influence
of the height of the hump. Additionally, the shape
of the hump was varied. A rectangular hump with
sharp corners showed a larger influence on the am-
plitude development of a TS-wave than a rounded
hump, the shape of which was a quadratic function
of x.

In the future, the immersed boundary technique
is planned to be used for numerical simulations of
roughness acoustic receptivity. Additionally, the
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approach will be extended to be able to deal with
3D surface irregularities.
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