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ABSTRACT
Laminar separation bubbles form on the back surfaces of 

aero-engine  LP  turbine  blades.  In  recent  years  significant 
weight  and  cost  reductions  and  performance  improvements 
have  been  achieved  through  a  better  understanding  of  the 
behavior of such separation bubbles. A project is underway at 
the  Universität  Stuttgart  to  study  a  possible  technique  to 
suppress laminar separation bubbles using actuated transition. 
This paper reports on DNS results with and without actuation 
for  different  frequencies,  amplitudes  and  Reynolds  numbers, 
revealing the nature of  the transitional  process.  Early results 
from  an  experimental  simulation  are  included.  In  addition 
numerical simulations of fluidic oscillators which are capable 
to provide the required frequencies at a size which would fit 
into an LP turbine are presented.

INTRODUCTION
Laminar separation bubbles on the suction sides of aero-

engine LP turbine blades became more significant in the recent 
past  due  to  low  Reynolds  numbers  in  small,  high  flying 
business jets, increasing lift coefficients and micro gas turbines 
as used in Unmanned Aerial Vehicles. Low Reynolds numbers 
of about 50,000 in such turbines in combination with reducing 
blade numbers and higher turning cause the laminar boundary 
layer in LP turbines to separate. Many detailed investigations 
on steady and unsteady blowing in a cascade to reduce such 
bubbles have been published by Rist, Augustin (2005), Rivir, 
Sondergaard  (2004),  Rizetta,  Visbal  (2005),  Volino  (2003). 
The  same  is  true  for  airfoils  at  low  reynolds  numbers 
(Greenblatt,  Wygnanski,  2001),  (Seifert,  2002).  In  several 
experiments  synthetic  jets  are  used  to  form  stream-wise 
vortices which transport fluid of high kinetic energy into the 

separation bubble to minimize or even eliminate it. In contrast 
to that  in this study small  disturbances with ideally zero net 
mass  flow  of  distinct  frequencies  are  considered  which 
accelerate the laminar turbulent  transition process so that the 
earlier turbulent boundary layer leads to a reduced separation. 
In  the  current  study  DNS-calculations  along  with  the 
combination  of  PIV  and  hot  wires  as  well  as  hot  film 
measurements in a low-speed wind tunnel are used. Only DNS-
calculations  allow  the  simulation  of  laminar  to  turbulent 
transition.  Physically accurate solutions are available without 
the  use  of  a  transition  model.  This  will  give  a  fundamental 
understanding of these processes in a disturbed LP turbine. The 
conditions of the LP turbine are simulated in a wind tunnel by a 
profile on the opposite wall of a flat plate as can be seen in 
figure  1.  Such a setup has  been used successfully before by 
Lang  (2005).  In  this  study  the  profile  produces  a  pressure 
distribution  similar  to  the  distribution  in  an  LP  turbine.  A 
separation  bubble  forms  on  the  flat  plate  which  is  to  be 
influenced by disturbances, small in amplitude and of a certain 
frequency brought in shortly before the separation bubble. On 
the one hand the diffusion at the end of the LP turbine causes 
the laminar boundary layer to separate, on the other hand small 
disturbances are amplified,  leading finally to transition and a 
more  stable  boundary  layer.  Such  small  disturbances  are 
present in every real flow, but exciting the right frequency at 
the beginning of the diffusion can lead to an earlier laminar-
turbulent transition. Through this process the separation bubble 
gets  smaller  without  the  need  of  a  high  air  mass-flow,  in 
contrast to steady blowing. The environment in a real turbine is 
still  very different  to  the  rig.  There  are  high  levels  of  free-
stream turbulence, periodic potential and vortical disturbances 
(Hodson, Dawes, 1998) and noise as well as surface roughness. 
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These  issues  must  be  resolved  before  engine  application  is 
seriously studied. In this paper for the experiment the physical 
setup is provided, from the numerical side the numerical setup 
for the DNS-calculations is shown and undisturbed, as well as 
disturbed DNS-calculations for different Reynolds numbers are 
presented. Another question is how the required disturbances 
can be generated on the surface of a turbine stage. First results 
from a concept using fluidic oscillators are presented.

NOMENCLATURE

A h , k =
Ad h ,k 

U d ∞

  [-] Amplitude of spectral mode (h,k)

cD [-] Diffusion coefficient

cp [-] Pressure coefficient

d d h [m] Hydraulic nozzle diameter 

f b [-] Base frequency of the DNS-
calculations

f d=
f⋅U d∞

Ld DNS⋅2⋅
  [Hz] Disturbance frequency 

h [-] Index for spectral mode in time 

k [-] Spectral mode index in zd -direction 

Ldgl , LdDNS [m] Reference length global / for DNS 

M [-] Oscillator scaling factor 
Ma [-] Mach number
pd0, pd throat [N/m²] Static pressure after diffusion /

Static pressure throat
Re ,Regl [-] Reynolds number / Re global

sd c [m] Chord length

t d [s] Time

Tu [-] Turbulence level
U d∞ [m/s] Free stream velocity, reference

velocity DNS
U d gl [m/s] Global reference velocity

U d n [m/s] Area averaged oscillator nozzle 
velocity

ud , vd ,wd [m/s] Velocity in xd , yd , z d -direction

x d [m] Stream-wise coordinate

yd [m] Wall-normal coordinate

zd [m] Span-wise coordinate

i [-] Amplification factor

 [-] Stream-wise wave number
 [-] Span-wise wave number
d [m²/s] Kinematic viscosity

d z [1/s] Vorticity in zd -direction

d [kg/m³] Density

DNS Direct Numerical Simulation
h , k  Fourier modes in frequency,

span-wise - wave-number spectrum
 d Dimensional value

' Disturbance value

TUNNEL GEOMETRY AND NUMERICAL SETUP
In figure 1 the geometry of the wind tunnel represented by 

the  RANS domain  calculated with  Ansys  CFX can be seen. 
Shortly after the inlet the fluid is accelerated by reducing the 
cross  section of  the channel.  On the  bottom wall  a  bleed is 
adjusted in such a way,  that  the incoming boundary layer  is 
eliminated. In addition the stagnation point at the beginning of 
the flat plate on the bottom of the tunnel is positioned at the 
leading edge. By that a separation bubble potentially causing 
early  transition  is  avoided.  After  further  acceleration  the 
channel gets wider again simulating deceleration at the end of a 
turbine blade.  Shortly before the beginning of deceleration a 

disturbance strip is located in the RANS simulation as well as 
in  the  DNS.  At  the  opposite  profile  another  boundary layer 
suction is placed to avoid the formation of a separation bubble 
on the upper profile instead of on the flat plat on the bottom.

