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Abstract The stability of flow formed by intersection of two perpendar flat-
plates is revisited through a study of the sensitivity tolihee flow variation. After
a brief presentation of the asymptotic regime, sensitiftityctions underlying cor-
ner mode (concentrated close to the intersection) and #ath8chlichting modes,
with different obliqueness angles, are computed. Withdbissideration, associated
mechanisms as well as active regions are identified, whithduconfirm that the
sensitivity area of the corner mode arises along the intécseof flat plates. Then,
an optimization technique shows that a small deviation efréference field in the
area of uncertainty observed in experiments leads to deedical Reynolds num-
ber. A hypothesis based on the onset of an inflectional mésimas thus proposed
to explain the experimental results.

1 Introduction

Viscous flow along a corner formed by intersection of two serfinite perpendic-
ular flat plates has been under investigation for severaddis In particular, ex-
perimental results highlighted a transitional Reynoldsibar based on the distance
from the leading edge of about4&hich is much lower than the critical Reynolds
number of the classical Blasius flat plate boundary layer0® [2]. Furthermore,
local linear stability studies didn’t allow to explain theperimental results [1].
Nevertheless, although the theory provides that the iilgyabf a zero pressure
gradient corner layer is dominated by the classical Tolirehlichting (noted TS
hereafter) viscous modes, an inviscid mode strongly laedlin the corner is also
observed. Moreover, experiments exhibit a large variefjowis really close to the
corner and some discrepancies between the theoreticalfloasend the experi-
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Fig. 1 Numerical solution of the self-similar corner equationse Bhaded area indicates the region
where a hypothetical laboratory uncertainty might appear.

mental data. Consequently, the purpose of this paper isctmséder the problem
through a stability analysis taking into account a certaggrée of uncertainty as-
sociated with the base-flow in Figure 1. After a brief preagan of the theory, it

will be shown that a small deviation of the base flow close ®adbrner allows to

destabilize the inviscid mechanism derived from the comede.

2 Temporal asymptotic linear stability.

Reference lengths are based on the maximum streamwiseatyelnd the distance
from the leading edge. Distubanogs =" (Up,Vp, Wp, pp) are assumed of the fol-
lowing form: ‘

dp = (y,2) €' (1)

The space and time behaviour of a small perturbation is tousrged by the op-
erator.Z ({Q,§},U) = 0 derived from the linearized Navier-Stokes equations. In
a temporal framework, the wave number is fixed real, thus tbéenis allowed to
grow temporally with the growth rate and the circular fregoeequal toQ; and

Qy, respectively. The system of equations reduces to a langergkzed eigenvalue
problem which can be written :

(o —iQB)G=0 )

with iQ eigenvalues and eigenfunctions.

The system (2) is discretized using a Chebyshev/Chebysgteeiral collocation
method in the andy directions. Classical no-slip boundary conditions aredsgul
at the walls and Neumann conditions in the far-field for thioeity components.
The use of symmetry conditions leads to two possible saistieven-symmetric
and odd-symmetric modes. Finally, an Arnoldi algorithnmsdxhon ARPACK, com-
bined with a shift-invert method is used to approximate tlostmelevant part of the
spectrum. A spectral gri(65 x 65) is employed in our next computations.
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Fig. 2 2(a) Temporal spectrum &g, = 2.5 x 10° anda = 0.2. 2(b) Neutral curve of the most
unstable TS mode.
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Fig. 3 TS and corner mode. S:symmetric, A-S: anti-symmetric 2.

Typical eigenvalue spectra fdRey = 2.5 x 10° and a = 0.2 is depicted in
Figure 2. A branch of eigenvalues may be observed which caattbibuted to
Tollmien-Schlichting (TS-) modes with different transsemwave lengths, i.e., dif-
ferent obliqueness angles with respect to the free-streamThe most unstable one
corresponds to the classical (two-dimensional) TS-inktamode of the flat-plate
boundary layer. Aside of this branch we get an isolated mduese eigenfunction
is dominantly concentrated near the corner line and ragldbays alony andz
This is the so-called corner mode.

