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Humps/Steps In� uence on Stability Characteristics
of Two-Dimensional Laminar Boundary Layer

Anke Wörner,¤ Ulrich Rist,† and Siegfried Wagner‡

University of Stuttgart, 70550 Stuttgart, Germany

The in� uence of two-dimensional humps and steps on the stability characteristics of a two-dimensional laminar
boundary layer is investigated by means of direct numerical simulations (DNS). The localized surface irregularity
is hereby modeled within the Cartesian grid by assigning body forces over surfaces that need not coincide with grid
lines. Comparedto the use of a body-� tted coordinatesystem, this method saves memory and computationtime. The
method is validated by grid re� nement tests as well as by a comparison with water channel experiments. The DNS
results for the steady � ow over a rectangular hump, as well as for an instability wave traveling over a hump, show
good agreement with the experimental ones. Simulationresults show that a localized hump destabilizes the laminar
boundary layer, whereas a forward facing step stabilizes it. The destabilization is stronger when the height or the
width of the localized hump are increased. A rounded shape of the hump is less destabilizing than a rectangular
shape with sharp corners. The parameter that shows the strongest in� uence on the stability characteristics of the
boundary layer is clearly the height of the localized hump.

Nomenclature
b = half-width of the roughness element
F = dimensionless frequency parameter,

F D 2¼ Qf Qº= QU 2
1 ¢ 106

F = external force � eld
f = surface body force
Qf = frequency

h = height of the roughness element
QL = reference length
Re = Reynolds number, QU1 QL=Qº
ReH = Reynolds number based on the height of the roughness
Re±1 = Reynolds number based on the boundary-layer

displacement thickness
t = time
QU1 = freestream velocity

u = streamwise velocity component
v = wall-normal velocity component
x = streamwise coordinate
xS = surface of the roughness element
y = wall-normal coordinate
® = streamwise wave number
®S = negative constant of the feedback algorithm
¯S = negative constant of the feedback algorithm
1x = streamwise grid spacing
1y = wall-normal grid spacing
¸TS = Tollmien–Schlichting wavelength
Qº = kinematic viscosity
¾x = half-width of the Gaussian function in x direction
¾y = half-width of the Gaussian function in y direction
!z = spanwise vorticity

Superscripts

Q = dimensional variable
0 = disturbance variable
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I. Introduction

T HE speci� c fuel consumptionof any aircraft is directly related
to its drag. A major portion of aircraft drag is due to friction

that is con� ned to the wall boundary layer of the � ow. Because a
turbulentboundarylayerproduceshigherskin friction thana laminar
one, the overall skin friction is highly in� uenced by the location of
laminar–turbulent transition. By means of control, that is, delay,
of laminar–turbulent transition, a reduction of the wall friction is
possible. A better understanding of the mechanisms of laminar–
turbulent transition is the key to being able to delay, actively or
passively, transition on an airfoil.

The processof laminar–turbulenttransitioncanbe subdividedinto
four main stages.The � rst stage, the so-called receptivity,is the pen-
etrationof externalperturbationsinto the boundarylayerwhere they
are tuned to boundary-layer disturbances. The second stage is the
linear ampli� cation of these initially created disturbances. The
third one is the nonlinear development, and the last one is the
breakdown to turbulence. Within this paper, we focus on the in-
� uence of surface discontinuities on the stability characteristics
of a two-dimensional boundary layer within the linear range of
instability.

In the manufacturingprocess of an airfoil, surface discontinuities
such as steps at junctions or small humps are unavoidable. These
surfacediscontinuitiescan in� uence the locationof transitionon the
airfoil via two dominating mechanisms.

First, they are possible sources of receptivity, which means that
they provide the small length scale that is necessary for the conver-
sion process of large-scale external perturbations into small-scale
boundary-layerdisturbances(Ref. 1, 2, or 3). A second aspect, how-
ever, is that they are also able to either stabilize or destabilize the
boundary layer locally.

The studypresentedhereshallprovideinsightinto the in� uenceof
surface irregularities on the ampli� cation of Tollmien–Schlichting
(TS) waves in a two-dimensional laminar boundary layer. This sub-
ject is studied by means of direct numerical simulations (DNS).
A similar study was carried out by Gaster and Wang (Gaster,
M., and Wang, X., “The In� uence of Surface Steps on the Value of
‘N ’ Factors Used in Estimating the Position of Transition on Aero-
foils,” Presentedat EUROMECH Colloquium423, Boundary-Layer
Transition in Aerodynamics, April 2001). They experimentally in-
vestigated the in� uence of surface steps on the value of N factors
used in estimating the position of transition on airfoils. They found
an empiricalcorrelationof experimentalmeasurementsof transition
on a � at plate containing various steps. Within their study, it was
not possible to distinguishthe newly created disturbancesby means
of receptivity at the step from the change in stability of the bound-
ary layer created by the presence of the step. This is only possible
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by using numerical simulations where one aspect can be arti� cially
isolated.