Two sorts of numerical investigations were made. RANS 
calculations,  simulating  the  whole  wind  tunnel  used  in  the 
experiment  and  DNS-calculations  simulating  the  area  of  the 

channel where transition is expected and the disturbances are 
excited. The section where 3D-DNS-calculations are performed 
is illustrated in  figure 1. The RANS calculations were used to 
design the profile which gives the flow field a c p-distribution  

(figure 2)  and  a  diffusion  coefficient  cD (1) similar  to  the 
distribution in an LP turbine (Ries, Baumann 2009).

cD=
pd 0− pd throat

1
2
d v d throat

2 (1)
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Figure  1:  Model  of  wind  tunnel  with  DNS-calculation-
domain and disturbance strip.

Figure  2:  Cp-distribution  comparison 
T161 - wind tunnel with profile.



In addition they provide the boundary conditions for the DNS-
calculations  until  experimental  data  is  available.  The 
calculations presented cover two Reynolds numbers (2), 79,164 
(Case  Re79k) and  191,201  (Case  Re191k). As  usual  for 
turbines  the  reference  velocities  are  taken  at  exit.  Since  the 
blade surface is represented by a flat plate in this study instead 
of  the  true  chord  the  profile  surface  length  Ldgl ,  which  is 
about  20-30%  larger,  is  used  as  reference  length  for  the 
Reynolds number.  Also the  cp-distribution of  T161 shown in 
figure 2 was transformed to suction side coordinates.

Regl=
U d gl⋅Ldgl

d

(2)

CODE
The code used for the DNS-calculations is n3d provided by 

the  IAG  (Institut  für  Aerodynamik  und  Gasdynamik, 
Universität  Stuttgart).  It  is  the  institute's  standard  tool  for 
accurate  simulation  of  laminar  turbulent  transition  and  has 
proved to be reliable in various applications. It is an unsteady, 
incompressible  3D-Navier-Stokes-Solver  with  4th-order 
discretization  in  time,  6th-order  in  x and  y direction  and  a 
spectral  resolution  in  z.  Detailed  information  is  available  in 
Augustin  (2005),  Kloker,  Konzelmann,  Fasel  (1993),  Kloker 
(1998),  Rist,  Maucher,  Wagner  (1996)  and  Rist,  Maucher 
(2002).

DISCRETIZATION
For  the  numerical  discretization  in  x- and  y-direction  a 

finite-difference discretization in physical space is used, but the 
span-wise  discretization  takes  place  in  Fourier-space.  So  the 
span-wise (z) direction is solved for a certain frequency. That 
way the computational effort can be reduced and the important 
information  is  still  solved  for.  Resolution  in  z-direction  is 
increased  by solving  for  multiple  frequencies,  such  that  the 
resolved  resolution  is  determined  by  the  span-wise  wave 
lengths  and  the  Nyquist  criterion.  It  is  worth  noting that  an 
increase  in  z-resolution  does  not  increase  the  real 
computational time significantly if analogously more CPUs are 
taken  because  the  code  scales  very well.  The  runtime for  a 
typical unsteady run of cases shown in this paper is 5-10 hours 
on the NEC SX8 at the high performance computing center of 
the Universität Stuttgart using one CPU per span-wise mode. 
The calculation domain is symmetric by definition due to the 
use  of  Fourier  coefficients.  The  standard  grid  for  the  long 
integration  domain  for  Re79k  contains  1250  nodes  in  x-
direction, 289 nodes in y-direction and for Re191k 1170 nodes 
in  x-direction  and  289  nodes  in  y-direction.  A  shortened 

version  with  706  nodes  was  used  for  most  calculations  of 
Re79k  to  reduce  the  computational  time.  In  the  span-wise 
direction in this paper two modes were solved for being able to 
capture  the  influence  of  a  three-dimensional  mode  in  the 
breakdown scenario. The reference cases were also calculated 
with a higher resolution of eight modes in span-wise direction. 
This  was  done  to  make  sure  that  a  higher  resolution  is  not 
absolutely  necessary  for  the  calculations  presented  in  this 
paper.  It  turned  out  that  the  differences  did  not  affect  the 
conclusions.

INTEGRATION DOMAIN
The  integration  domain  for  the  DNS-calculations  is  a 

rectangular block  as can be seen in  figure 1 consisting of an 
equidistant grid in  x- and  y-direction. It  starts 360mm behind 
the flat  plate leading edge and is  408mm long for  the initial 
Case Re79k and 419mm for Re191k calculations. The shortened 
version of  Re79k  is  237mm long. The height in both cases is 
30mm.  To  obtain  results  which  are  independent  of  the 
calculation area, the height of the separation bubble needs to be 
significantly smaller than the calculation domain. So the top of 
the calculation domain was set to the maximum extent of the 
channel, where the upper boundary layer is just not influencing 
the  prescribed  velocity  boundary  layer  yet.  All  x and  y 
coordinates in the diagrams are made non-dimensional with the 
suction-side  surface  length  with  0.0  representing  the  blade 
leading edge and 1.0 the trailing edge. Also all streamline and 
amplification plots except for  figure  6 and  7 show the same 
calculation window in real  space.  The left  hand edge  of  the 
plots in both cases is 360mm behind the flat plate leading edge, 
at  x=0.53  and  identical  with  the  beginning  of  the  DNS 
calculation domain. The right hand edge is 563mm behind the 
leading edge at x=0.83.

BOUNDARY CONDITIONS
The  rectangular  grid  for  the  DNS-calculations  requires 

input for the boundary conditions at the left hand and the top 
edge. At the left hand edge, a boundary layer velocity profile is 
prescribed by u, v and z . At the top, a u-velocity distribution 
is prescribed (figure 3). The lower edge is determined by the 
no-slip  condition,  except  at  the  disturbance  strip  where 
disturbances are brought into the fluid by exciting the velocity 
v at the wall sinusoidal in time with the disturbance frequency. 
In  x-direction  the  shape  of  the  disturbance  amplitude  is 
determined by a smooth polynomial distribution, in  span-wise 
direction the disturbances are periodic waves with a multiple of 
the base span-wise wavenumber (Rist, 1999).  At the right hand 
edge the elliptic terms in the equations are eliminated, so that 
all  influences  coming from the  right  side  are  not  taken  into 
account, which is allowed for boundary layer flows. In addition 
a  damping  zone  is  used  to  eliminate  possible  reflections  of 
disturbances (Kloker, Konzelmann, Fasel, 1999). The required 
boundary conditions were taken from the RANS calculations 
for a first approach.

