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Abstract The stability of flow formed by intersection of two perpendicular flat-
plates is revisited through a study of the sensitivity to thebase flow variation. After
a brief presentation of the asymptotic regime, sensitivityfunctions underlying cor-
ner mode (concentrated close to the intersection) and Tollmien-Schlichting modes,
with different obliqueness angles, are computed. With thisconsideration, associated
mechanisms as well as active regions are identified, which further confirm that the
sensitivity area of the corner mode arises along the intersection of flat plates. Then,
an optimization technique shows that a small deviation of the reference field in the
area of uncertainty observed in experiments leads to decrease critical Reynolds num-
ber. A hypothesis based on the onset of an inflectional mechanism is thus proposed
to explain the experimental results.

1 Introduction

Viscous flow along a corner formed by intersection of two semi-infinite perpendic-
ular flat plates has been under investigation for several decades. In particular, ex-
perimental results highlighted a transitional Reynolds number based on the distance
from the leading edge of about 104 which is much lower than the critical Reynolds
number of the classical Blasius flat plate boundary layer≈ 105 [2]. Furthermore,
local linear stability studies didn’t allow to explain the experimental results [1].
Nevertheless, although the theory provides that the instability of a zero pressure
gradient corner layer is dominated by the classical Tollmien-Schlichting (noted TS
hereafter) viscous modes, an inviscid mode strongly localized in the corner is also
observed. Moreover, experiments exhibit a large variety offlows really close to the
corner and some discrepancies between the theoretical baseflow and the experi-
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Fig. 1 Numerical solution of the self-similar corner equations. The shaded area indicates the region
where a hypothetical laboratory uncertainty might appear.

mental data. Consequently, the purpose of this paper is to reconsider the problem
through a stability analysis taking into account a certain degree of uncertainty as-
sociated with the base-flow in Figure 1. After a brief presentation of the theory, it
will be shown that a small deviation of the base flow close to the corner allows to
destabilize the inviscid mechanism derived from the cornermode.

2 Temporal asymptotic linear stability.

Reference lengths are based on the maximum streamwise velocity and the distance
from the leading edge. Distubancesqp =t (up,vp,wp, pp) are assumed of the fol-
lowing form:

qp = q̂ (y,z)e[i(αx−Ωt)] (1)

The space and time behaviour of a small perturbation is thus governed by the op-
eratorL ({Ω , q̂},U) = 0 derived from the linearized Navier-Stokes equations. In
a temporal framework, the wave number is fixed real, thus the mode is allowed to
grow temporally with the growth rate and the circular frequency equal toΩi and
Ωr, respectively. The system of equations reduces to a large generalized eigenvalue
problem which can be written :

(A − iΩB) q̂ = 0 (2)

with iΩ eigenvalues and̂q eigenfunctions.
The system (2) is discretized using a Chebyshev/Chebyshev spectral collocation

method in thez andy directions. Classical no-slip boundary conditions are imposed
at the walls and Neumann conditions in the far-field for the velocity components.
The use of symmetry conditions leads to two possible solutions: even-symmetric
and odd-symmetric modes. Finally, an Arnoldi algorithm, based on ARPACK, com-
bined with a shift-invert method is used to approximate the most relevant part of the
spectrum. A spectral grid(65×65) is employed in our next computations.
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Fig. 2 2(a) Temporal spectrum atRex = 2.5×105 andα = 0.2. 2(b) Neutral curve of the most
unstable TS mode.

(a) û: corner mode. (b) û of TS 1: A-S. (c) û of TS 2: S. (d) û of TS 4: S.

Fig. 3 TS and corner mode. S:symmetric, A-S: anti-symmetric 2.

Typical eigenvalue spectra forRex = 2.5× 105 and α = 0.2 is depicted in
Figure 2. A branch of eigenvalues may be observed which can beattributed to
Tollmien-Schlichting (TS-) modes with different transverse wave lengths, i.e., dif-
ferent obliqueness angles with respect to the free-stream flow. The most unstable one
corresponds to the classical (two-dimensional) TS-instability mode of the flat-plate
boundary layer. Aside of this branch we get an isolated mode whose eigenfunction
is dominantly concentrated near the corner line and rapidlydecays alongy andz.
This is the so-called corner mode.