The most unstable TS-mode is compared with the classicaldd&rof a Blasius
boundary layer through a neutral curve in the pldRey, a) in Figure 2(b). The
influence of the corner on this specific mode is weak and itabikting the flow.
The critical Reynolds number based on the streamwise po$té, equals to 117 x
10° which is consistent with the value for Blasius flew9.1 x 10*. Furthermore,
the corner mode is observed to be always temporally staltfeiparameters space
which is analysed. These results are in good agreement hatsetof Parker &
Balachandar [1] which validate our numerical methods.

From the above discussion, it seems clear that local theampat explain why
experimentalists observe a premature laminar-turbutanisition of corner flows
compared to flat-plate boundary layers. Therefore, in aiméake into account the
extreme sensitivity in the corner region observed in expental measurements,
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we reconsider this problem through a stability analysis ieteecertain degree of
uncertainty associated with the base flow is theoreticaltgstigated.

3 Sensitivity analysis
3.1 Sensitivity functions

A sensitivity functionG, may be constructed by a projection of the perturbated
Ly rLy

operator.Z along the adjoint mode as follow8Q = / y/ 'G, 56U dzdy where
o Jo

oU is a small variation ofJ [3]. We take as a representative case the corner flow
atRe, = 8 x 10* anda = 0.18. G, is displayed in Figures 5 with respect to the
modes depicted in the spectrum 4(a). One may observe thabther mode is the
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Fig. 4 Re,=8x10*anda =0.18.

most sensitive one to any base-flow modification around tleenain area, which
demonstrates that this last one is the best candidate taderam explanation to the
low-Reynolds number observed in experiments through al frasé-flow deviation.

Therefore, on the basis of above results, it seems justifiédrther explore the
influence of mean-flow modification having the most effecttmmdorner mode with
respect to a deviation of a given magnitude.

3.2 Optimal deviation and physical mechanism

The small deviation of the mean-flow is measured through anggrlike norm:
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Fig. 5 Sensitivity functions of the corner and TS modBs, = 8 x 10* anda = 0.18.

) Ly /Ls ) , ,
r =/0 /0 (U—Uref) +(V—Vref) +(W_eref) dy dz 3)

wherees refers to the theoretical base flow. We will focus on the déwiawhich
maximizes the growth rate of this corner mode. A similaratonal approach as by
Bottaroet al. [3] is employed by introducing the functional

%(U’)\)IQL(U)_
y [l 4
A <r2—/0 /0 (U —Uret)*+ (V = Vrer)* + (W — Wit ) dy dZ) “)

with A a Lagrange multiplier. A constraint-optimization processssically em-
ployed in control theory is then introduced to maximi{2eby successive iterations
on the contro(U,V,W). An example of optimization is depicted in Figure 4(b). It
appears that a small deviation of the base flow leads to déztathe corner mode.
Furthermore, from the velocity bissector profile displayedrigure 6(a), it seems
clear that the emerging instability mechanism derived ftbm optimal distorted
base flow is strongly connected to the inflection point aldregliissector.

Finally, we track the optimal deviation of the corner modéhia parameter space
(a,r,Rey). Figure 6(b) shows the neutral curve which indicates thekiiReynolds
number for which a positive amplification rate occurs oveeaspnably small de-
viation of the ideal mean flow. Typically, here the modificatiis between 1%
and 1%. It may be observed that the critical Reynolds numaees in inverse pro-
portion to the disturbance amplitude. Nevertheless, ieappthat even for a lower
Reynolds number thas: 10%, i.e. one order of magnitude lower than the critical
Reynolds number associated with the TS waves in supesdriggime, the opti-
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mal distorted base flow is able to experience exponentialrthrough an inviscid
mechanism.
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Fig. 6 Optimization results. In 6(a), the related optimal dewatior r> = 2 x 10~7 with respect
to Figure 4(b) is ploted.

4 Conclusion

A study of sensitivity functions for TS and corner modes uiydeg a three-
dimensional corner flow reveals the high sensitivity of theam-flow close to the
intersection. An optimization technique applied to thenesrmode shows the influ-
ence of a weak deviation of the reference base-flow in theaireacertainty of the
latter. It illustrates the possibility of destabilizingetisorner flow at Reynolds num-
bers ranging from an order of magnitude lower than the alitReynolds number
associated with the classical Blasius boundary layer. Aothygsis associated with
the onset of an exponential instability via a inviscid metba may be proposed to
explain the low transitional Reynolds number observed jreeinents.
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