DNS – FREQUENCY ANALYSIS
Decelerated flows are sensitive to disturbances of certain 

frequencies. Once existent, they are amplified exponentially by 
linear growth mechanisms (Rist, 1998). A stability analysis of 
the flow field  provides the amplification factor i  for a given 
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Figure 3: DNS calculation area scheme.



frequency at a given point in stream-wise direction of a flow 
field.  With  this  information  the  optimal  point  for  the 
disturbance  input  and  the  according  frequency  of  maximal 
amplification can be obtained. The stability solver used for this 
investigation  is  icostab provided  by the IAG.  For  Re79k  an 
optimal dimensionless frequency of f=4.5 was found (figure 4) 
whereas for Re191k a dimensionless frequency of  f=53.0 was 
taken  (figure 5).  The  big  difference  in  the  values  is  due  to 
different  reference  values  for  the  frequency-non-
dimensionalisation.  U d∞=2.59 m /s  and  LdDNS=6.1×10−2m  

was used for Re79k, U d∞=6.54 m /s  and LdDNS=5.4×10−1 m  
for Re191k. Converting these frequencies to dimensional values 
lead to fd=30.41Hz for Re79k and fd=102.16Hz for R191k. The 
transformation of the frequencies to a real turbine environment 
results in very high frequencies ranging from about 40kHz to 
85kHz for  Re79k (f=4.5)  and  56kHz to  108kHz for  Re191k 
(f=53.0),  depending  on  the  turbine  environment  for  blades 
differing from 40mm to 70mm and inlet velocities from 170m/s 
to 205m/s.

DNS – ANALYSIS
The  main  object  of  this  project  is  to  investigate  the 

influence of actuation on a laminar separation bubble on an LP 
turbine blade. Comparisons between actuated and non-actuated 
separation  bubbles  can  show the  effects  of  actuation  on  the 
bubble.  In  addition,  different  types  of  actuation  can  lead  to 
significant differences in the solutions. Therefore, a matrix of 

different  actuation  scenarios  was  set  up  to  obtain  more 
knowledge about the transition mechanisms. For both Reynolds 
number  cases  the  actuation  frequency  and  amplitude  was 

varied,  actuation  was  switched  off,  and  the  position  of 
actuation  was  changed.  In  addition  the  differences  between 
two- and three-dimensional disturbances are presented as well 
as comparisons between  Re79k  and  Re191k.  In the following 
figures  (e.g.  figure 8)  also  amplification  curves  are  plotted 
which  are  used  to  analyse  the  unsteady  simulations.  The 
abscissa represents the stream-wise direction x, the ordinate the 
maximal  amplitude  in  y of  the  Fourier  analysed  velocity 
distribution over one actuation period in time. Like the other 
values also the amplitude of the disturbance velocity is made 
non-dimensional.  This  means  that  at  a  value  of  1.0 the 
disturbance velocity is  equal  to the reference velocity  U d∞ . 
The  results  shown  in  the  streamline  plots  of  the  following 
paragraphs  are  time-averaged  over  one  period  of  the  base 
frequency  fB and  the aspect ratio is stretched in y-direction to 
improve the visualization of the separation bubbles.  The real 
flow with correct aspect ratio would look like in figure 6 and 7. 
In  figure 6 an instantaneous picture of Re191k with the eddies 
rolling downstream is  shown.  In  figure 7 the same flow just 
time-averaged over one base frequency period is shown.

VARIATION OF THE ACTUATION FREQUENCY
As described above, the frequency analysis for  Re79k in 

figure 4 promises highest integral amplification for a frequency 
of f=4.5 and the analysis for Re191k for a frequency of f=53.0 
(figure 5).  To  find  out  how  different  frequencies  affect  the 
separation bubble, the disturbance frequencies were varied in 
both cases. For  Re79k  the frequency was changed by 11% to 
f=4.0 and f=5.0, whilst for Re191k a bigger change of 43% in 
both directions was applied to  f=30.0 and  f=76.0. The reason 
for this higher variation was to find out if a strong variation has 
also a strong effect on the bubble size.
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Figure  8:  Re79k: Influence of the actuation frequency 
(f=4.0,  4.5,  5.0)  with  A=1.0×10−2  on  the  2D-
fundamental modes.

Figure 4: Stability diagram 
for  Re79k  providing  the 
amplification  factor   i . 
Negative  regions  are 
unstable.

Figure  5:  Stability  diagram 
for  Re191k  providing  the 
amplification  factor   i . 
Negative  regions  are 
unstable.

Figure  6:  Instantaneous streamline plot  of  reference case 
Re191k.
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Figure 7: Time-averaged streamline plot  of reference case 
Re191k averaged over one base frequency period.

Figure  9:  Re191k:  Influence  of  actuation  frequency 
(f=30.0,  53.0,  76.0)  with  A=1.0×10−2  on  the  2D-
fundamental modes.
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In figure 8 the amplification curves of the 2D-disturbance-
frequencies  f=4.0,  f=4.5  and  f=5.0  are  plotted  for  Re79k. In 
figure 9 the curves of f=30.0, f=53.0 and f=76.0 are plotted for 
Re191k. In annex 1.1 it is shown that for Re79k the frequency 
f=4.5 seems to be the most suitable for reaching early transition 
with  high  amplification  which  fits  to  the  findings  of  the 
stability diagram. The same is true for  Re191k as can also be 
seen in figure 10a-c. The separation bubble for f=30.0 is about 
23% longer and for f=76.0 about 82% longer in comparison to 
the  one  of  f=53.0.  The  undisturbed  bubble  is  even  118% 
longer.  So disturbing with f=53.0 leads to the most  effective 
reduction in separation bubble size as expected by the stability 
analysis.