II. Numerical Method
The DNS code used for the present investigation is based on a

code � rst developedby Fasel4 and further improved by Rist et al.,5;6

which is used for the investigation of transition phenomena in a
� at-plate boundary layer.

A. Governing Equations
The DNS are based on the vorticity–velocity formulation of the

complete Navier–Stokes equations for incompressible � uids. All
spatial scales are nondimensionalized using QL and all velocities
using QU1 , where the tilde denotes dimensional variables:

x D Qx= QL; u D Qu= QU1; y D Qy= QL

v D Qv= QU1; t D Qt. QU1= QL/; Re D QU1 QL=Qº (1)

Here x denotes the wall-parallel and y the wall-normal direction; u
is the velocity parallel to the � at plate.

The � rst step in the numerical calculation is the solution of the
vorticity transport equation, which can be written as
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where !z is de� ned as
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Then, v can be calculated by solving the following Poisson
equation:
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The continuity equation
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is then used to calculate the wall-parallel velocity u.

B. Discretization and Boundary Conditions
The � ow� eld is discretizedusing fourth-order-accurate� nite dif-

ferences in the streamwise (x-) and wall-normal (y-) directionson a
Cartesiangrid.Figure1 shows the integrationdomain.The time inte-
gration is doneusinga fourth-order,four-stepRunge–Kutta scheme.
The v–Poisson equation is solved with a multigrid method, using
a vectorizable,stripe-pattern successiveoverrelaxation(SOR) line-
iteration technique on each grid. Details concerning the numerical
method can be found in Ref. 5.

At the freestreamboundary,thevorticityis set to zerobecausethis
boundary lies in the region of potential � ow. For the wall-normal
velocity v exponential decay is assumed:

@v

@y
D ¡® ¢ v (6)

Fig. 1 Integration domain.

Here, ® is considered to be representative for the whole integra-
tion domain. In the potential � ow, this condition derives the exact
solution for linear TS waves with ®.

At the in� ow boundary, steady Falkner–Skan pro� les, usually
Blasius pro� les, are prescribed.

Disturbances are forced by wall-normal periodic suction and
blowing in a disturbancestrip at the wall. Except in the disturbance
strip, the no-slip and no-through-�ow condition is applied at the
wall.

Upstream of the out� ow boundary, the unsteady vorticity is
smoothly damped to the steady-state value in a buffer domain.6

Consequently, the unsteady velocity components also decay expo-
nentially in the streamwise direction and vanish at the out� ow.

C. Modeling of the Surface Irregularity
The localized surface irregularity within the Cartesian grid is

modeled using a technique that is related to Peskin’s immersed
boundaryapproach,7 and that has alreadysuccessfullybeen applied,
for example, by Goldstein et al.,8 Linnick,9 or von Terzi et al.10 In
this approach, the effect of the surface irregularityon the surround-
ing � ow� eld is modeled with an external force � eld that enforces
no-slip and no-through-�ow at selected grid points or at selected
points between the grid points at every time step.

The vorticitytransportequationfor the two-dimensionalcasewith
an external force � eld F D .Fx ; Fy/ can be written as
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The force term on the right-hand side is the force exerted by the
surface irregularity on the � uid and can be written as

F D
I

f .xS ; t/ ¢ ±.x ¡ xS/ dS (8)

For numerical reasons, the delta function is approximated by a
Gaussian function as follows:

± ¼ exp
©
¡[.x ¡ xS/=¾x ]2 ¡ [.y ¡ ys/=¾y]

2
ª

(9)

The surface body force f is determined from the relation

f .xS; t/ D ®S ¢
Z t

0

v.xS ; t 0/ dt 0 C ¯S ¢ v.xS; t/ (10)

for surface pointsxS . Equation (10) representsa feedbackscheme in
which the velocity is used to approach the desired value iteratively.

If the surfaceof the irregularityis locatedbetween the grid points,
the velocity at this location is interpolated from the values at the
neighboring grid points using a fourth-order Lagrangian interpola-
tion procedure.