The most unstable TS-mode is compared with the classical TS mode of a Blasius
boundary layer through a neutral curve in the plane(Rex,α) in Figure 2(b). The
influence of the corner on this specific mode is weak and it is stabilizing the flow.
The critical Reynolds number based on the streamwise positionRex equals to 1.17×
105 which is consistent with the value for Blasius flow≈ 9.1×104. Furthermore,
the corner mode is observed to be always temporally stable inthe parameters space
which is analysed. These results are in good agreement with those of Parker &
Balachandar [1] which validate our numerical methods.

From the above discussion, it seems clear that local theory cannot explain why
experimentalists observe a premature laminar-turbulent transition of corner flows
compared to flat-plate boundary layers. Therefore, in orderto take into account the
extreme sensitivity in the corner region observed in experimental measurements,
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we reconsider this problem through a stability analysis where a certain degree of
uncertainty associated with the base flow is theoretically investigated.

3 Sensitivity analysis

3.1 Sensitivity functions

A sensitivity functionGu may be constructed by a projection of the perturbated

operatorL along the adjoint mode as follows:δΩ =

∫ Ly

0

∫ Lz

0

tGuδU dzdy where

δU is a small variation ofU [3]. We take as a representative case the corner flow
at Rex = 8× 104 andα = 0.18. Gu is displayed in Figures 5 with respect to the
modes depicted in the spectrum 4(a). One may observe that thecorner mode is the
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Fig. 4 Rex = 8×104 andα = 0.18.

most sensitive one to any base-flow modification around the uncertain area, which
demonstrates that this last one is the best candidate to provide an explanation to the
low-Reynolds number observed in experiments through a small base-flow deviation.

Therefore, on the basis of above results, it seems justified to further explore the
influence of mean-flow modification having the most effect on the corner mode with
respect to a deviation of a given magnitude.

3.2 Optimal deviation and physical mechanism

The small deviation of the mean-flow is measured through an energy-like norm:
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(a) GU : corner mode. (b) GV : corner mode. (c) GU : TS 1. (d) GV : TS 1.

(e) GU : TS 2. (f) GV : TS 2. (g) GU : TS 3. (h) GV : TS 3.

Fig. 5 Sensitivity functions of the corner and TS modes.Rex = 8×104 andα = 0.18.
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wherere f refers to the theoretical base flow. We will focus on the deviation which
maximizes the growth rate of this corner mode. A similar variational approach as by
Bottaroet al. [3] is employed by introducing the functional

H (U,λ ) = Ωi (U)−

λ
(

r2−
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0
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0

(
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)2

+
(
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)2

+
(

W −Wre f
)2

dy dz

)

(4)

with λ a Lagrange multiplier. A constraint-optimization processclassically em-
ployed in control theory is then introduced to maximizeΩi by successive iterations
on the control(U,V,W ). An example of optimization is depicted in Figure 4(b). It
appears that a small deviation of the base flow leads to destabilize the corner mode.
Furthermore, from the velocity bissector profile displayedin Figure 6(a), it seems
clear that the emerging instability mechanism derived fromthe optimal distorted
base flow is strongly connected to the inflection point along the bissector.

Finally, we track the optimal deviation of the corner mode inthe parameter space
(α,r,Rex). Figure 6(b) shows the neutral curve which indicates the lowest Reynolds
number for which a positive amplification rate occurs over a reasonably small de-
viation of the ideal mean flow. Typically, here the modification is between 0.1%
and 1%. It may be observed that the critical Reynolds number varies in inverse pro-
portion to the disturbance amplitude. Nevertheless, it appears that even for a lower
Reynolds number than≈ 104, i.e. one order of magnitude lower than the critical
Reynolds number associated with the TS waves in supercritical regime, the opti-



6 Alizard Frédéric∗, Robinet Jean-Christophe∗ and Rist Ulrich+.

mal distorted base flow is able to experience exponential growth through an inviscid
mechanism.
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(a) Velocity profile along the bissector.
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Fig. 6 Optimization results. In 6(a), the related optimal deviation for r2 = 2×10−7 with respect
to Figure 4(b) is ploted.

4 Conclusion

A study of sensitivity functions for TS and corner modes underlying a three-
dimensional corner flow reveals the high sensitivity of the mean-flow close to the
intersection. An optimization technique applied to the corner mode shows the influ-
ence of a weak deviation of the reference base-flow in the areaof uncertainty of the
latter. It illustrates the possibility of destabilizing the corner flow at Reynolds num-
bers ranging from an order of magnitude lower than the critical Reynolds number
associated with the classical Blasius boundary layer. A hypothesis associated with
the onset of an exponential instability via a inviscid mechanism may be proposed to
explain the low transitional Reynolds number observed in experiments.
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