In both cases the optimal frequencies from the stability analysis 
lead to the biggest reduction in separation bubble size. But the 
big  variation  of  the  disturbance  frequency in  Re191k shows 
also that the effective frequency range is broad. By comparing 
figure 10a-c with  the undisturbed calculation in  figure  11,  it 
can be concluded that frequencies differing by more than 40% 
compared to the optimal frequency are still able to reduce the 
size of the separation bubble although with reduced efficiency.

VARIATION OF THE ACTUATION AMPLITUDE
As described before, the intention of this investigation is to 

minimize separation bubbles using as little energy as possible. 
So  while  a  high  disturbance  amplitude  provides  the  highest 
probability  to  minimize  a  separation  bubble,  a  weak 
disturbance  amplitude  is  desirable  in  terms  of  the  energy 
required.  A high  amplitude  might  simply  cause  bypass-
transition  whilst  the  intention  is  to  reach  transition  by 
instability modes with low energy input.

For both cases, the amplitude was lowered and increased 
compared to the reference case by an order of magnitude. The 
amplitudes  were  A=1.0×10−1 ,  A=1.0×10−2  (reference 
case) and A=1.0×10−3 .

The results for Re79k already show the problem described 
above.  Compared  to  the  reference,  the  excitation  with 
A=1.0×10−3  is not able to force the flow into strong periodic 

behavior any more as described in detail in annex 1.2. The flow 
still  forms  the  downstream  rolling  waves  of  the  disturbed 
frequency,  but  they  are  varying  from  period  to  period. 
Disturbing earlier, as described in the next paragraph, also does 
not solve that problem. A further reduction of the amplitude in 
Re79k results in uncontrolled behavior. The excited frequency 

is  not  able  to  dominate  the  flow  field  any  more,  different 
disturbances  get  excited  and  lead  to  uncontrolled,  later 
transition  as  described  in  annex 1.5 and  can  be  seen  in  the 
undisturbed case in figure 13. On the other side the separation 
bubble gets continuously smaller with an increase in amplitude. 
This can be seen in the comparison between the time-averaged 
flow fields in  figure 12a, b and c for the different amplitudes. 
For a high disturbance amplitude of A=1.0×10−1  the bubble 
is  gone completely while for  A=1.0×10−3  it  is  about 33% 
larger. The bubble in the undisturbed case is so unsteady and 
big,  that  the  accuracy  of  an  increase  by  about  350%  is 
questionable.

Re191k shows  similar  behavior.  For  a  disturbance  with 
A=1.0×10−1  as can be seen in the average streamline plot in 

figure 14a the bubble is  gone completely.  In  contrast  to that 
using the low amplitude of  A=1.0×10−3  already leads to an 
almost uncontrolled behavior and, with an increase in length by 
91%, to a significantly bigger separation bubble as shown in 
figure 14b. Disturbing earlier improves the level of control due 
to the reasons described in the next paragraph but does not lead 
to  strictly periodic  behavior  as  well.  The  longest  bubble  for 
Re191k forms in the undisturbed calculation with about 127% 
increase compared to the reference case. With regard to both 
cases it can be concluded that the disturbance amplitude has a 
lower  limit  at  about  A=1.0×10−3 ,  below  which  the  early 
transition caused by the modal instability does not work any 
more.  Over that  limit,  the disturbed  frequency is  coupled  in 
properly and grows quickly up to saturation. There does not 
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Figure  10a-c,  figure 11:  Streamline  plots  of  Re191k 
variating the disturbance frequency for an amplitude of 
A=1.0×10−2 in  comparison  with  the  undisturbed 

calculation in figure 11.

Fig. 11: Non-actuated flowFig. 10c: Frequency  f=76.0

Fig. 10b: Frequency f=53.0Fig. 10a: Frequency f=30.0

Figure  12a-c,  figure  13:  Streamline  plots  of  Re79k 
variating  the  amplitude  in  comparison  with  the 
undisturbed calculation in figure 13.

Figure 12c: 
Re79k: A=1.0×10−1, f =4.5

Figure 12b: 
Re79k: A=1.0×10−2, f=4.5  

Figure 12a: 
Re79k: A=1.0×10−3, f=4.5

Figure 13:
Re79k: Non-actuated flow

Figure 14a-b: Amplitude variation for Re191k.

Figure 14b: Re191k:
A=1.0×10−3 , f =53.0

Figure 14a: Re191k:
A=1.0×10−1 , f =53.0



seem to be an apparent upper limit for the actuation, but the 
growth rate reduces at  very high disturbance amplitudes and 
since minimizing the amount of energy required is desirable, 
the use of small disturbances would be more efficient.

VARIATION OF THE ACTUATION POSITION
It could be assumed that disturbing the flow field further 

upstream might  also  lead  to  an  earlier  transition  or  a  better 
suppression of the separation bubble. Therefore for both cases 
the point of disturbance was shifted upstream. For the reference 
calculation  Re79k  with  A=1.0×10−2 ,  the  disturbance  strip 
was  shifted  from  x=0.614  further  upstream  to  x=0.561.  As 
described in detail in annex 1.3, disturbing earlier does not lead 
to an earlier amplification and the size of the separation bubble 
is almost not affected at all. But it could also be assumed that 
disturbing earlier for an amplitude of A=1.0×10−3 , where the 
flow is already at the edge to show non-periodic behavior as 
described  above,  helps  to  stabilize  the  flow.  An  earlier 
disturbance  for  this  calculation  also  answers  the  question 
whether an earlier disturbance, which would have more time to 
lead to transition, could lower the minimal required amplitude 
for  separation  control. But  also  at  this  lower  amplitude,  the 
earlier  point  of  disturbance  does  not  help  to  stabilize  the 
periodicity of the calculation. This confirms the existence of a 
minimal  required  disturbance  amplitude  for  the  separation 
control of about 1% of the reference velocity. 