III. Veri� cation and Validation
To verify the numerical scheme used, we � rst performed grid re-

� nement studies in the streamwise, as well as in the wall-normal,
direction.Additionally, the DNS results were comparedwith exper-
imental results obtained by M. Lang in the laminar water channel
of our institute. The purpose of this comparison was the validation
of the method of modeling a solid surface within a Cartesian grid
for the cases studied in the present paper.

A. Grid Re� nement Tests
Results of the grid re� nement tests are shown in Figs. 2 and 3.

Here, ampli� cation curves for a two-dimensional TS wave with a
nondimensional frequency F D 2¼ f º=U 2

1 ¢ 106 D 49:34 traveling
across a rectangularhump located at x D 4:0 are shown. This means
that the maximum of the amplitude of the streamwise disturbance
velocity u 0 vs y is plotted against the streamwise coordinate x . The
height of the hump normalized with the local boundary-layer dis-
placement thickness ±1 was 0:47, its half-width b was 0:1. In Fig. 2,
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Fig. 2 Grid re� nement tests in x direction; TS wave with non-
dimensional frequency F = 49.34 traveling across a rectangular
hump located at x = 4.0 with h/±1 = 0.47 and b = 0.1.

Fig. 3 Grid re� nement tests in y direction; TS wave with non-
dimensional frequency F = 49.34 traveling across a rectangular
hump located at x = 4.0 with h/±1 = 0.47 and b = 0.1.

the streamwise grid spacing is varied, whereas in Fig. 3, the wall-
normal grid spacing is changed.

From Figs. 2 and 3, it is clear that the solution converges and
that a resolution of 100 grid points in streamwise direction per
TS wavelength (1x D 0:004002) and 15 grid points in the wall-
normaldirectionovertheheightof thehump(1y D 3:409E¡04) is a
suf� cient resolution for this problem.

B. Comparison with Experiments
Figures 4–6 show a comparison of the DNS with the water

channel experiment of the steady � ow over a two-dimensional
rectangular hump. The center of the hump is located at x D 3:87
(Re±1 D 1070/. Its height is 3 mm, its width 155 mm, giving
h=±1 D 0:37 (ReH D U1h=º D 387/ and b=±1 D 19:1. Plotted is the
streamwise velocity u vs y for three different streamwise positions,
one at 105 mm upstream of the center of the hump, one above the
hump (at 20 mm upstream of the center), and one at 120 mm down-
stream of the center of the hump, approximately at the location
where reattachment takes place.

The agreement found between the DNS and the experiment is
quite good, which proves that the effect of the rectangularhump on
the surrounding � ow� eld was correctly modeled by the numerical
approach using an external force � eld.

To investigate whether unsteady effects are also correctly mod-
eled, a second experiment was conducted in the water channel.
A TS wave with a nondimensional frequency of F D 2¼ f º=U 2

1 ¢
106 D 49:34 and an amplitude of 1% of the freestream velocity U1
was created upstream of the hump, using a vibrating ribbon. This

Fig. 4 Base � ow upstream of the hump at x = 3.67 (Re±1 = 1042); com-
parison of DNS and experiment.

Fig. 5 Base � ow abovethe humpatx = 3.838(Re±1 = 1066); comparison
of DNS and experiment.

Fig. 6 Base � ow downstream of the hump at x = 4.025 (Re±1 = 1091);
comparison of DNS and experiment.

TS wave has a wavelength of 310 mm, which shows that the width
of the hump was chosen to be one-half of the TS wavelength. Two
different cases were studied. First, the TS wave traveled along a
smooth plate, whereas in a second experiment the TS wave trav-
eled across the rectangular hump of height h=±1 D 0:37, located at
Re±1 D 1070. For both experiments, the amplitudepro� les of the TS
wave vs y at 535 mm downstream of the center of the hump were
measured.

Figure7 comparestheseamplitudepro� leswith DNS calculations
for the same two cases. In the DNS, the increasein amplitude,which
is caused by the presence of the hump, is approximately7% higher
than in the experiment. This discrepancy can to some extent result



WÖRNER, RIST, AND WAGNER 195

Fig. 7 Amplitude change of a TS wave traveling across a rectangu-
lar hump located at x = 3.87 (Re±1 = 1070); pro� les shown at x = 4.56
(Re±1 = 1162); comparison of DNS and experiment.