For  Re191k the  results  are  even  more  definite.  The 
disturbance  input  was  shifted from  x=0.634  to  x=0.608  and 
x=0.582.  In  annex 1.3 it is derived in detail that the point of 
disturbance  has  no  impact  on  the  point  of  transition.  Just 
disturbing too far  downstream like in the reference case can 
delay  transition.  This  behavior  also  affects  the  size  of  the 
separation  bubble  as  can  be  seen  in  figure 15a and  b.  Both 
early  disturbed  cases  lead  to  almost  identical  separation 
bubbles of the size in figure 15a, while the size of the bubble in 
the reference case in figure 15b, where the disturbance lacks of 
development time, is bigger. For these cases the difference by 
disturbing earlier leads to a reduction in length by about 27%. 
For  an  amplitude  of  A=1.0×10−3  disturbing  earlier  at 
x=0.608 leads to a just 55% longer bubble compared with the 
reference  case  Re191k.  This  is  less  than  the  91%  for  the 
original case with A=1.0×10−3  described above. In addition 
it  has  a  not  strictly  periodic,  but  significantly  less  random 
behavior. But this again is just due to disturbing too late for the 
original  calculation.  Therefore  also  at  the  higher  Reynolds 
number,  the  position  of  the  disturbance  strip  is  not  too 
important for the solution, as long as the disturbance is not too 
far downstream.

Both cases allow the point of disturbance to be shifted in 
stream-wise direction within certain boundaries without having 
any,  or  at  least  without  a  major  impact  on  the  separation 
bubble.  The  lower  boundary  in  x  is  set  by  moving  the 
disturbance  too  far  upstream.  Then  the  initial  disturbance  is 
damped too much before it can get amplified by the diffusion 
of the flow. The upper boundary for x is to shift the disturbance 
so  far  downstream  that  its  location  lays  in  the  flow  region 
where earlier disturbed modes are already growing.

COMPARISON 2D-3D-DISTURBANCES
Instead  of  just  disturbing  with  a  two-dimensional  wave, 

which  has  a  constant  amplitude  in  span-wise  direction, 
disturbing  additionally  with  a  three-dimensional  wave  could 
lead  to  a  faster  laminar  breakdown.  Therefore,  calculations 
were  made  with  additional,  three-dimensional  subharmonic 
disturbances. of span-wise wave numbers. The time-averaged 
streamline plots do not show differences in separation bubble 
sizes.  However,  there  are  significant  differences  in  the 
subharmonic  3D-modes,  which  are  described  in  detail  in 
annex 1.4. 

EXPERIMENTAL SETUP
For  the  experimental  setup  an  existing  wind  tunnel  was 

modified.  The cross section as well  as the length of  the test 
section  was  therefore  fixed.  A  modular  bottom  plate  was 
designed  to  ensure  easy  changeability  of  the  modules 
containing  actuation  or  instrumentation  respectively.  The 
pressure  distribution  of  a  typical  separating  turbine  blade  is 
modeled by a contoured wall  opposite  a  flat  plate.  Since an 
optical measurement technique is to be used, the profiled wall 
and one of the side walls are made of Perspex to enable optical 
access. 

The  wind  tunnel  is  sucking  air  from the  test  hall.  The 
tunnel  velocities  are  low  at  about  1m/s and  changing 
environmental conditions could heavily influence the behavior 
of the sucked air. An inlet plenum was designed to cut off these 
influences. Its cross section is ten times as big as those of the 
test section. A cut through the plenum and test section as well 
as  the arrangement  of  the  built-in  components  are shown in 
figure 16. Unlike in most laminar flow test rigs, the inlet of the 
plenum is a small hole in comparison to the cross section of the 
tunnel (1).  Forcing  the  air  through  it  and  therewith  highly 
increasing  the  speed  of  the  sucked  air  is  to  eliminate 
environmental  disturbances  from  the  flow.  Using  perforated 
plates as baffles (2) the fluid is forced to spread over the whole 
cross  section  of  the  plenum.  With  round  shaped  (3mm 
diameter, 50mm length) honeycombs (3) and fabric screens (4) 
the  now  low  speed  flow  is  made  uniform  and  the  strong 
turbulences produced by the unusual inlet design are damped 
out, resulting in a turbulence level in the inlet of the test section 
of  Tu ≤ 0.1%.  The  contraction  from  the  plenum  to  the  test 
section cross  section is  done by a sine-cosine passage (5).  It 
enables  a smooth acceleration of the flow and is  unlikely to 
cause separation.

The  controlling  parameter  for  the  experiments  is  the 
Reynolds number Re from equation (2). The velocity in the test 
section depends on  the  mass  flow which  is  set  up by using 
orifice plates in the downstream pipework.  Those orifice plates 
were designed for a defined total pressure in the test section 
under  the  assumption  that  the  flow through  them is  critical 
(Ma=1.0).  Since  the  mass  flow  through  the  orifice  plates 
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Figure  15a-b:  Variation  of  the  actuation  position  for 
Re191k.

Figure  15b:  Disturbance  at 
x=0.634 (Reference position)

Figure  15a:  Disturbance  at 
x=0.608.



depends on the total pressure in the test rig, the pressure has to 
be held constant to assure similar conditions for different test 
days. The environmental conditions in the test facility can not 
be held constant but are changing even in a day’s time. A cone 
to enable the size of the inlet to be varied was designed as a 
solution for this problem. Changing the inlet area and holding 
constant the mass flow means changing the velocity of the fluid 
through the inlet. Since the pressure drop scales with the square 
of the velocity, a defined pressure in the test section can be set 
up by adjusting the cone depending on the ambient pressure. 

MEASUREMENT TECHNIQUES
The main  measurement  technique  to  study the  2D flow 

field  is  the Particle  Image Velocimetry (PIV).  For  boundary 
layer traverses and calculation of the turbulence level  Tu hot 
wire / hot film measurements are taken. To be able to compare 
the  findings  with  the  numerical  simulations,  Tu should  not 
exceed 1% which can be regarded as a laminar flow field. The 
turbulence level is calculated from the standard deviations of 
the measured velocity component ud  and the mean free stream 

velocity U d∞ .

T u=
1
U∞

⋅1
3
⋅u'd

2v 'd
2w'd

2 

u' 2
=

1
n−1

⋅∑
i=1

n

u−ui 
2

(3)

In addition also pressure measurements with a Pitot probe 
are taken. The probe is to sit in front of the test section inlet 
and is used to control the pressure adjustment by the inlet area 
variation. The positions of the different probes are marked in 
figure 16.

The experimental results shown in figure 17 are those of a 
hot  wire  traverse  in  a  position  20mm downstream  of  the 
stagnation point. Since the hot wire probe is not yet calibrated, 
the measured voltage distribution is displayed rather than the 
velocity  distribution.  That  does  not  affect  the  shape  of  the 

boundary layer as the correlation between voltage and velocity 
is linear for very low velocities (<5m/s). 

The level of turbulence which is displayed in the diagram 
on  the  right  hand  side  does  not  exceed  0.1%.  This  level  of 
turbulence in the test rig is sufficiently low to avoid free stream 
disturbances.

ACTUATION
The actuation is done with a loudspeaker setup where the 

oscillation of the loudspeakers membrane causes the air in a 
plenum  on  top  of  it  to  oscillate  as  well.  Controlling  this 
oscillation  by  the  aid  of  a  frequency  generator,  defined 
actuation frequencies can be produced.

The current  slot  is  shaped  rectangular  (width  =  channel 
width, length = 0.3mm) while the outflow angle is orthogonal 
to the flow direction. Other  geometries  and angles are to be 
investigated  as  well.  For  further  investigations  the 
implementation of fluidic oscillators into the test rig is planned.

FLUIDIC OSCILLATORS
The  application  of  instability  modes  in  a  real  turbine 

requires  a  device  which  is  small  in  size  and  capable  of 
generating  the  required  frequencies  at  high  temperatures. 
Therefore  a  simple,  robust  device  without  moving  parts  is 
favourable. These boundary conditions are satisfied by fluidic 

oscillators.  In  figure 18 the  sectional  view  of  the  fluidic 
oscillator investigated in this study is shown. The actuator is 
based on the Coanda Meter published by Wright, P. H., (1980). 
Modifications have been made to the geometry in order to gain 
a  two-dimensional  cross  section  that  can  be  extruded  to  3D 
rectangular channels.  This reduces efforts in grid  generation, 
the size of the mesh and therefore decreases overall simulation 
time. The fluid entering the oscillator at the inlet reaches the 
nozzle  and  forms  a  jet  in  the  oscillation  chamber.  Due  to 
natural or numerical instabilities in the flow the jet tends to one 
side  of  the  splitter  and  travels  through  the  corresponding 
channel.  Most  of  the  fluid  leaves  the  oscillator  through  the 
outlet,  while  a  part  of  the  fluid  is  redirected  through  the 
feedback channel, where it reaches the nozzle and forces the jet 
to  switch  to  the  other  side  of  the  splitter.  This  switching is 
repeated periodically, which results in a pulsed outflow of the 
fluid at a particular frequency.
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Figure 18: Schematic of the oscillator.

Figure  17: Voltage distribution and 
calculated  turbulence  of  the  flow 
2cm back of the stagnation point.

Figure 16: Schematic of the test rig.



MESH AND TIME STEP INDEPENDENCE
The unstructured mesh used for the numerical simulation 

of  the  fluidic  oscillator  is  generated  with  CENTAUR  and 
contains  150,000  nodes  and  390,000  elements.  To  ensure  a 
mesh independent solution, two finer grids were tested with up 
to more than a million elements. The difference in oscillation 
frequency was  found  to  be  less  than  0.5%.  In  addition,  the 
solution  is  independent  of  the  time-step  if  a  RMS  Courant 
number smaller than 1.0 is ensured and the RMS-residuals are 
kept below 1.0×10−4 .

BOUNDARY  CONDITIONS,  INITIALIZATION  AND 
SIMULATION

The boundary conditions for the simulation correspond to 
the flow field characteristics in a low pressure turbine if  the 
oscillator is positioned inside a turbine blade. As inlet boundary 
conditions static pressure and temperature are used and static 
pressure at the outlet.  Simulations are performed with ANSYS 
CFX-11  using  the  Shear-Stress-Transport  (SST)  turbulence 
model. The turbulence level at the inlet (eq. 3) is set to 5%, the 
actuator walls to non-slip and adiabatic. The fluid is air as an 
ideal gas with heat capacity, viscosity and thermal conductivity 
adjusted to the inlet temperature.

As initial values for the transient simulation, a steady state 
calculation  after  100  iterations  is  used  and  continued  as  a 
transient calculation until a sufficient number of stable periods 
occur so that the oscillation frequency can be determined.

RESULTS
Velocity profiles  at  different  spots  in  the  oscillator  as  a 

function of the time-step number are plotted in  figure 19. The 
monitor point  Center is located downstream of the nozzle in 
front  of  the  splitter.  The  monitor  points  Outlet  LHS  /  
Outlet RHS show the area-averaged velocities at the left and the 
right  outlet,  respectively.  A  stable  oscillation  appears  in  the 
velocity profiles after a starting period necessary for the flow to 
develop. 

The  oscillation  frequency  as  a  function  of  Reynolds 
number  is  presented  in  figure 20,  whereas  the  oscillation 
frequency is determined with the area-averaged velocity at one 

of the outlets. The Reynolds number (4) is calculated with the 
area-averaged  velocity  at  the  center  of  the  nozzle  U d n ,  its 

hydraulic diameter d d h and the kinematic viscosity.

Redh
=

U d n⋅d d h

d

(4)

 The  Reynolds  number  variation  is  achieved  by  down-
scaling  the  whole  geometry  by  a  scaling  factor  M.  The 
individual  points  for  the  different  scaling  factors  can  be 

approximated by a function of type (5) which may be used to 
design the oscillator for a special frequency.

f = 1
ln Re

  { Re∈ℝ :1.0< Re <∞}  (5)

CONCLUSIONS
This paper contains numerical results of DNS-calculations 

simulating  the  influence  of  instability  modes  on  laminar 
separation  bubbles  forming  in  LP  turbines  at  low  Reynolds 
numbers. In addition an overview about research activities at 
the institute about self-exciting fluidic oscillators which could 
be  used  to  excite  such  instability  modes  in  an  LP  turbine 
environment is given and the experimental setup used along the 
DNS-calculations is  presented.  A low-Reynolds-number flow 
field  in  a  rectangular  wind  tunnel  with  a  c p -distribution 
similar  to  the  one  of  an  LP  turbine  is  used  for  the 
investigations.  Numerical  simulations  have  been  performed 
with a RANS-solver to obtain a flow field in the channel which 
provides  the  boundary  conditions  for  the  DNS-calculations 
before  experimental  data  is  available.  With  these  boundary 
conditions  DNS-calculations  have  been  made,  covering  the 
area from shortly before the main flow deceleration to after the 
point of transition for different Reynolds numbers. The DNS-
calculations  have  been  performed  with  and  without 
disturbances.  Disturbance  frequency,  amplitude,  position  and 
span-wise wave numbers, as well as disturbance combinations 
have been changed to evaluate their effect on transition. The 
influence  of  these  variations  on  the  size  of  the  separation 
bubble is summarized in figure 21a-c. To gather the right range 
of  frequencies  which  would  lead  to  best  amplification  and 
transition, a linear stability solver was used.  It was found, that 
the  predictions  of  the  stability  solver  fitted  with  the 
observations in DNS and that there is an optimal disturbance 
frequency.  At  a  lower  frequency  fundamental  growth  starts 
later, at the higher frequency the maximal amplitude is lower. 