Fig. 8 Amplitude development of a TS wave with nondimensional fre-
quency F = 49.34 traveling across a rectangular hump located at x = 4.0
with h/±1 = 0.47 and b = 0.1 in comparison to a TS wave traveling along
a smooth plate.

from only a few periodsbeing time-averagedin the experimentsand
fromtherealreadybeingremarkablethree-dimensionaldisturbances
visible in the experiment at this location.

IV. Results and Discussion
A. Localized Hump

Figure 8 compares the ampli� cation curve for a TS wave with a
nondimensionalfrequency F D 49:34 travelingacross a rectangular
hump located at x D 4:0 (Re±1 D 1:72 ¢

p
.Re ¢ x/ D 1088,Re D 105/

to a TS wave traveling along a � at plate without any surface irreg-
ularities. The height of the hump was h=±1 D 0:47, which corre-
sponds to ReH D U1h=º D 511. Its width was about one-half of the
wavelength of the TS wave (b D 0:1). The disturbance strip for the
creation of the TS wave was located at x D 2:78 (Re±1 D 907/.

The in� uence of the hump on the TS wave traveling across it
can be subdivided into two local effects that � nally add up to the
global effect of the hump on the TS wave far downstream of the
localized hump. The local effects can be described as follows: First,
at the rising edge of the hump, the amplitude of the TS wave de-
creases because of the thinner boundary layer that develops at the
beginningof the hump. Second, at the falling edge of the hump, the
ampli� cation of the TS wave is remarkably increased compared to
the wave travelingalonga smoothplate.This secondeffect probably
results from a small separationzone that forms behind the rectangu-
lar hump. Because the increasein ampli� cation at the falling edge is
stronger than the stabilizingeffect that occurs at the rising edge, the
global effect of a localizedhump is a destabilizationof the boundary
layer. In the case shown in Fig. 8, the resulting amplitude of the TS

wave far downstream of the hump is about a factor of 3.2 higher
than the amplitude of the TS wave traveling along a smooth plate.

Several parameters of the rectangular hump are now varied to
show their in� uence on the amplitude developmentof the TS wave
that travels across the hump.

1. In� uence of Height
First, the varying parameter was the height of the rectangular

hump, which was changed between h=±1 D 0:235 (ReH D 256/ and
h=±1 D 0:94 (ReH D 1023/. All other parameterswere kept constant.
The results of this variation are illustrated in Fig. 9. As expected,
the highest hump has the largest in� uence on the TS wave, travel-
ing across it. The amplitude of the TS wave far downstream of the
hump increasesby a factor of 1.4 for ReH D 256, 3.2 for ReH D 511,
and 26.0 for ReH D 1023 by the presence of the hump. This shows
that up to a height of ReH D 511 the increase in amplitude of the
TS wave scales approximately linear with the height of the rectan-
gular hump. For ReH D 1023, this dependence becomes nonlinear
because the stability characteristics of the boundary layer are dra-
maticallychanged.Another hint for this large change in the stability
characteristicsis the completely different slope of the ampli� cation
curve downstreamof the hump, compared to the cases with smaller
humps.

2. In� uence of Width
Then, thewidth of the rectangularhump is changed.The resultsof

this variationcan be found in Fig. 10. The width was varied between
b D 0:1 and 0.4, the wavelength of the TS wave is approximately
¸TS D 0:2. The height was h=±1 D 0:47 (ReH D 511/. The largest
in� uence on the TS wave is observed for the hump with the largest

Fig. 9 Amplitude development of a TS wave with F = 49.34 traveling
across a hump located at x = 4.0 with varying height and b = 0.1.

Fig. 10 Amplitude development of a TS wave with F = 49.34 traveling
across a hump located at x = 4.0 with h/±1 = 0.47 and varying width.
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Fig. 11 Streamlines in the vicinity of the localized hump for humps
located at x = 4.0 with width: a) b = 0.1, b) b = 0.2, and c) b = 0.4 and a
constant height of h/±1 = 0.47; - - - -, separation streamline.

width. Nevertheless, the parameter that has the most in� uence on
the amplitude increase of the TS wave is clearly the height of the
hump. The width of the hump plays only a minor role.