Both lead to a bigger separation bubble compared to the 
optimal disturbance frequency as can be seen in  figure 21a. It 
was further found, that the point of initial disturbance input is 
less  important  for  the  transition  mechanism,  but  can  delay 
transition if set too far up- or downstream (figure 21b). There is 
also a critical limit for the excitation amplitude. When it gets 
below  A=1×10−3 , the instability mode mechanism does not 
work any more (figure 21c). Additional 3D-disturbances do not 
have an immediate effect on the bubble size, but may lead to a 
more  robust  reattachment.  It  was  also  found  that  separation 
bubbles of undisturbed calculations were always significantly 
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Figure 19: Velocity over time.

Figure  20:  Oscillation  frequency 
versus Reynolds number.



larger  compared  to  according  cases  with  disturbance  inputs 
within the limits described above, as can be seen in figure 21c 
as well. As next steps, the findings have to be reproduced and 
verified  with  experimental  boundary  conditions.  In  the 
experimental part, a test rig to study turbine laminar separation 
with actuation has been prepared. The inlet boundary condition 
is  uniform and  has  low  turbulence  intensity  (≤0.1%).  Early 
results show the sensitivity of the laminar bubble to actuation. 
As a possible solution to generate the required frequencies, the 
use of  a  fluidic  oscillator  is  discussed.  Results  of  numerical 
simulations  and  its  behavior  depending  on  the  Reynolds 
number  are  presented.  Although,  as  described  in  the 
introduction, a turbine environment is still very different to the 
rig, it is concluded that the approach of actuated transition for 
laminar separation control in LP turbines is promising.
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Figure  21a,b,c:  Effect  of  frequency,  position  and 
amplitude variation on the size of the separation bubble.

Figure  21b:  Position 
variation versus bubble size.

Figure  21a:  Frequency 
variation versus bubble size.

Figure  21c:  Amplitude 
variation versus bubble size.



ANNEX 1

DETAILED AMPLIFICATION PLOT ANALYSES

1.1 VARIATION OF THE ACTUATION FREQUENCY
The  amplification  curves  of  the  fundamental  2D-

disturbance  excitation  frequencies  f=4.0,  f=4.5  and  f=5.0  for 
Re79k  are  plotted  in  figure 8. After  the  disturbance  with 
A=1.0×10−2  at  x=0.617, there is a short plateau where the 

mode is not amplified up to x=0.653. Then, from x= 0.653 on, 
the modes of f=4.5 and f=5.0 start to grow from almost exactly 
the same point with an identical growth rate. This is true up to 
the critical amplitude of  A=1.0×10−1  at  x=0.725, where the 
amplitude  plot  for  f=4.5  continues  to  grow  with  a  slightly 
increased rate up to an amplitude of A=3.0×10−1  at x=0.756. 
The  plot  for  f=5.0  reduces  in  growth  rate  and  reaches  its 
maximum of  A=2.2×10−1  at about the same position. This 
indicates, that due to the higher growth rate at the end, f=4.5 is 
slightly better for providing early transition compared to f=5.0. 
As an example for the typical behavior of the subharmonic 3D-
modes, the subharmonic frequency analysis for the case  f=4.5 
with an amplitude of  A=1.0×10−2  is  plotted in  figure 8.  It 
does not reach very high amplitudes in the whole flow field and 
therefore does not  have a big influence.  The fundamental  of 
f=4.0 starts to grow at x=0.663, so slightly later than the other 
two, but with the same growth rate. Like for  f=4.5, it starts to 
grow faster  at  x=0.729 and even reaches  a  higher  saturation 
amplitude  of  A=4.0×10−1  than  for  f=4.5,  but  later  at 
x=0.788. So the frequency of  f=4.5 seems to be most suitable 
for reaching early transition with high amplification which fits 
to the findings of the stability diagram.

Re191k shows  a  different  behavior  at  the  point  of 
disturbance  (figure 9).  In  contrast  to  Re79k,  fundamental 
growth starts  right  at  the point  of  disturbance  without  delay 

with  high  growth  rates  for  every  frequency.  Unlike  the 
expectation from the stability diagram in figure 5, the 2D-mode 
of f=76.0 grows faster than the 2D modes for f=30.0 and f=53.0 
especially  from  x=0.660  on.  The  2D  mode  of  f=53.0  still 
reaches  the  highest  absolute  amplitude  with  A=0.31,  but  at 
about   x=0.02  later than the 2D-mode of  f=76.0. So in the 
amplification  plot  the  higher  frequency  seems  to  have 
advantages.  But as described above, the separation bubble is 
nevertheless the smallest for f=53.0.

1.2 VARIATION OF THE ACTUATION AMPLITUDE
An increased disturbance amplitude of  A=1.0×10−1 for 

Re79k leads first to a zone of moderate damping, before the 
excitation starts at x=0.670 (figure 22). So just a little later than 
for  the  reference  case,  but  with  a  similar  behavior.  The 
amplification  rate  is  much lower  than  in  the  reference  case, 
nevertheless the critical amplitude of A=1.0×10−1  is already 
reached after a short distance which is just the result of the high 
disturbance  amplitude  of  A=1.0×10−1 .  Saturation,  which 
means  no  further  growth,  is  not  reached  earlier  than  with 
A=1.0×10−2  due to the lower amplification rate.

Disturbing  Re191k with  a  higher  amplitude  of 
A=1.0×10−1  leads to a short zone of moderate damping and 

then, like for Re79k from x=0.67 on, to growth at a low rate up 
to  saturation  (figure 23).  But  with  an  amplitude  of 
A=2.6×10−1  it  is  not  much  higher  than  the  initial 

disturbance.  It  is  lower  than  A=3.3×10−1  which  is  the 

maximum  amplitude  of  disturbing  with  A=1.0×10−2 ,  but 
nevertheless  the  separation  bubble  is  gone  for  the  high 
amplitude as can be seen in figure 14a.

1.3 VARIATION OF THE ACTUATION POSITION
In  figure 24 the amplification  plot  for  the  2D-modes  of 

four  calculations  of  Re79k are  plotted.  The  reference 
calculation of Re79k with A=1.0×10−2 , the same calculation 
but  with  the  position  of  the  disturbance  strip  shifted  from 
x=0.614 further upstream to  x=0.561, and the same variation 
for a disturbance amplitude of A=1.0×10−3 .

The early actuation  for  A=1.0×10−2  reaches  the same 
excitation amplitude as the late actuation, but instead of starting 
to  grow,  it  remains  almost  on  the  same  level  with  a  small 
amplitude decay up to the position where the later  disturbed 
case starts to grow. Then it grows with the same amplification 
as in the later disturbed case from a slightly lower amplitude. 
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Figure  22:  Re79k:  Influence  of  disturbance 
amplitude  on  the  2D-fundamental  modes  for 
f=4.5.

Figure 24: Re79k: Influence of  disturbance position 
on  the  2D-fundamental  modes  for f=4.5  and 
A=1.0×10−2 .
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Figure  23:  Re191k:  Influence  of  disturbance 
amplitude  on  the  2D-fundamental  modes  for 
f=53.0.
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This leads to the fact, that saturation is reached slightly later at 
x=0.774  compared  to  x=0.756  in  the  reference  case.  For  a 
disturbance amplitude of  A=1.0×10−3  the earlier  disturbed 
fundamental mode again is not amplified up to the point where 
also the later disturbed fundamental starts to grow.

But also at this lower amplitude, the mode does not begin 
to grow before x=0.653, so that the earlier point of disturbance 
does not help to establish the periodicity of the calculation. The 
similarity  of  the  growth  process  from  x=0.710  on  is  even 
higher. Both curves are almost identical within the fluctuations 
caused by the not strictly periodic behavior. This confirms the 
existence of a minimal required disturbance amplitude for the 
separation control  of about 1% of the reference velocity.  As 

shown  previously  disturbing  at  the  reference  position  for 
Re191k leads  to  immediate  growth.  Moving  the  disturbance 
strip  further  upstream  (figure 25)  from  x=0.634  to  x=0.608 
leads  to  a  short,  non-amplified  plateau  from  x=0.615  to 
x=0.647.  But  from  there  on  the  disturbance  gets  strongly 
amplified.  The  growth  rate  is  slightly  lower  than  for  the 
original disturbance, as well as the maximum amplitude. The 
reason for the slightly different behavior is, that at the original 
point  of  disturbance  the  earlier  amplitude  already  gets 
amplified. So the original disturbance is disturbed too late to be 
able  to  go  through  the  same  development.  To  verify  this, 
another calculation is plotted, where the point of disturbance is 
moved  even  further  upstream  to  x=0.582.  Its  fundamental 

amplitude stagnates in the beginning as well, and aligns from 
x=0.655  on  perfectly  with  the  earlier  disturbed  case.  As 
described  before,  this  leads  to  almost  identical  separation 
bubbles.

1.4 COMPARISON 2D-3D-DISTURBANCES
In  figure 26 the reference calculation of  Re191k is compared 
with  calculations  with  additional  three-dimensional 
subharmonic mode disturbances. They have different span-wise 
wave numbers  , ranging from  =20.0 to  =140.0 with an 
amplitude of  A=1.0×10−3 .  The 2D modes are found to be 
almost  unaffected  by  the  presence  of  the  additional 
subharmonic modes before x=0.735. Time-averaged streamline 
plots also do not show differences in separation bubble sizes. 
However, there are significant differences in the subharmonic 
3D-modes depending on the span-wise wavenumber which also 
affect the development of the fundamental modes from x=0.735 
on.  The  subharmonic mode of  =100.0  seems to  be  most 
amplified  reaching  even  higher  amplitudes  than  the 
fundamental mode and reducing its amplitude from that point 
on, but as described before, this does not influence the size or 
position  of  the separation bubble.  Disturbing earlier  with  an 
additional subharmonic mode reduces the size of the separation 
bubble,  but  just  to  the  extent  that  already  was  reached  by 
disturbing earlier  without  the  additional  mode.  Nevertheless, 
there  is  a  difference  in  the  time-averaged  streamline 
distribution. With the additional mode, the streamlines behind 
the bubble continue to run closer to the wall which indicates 
increased mixing. This might lead to a slightly higher diffusion 
coefficient or to a more robust design, where a higher diffusion 
is possible without increasing the size of the separation bubble 
compared to a single 2D-disturbance.

1.5  COMPARISON  ACTUATED  –  NON-ACTUATED 
FLOW

Amplification plots for the reference calculations and the 
same calculations without disturbance are plotted in  figure 22 
and figure 23 for both cases.  Undisturbed means a very weak 
disturbance of  A=1.0×10−10  which was proven to have no 
influence on the results. In both cases the fundamental mode of 
the undisturbed case reaches high amplitudes much later than in 
the  disturbed  cases.  Whilst  in  the  disturbed  calculation  of 
Re79k  an  amplitude  of  A=1.0×10−1  is  already reached  at 
x=0.725, the corresponding mode in the undisturbed case does 
not reach it before  x=0.824. For case  Re191k the undisturbed 
mode does not reach higher values than  A=1.0×10−1 before 
x=0.760  and  does  not  grow  further  whilst  the  disturbed 
calculation  already reaches  it  at x=0.680 and  is  saturated  at 
x=0.720.  Other  frequencies  might  be  more  dominant  in  the 
undisturbed cases, but the streamline plots in figure 11 and 13 
show big separations for both cases.  It  has to be mentioned, 
that  the  separation  bubble  in  the  undisturbed  calculation  of 
Re79k  gets  so  big  that  it  reaches  the  upper  limit  of  the 
integration zone, which influences the result. So the accuracy 
of the value of  x=0.824 is questionable, but not the fact that 
transition without disturbance takes place much later.
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Figure 25: Re191k: Influence of disturbance position on 
the  2D-fundamental  modes  for  f=53.0  and 
A=1.0×10−2 .
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Figure  26:  Re191k:  Comparison  2D-3D-disturbance 
with different span-wise wave numbers  .
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