An insight into the � ow� eld for the three different cases with
humps of different widths is given in Fig. 11, where streamlines in
the vicinity of the hump are plotted. The separation streamline is
marked by a dashed line. The y direction in this plot is stretched by
a factor of 20. For the case with the smallest width, the resolution
in the x direction for the calculation of the streamlines had to be
twice as high .1x D 0:002001/ compared to the other two cases
.1x D 0:004002/. This increase in resolution was only necessary
for the calculation of the streamlines. As can be seen in Fig. 2,
the higher resolution has no effect on the in� uence of the hump on
the TS wave. Figure 11 shows that the separation zone behind the
hump increases with increasing width of the hump. This leads to
the following behavior: As the hump gets wider, the length of the
zone in which the TS wave attenuatesgets longer. At the same time,
the ampli� cation zone behind the hump gets larger and stronger.
Because those two effects almost cancel each other, the width of the
hump has almost no in� uence on the resulting amplitude of the TS
wave far downstream.

3. In� uence of Shape
In Fig. 12, the amplitude development of three TS waves can be

observed. One travels over a rectangularhump, one over a rounded
hump, the shape of which is a quadratic function of x , and one
travelsover a smoothplate.The heightof both humps is h=±1 D 0:47
(ReH D 511/, the width is b D 0:1. The rectangular hump with its
sharp corners has, as could be expected, the most in� uence on the
stability characteristicof the boundary layer.

B. Forward-Facing Step
Figure 13 shows the ampli� cation curve for a TS wave traveling

across a forward-facingstep compared to a TS wave traveling along
a perfectly smooth � at plate. The nondimensional frequency is the
same as before.The forward-facingstep is locatedat x D 4:0, which
corresponds to Re±1 D 1088. Its height normalized with ±1 is 0:235
(ReH D 256).

Fig. 12 Amplitude development of a TS wave with F = 49.34 traveling
across a hump of different shape located at x = 4.0 with h/±1 = 0.47 and
b = 0.1.

Fig. 13 Amplitude development of a TS wave with F = 49.34 traveling
across a forward-facing step located at x = 4.0 with h/±1 = 0.235.

As can be seen, the amplitude of the TS wave is now reduced by
the forward-facingstep becausethe thinnerboundarylayer evolving
on the step is more stable than the boundary layer on the smooth
plate. The separation zone in front of the step is very small and,
therefore,has no in� uence on the TS wave. This reduction in ampli-
tude seems surprising, but results from the freestream disturbances
being absent in the simulation. This means that no receptivity can
take place, which, in reality, would add additional disturbances.

V. Conclusions
By means of DNS, the in� uence of humps and steps on the sta-

bility characteristics of a two-dimensional laminar boundary layer
has been investigated. The localized surface irregularity was mod-
eled within a Cartesian grid using an immersed boundary technique,
where the in� uence of a solid wall on the surrounding � ow� eld is
modeled by using an external force � eld that enforces no-slip and
no-through-�ow conditions on the solid wall. This approach was
validated by comparing the DNS results with measurements con-
ducted in the laminar water tunnel of our institute. For a steady as
well as an unsteady test case, the DNS results were in good agree-
ment with the experimental results. This showed that the effect of a
localized hump on the surrounding� ow� eld was correctly modeled
by the immersed boundary technique.

A localized hump was found to have an overall destabilizing
effect on the laminar boundary layer, whereas a forward-facingstep
showeda stabilizingeffect.The destabilizationof theboundarylayer
by the presenceof a hump results from the combinationof two local
phenomena. The TS wave is � rst damped by the stabilizing effect
of the rising edge of the hump, with its thinner boundary layer, as
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can also be seen for the forward-facing step. At the falling edge
of the hump, the ampli� cation is locally highly increased by the
presence of a small separationzone behind the hump. This increase
in ampli� cation is much stronger than the damping caused by the
rising edge of the hump. Therefore, the overall effect of a localized
hump is a destabilization of the boundary layer. For the localized
hump, the in� uence of severalparameterson the destabilizationwas
investigated.Up to a height, normalizedwith the local displacement
thickness,of approximatelyh=±1 D 0:5, the increase in amplitudeof
a TS wave travelingacross thehumpwas found to dependlinearlyon
the heightof the hump. For a height of h=±1 D 0:97, this dependence
was clearly nonlinear. If the width of the hump was increased, the
effect on the TS wave was also found to be larger, but the in� uence
of the width was weaker than the in� uence of the height of the
hump. Additionally,the shapeof thehumpwas varied.A rectangular
hump with sharpcornersshowed a larger in� uenceon the amplitude
developmentof a TS wave than a roundedhump, the shape of which
was a quadratic function of x .

In the future, the immersed boundary technique is plannedfor use
for numerical simulations of roughness acoustic receptivity. Ad-
ditionally, the approach will be extended to be able to deal with
three-dimensionalsurface irregularities.
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