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Summary. Sound generation of a subsonic laminar jet has been investigated using
direct numerical simulation (DNS). The simulation includes the nozzle end, modelled
by a finite flat splitter plate with Mach numbers of MaI = 0.8 above and MaI =
0.2 below the plate. Behind the nozzle end, a combination of wake and mixing
layer develops. Due to its instability, roll up and pairing of spanwise vortices occur,
with the vortex pairing being the major acoustic source. As a first approach for
noise reduction, a rectangular notch at the trailing edge is investigated. It generates
longitudinal vortices and a spanwise deformation of the flow downstream of the
nozzle end. This leads to a an early breakdown of the large spanwise vortices and
accumulations of small-scale structures. Compared to a two-dimensional simulation
performed earlier [3], the emitted sound is reduced by 6dB.

1 Introduction

Noise reduction is of special interest for many technical problems, as high acoustic
loads lead to a reduced quality of life and may cause stress for persons concerned
permanently. The current investigation focuses on jet noise as it is a major noise
source of aircrafts. As the major airports are typically located in highly populated
areas, noise reduction would improve the situation of many people. Direct aeroa-
coustic simulations are a relatively new field in computational fluid dynamics, facing
several difficulties due to largely different scales. The hydrodynamic fluctuations are
small-scale structures containing high energy compared to the acoustics with rela-
tively long wavelengths and small amplitudes. Therefore, high resolution is required
to compute the noise sources accurately. On the other hand a large computational
domain is necessary to obtain the relevant portions of the acoustic far-field. Due to
the small amplitudes of the emitted noise, boundary conditions have to be chosen
carefully, in order not to spoil the acoustic field with reflections.

Up to now, large-eddy or direct numerical simulations of jet noise have been
focusing on either pure mixing layers [2, 5, 7] or low Reynolds number jets [9],
where an S-shaped velocity profile is prescribed at the inflow. Our approach is to
include the nozzle end, modelled by a thin finite flat plate with two different free-
stream velocities above and below. Including the nozzle end shifts the problem to
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a more realistic configuration, leading to a combination of wake and mixing layer
behind the splitter plate. Additionally, wall-bounded actuators for noise reduction
can be tested without the constraint to model them by artifical volume forces. In the
current investigation, a passive ’actuator’ is considered as a first realistic approach
for noise reduction.

2 Numerical Method

2.1 Simulation Framework

Obtaining DNS results does not only require the simulation itself, it also includes pre-
and postprocessing as well as stability analysis of the considered baseflow. By far,
most computer resources are acquired by the DNS code. Nevertheless the user spends
a lot of time in setup of the problem and analysis of the computed data. Therefore a
complete framework of tools with a common structure of in- and outputfiles, based
on the EAS3 framework [8], has been developed. This does not only lead to a more
efficient work for the scientist himself, it also provides reproducibility of the complete
set of results. The typical workflow for a DNS is illustrated in figure 1. The first
step is the definition of the problem itself. Here, the flow conditions, the grid and
the domain decomposition are specified, providing initial data for the DNS. This
process strongly depends on the problem to be investigated, resulting in specific
tools. A typical approach is to use the solution of the boundary-layer equations
and interpolate them on the grid. If the problem allows to obtain a steady-state
solution, the DNS code may be used here to obtain a converged solution of the
Navier-Stokes equations. The initial condition or a converged solution obtained from
the previous step can be used in linear stability theory providing amplification rates
and eigenfunctions. This information is used to define disturbance generation for the
actual simulation performed by the DNS code. The resulting output is raw binary
data with the flow variables given on the computational grid for several time steps.
To get a better understanding of the flow physics, postprocessing is used to compute
e.g. spectra and amplitudes or vortex criteria.

As the initial condition requires relatively few computations, it is run interac-
tively on the Itanium frontend machine of the NEC-SX8 vector computer. Linear
stability theory and the DNS code are executed on the SX8 vector computer. For
both codes, the usability has been improved by startscripts running on the frontend
machine. These scripts gather all input files, compile the code with the required
array sizes, create the jobfile and submit the actual job to the queueing system of
the vector computer. Additionally the input files and the source code are archived in
the output directory. Thus, the whole computation can be reproduced easily. Post-
processing is done on the frontend machine and consists mainly of a collection of
shell-scripts which can be selected via a common input file. These scripts basically
trigger the EAS3 command line interface [8]. If an operation needs to be done for
multiple files, multiple entities of EAS3 are started, simply by adding an ’&’ to its
call in the script. Due to the common file system of the frontend and the vector
machine, no unnecessary copying of data is required.
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Fig. 1. Workflow for DNS including pre- and postprocessing as well as stability
analysis.

2.2 DNS code

The main part of this framework is the DNS code NS3D, solving the full three-
dimensional unsteady compressible Navier-Stokes equations on multiple domains.
The purpose of domain decomposition is not only to increase computational per-
formance. The combination with grid transformation and the concept of modular
boundary conditions allows to compute a wide range of problems. Computation is
done in non-dimensional quantities: velocities are normalised by the reference veloc-
ity U∞ and all other quantities by their inflow values, marked with the subscript ∞.
Length scales are made dimensionless with a reference length L and the time t with
L/U∞, where the overbar denotes dimensional values. Temperature dependence of
viscosity µ is modelled using the Sutherland law:

µ(T ) = µ(T∞) · T 3/2 · 1 + Ts

T + Ts
, (1)

where Ts = 110.4K/T ∞ and µ(T∞ = 280K) = 1.735 · 10−5kg/(ms). Thermal
conductivity ϑ is obtained by assuming a constant Prandtl number Pr = cpµ/ϑ.
The most characteristic parameters describing a compressible viscous flow-field are
the Mach number Ma = U∞/c∞ and the Reynolds number Re = ρ∞U∞L/µ∞.

We use the conservative formulation of the Navier-Stokes equations which re-
sults in the solution vector Q = [ρ, ρu, ρv, ρw, E] containing the density, the three
momentum densities and the total energy per volume

E = ρ · cv · T +
ρ

2
·
(

u2 + v2 + w2
)

. (2)

The complete set of equations is given in [4]. The simulation is carried out in a
rectangular domain with x, y, z being the coordinates in streamwise, normal and
spanwise direction, respectively. A typical setup for jet noise computation is shown
in figure 2.
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Fig. 2. Integration domain for jet noise computation with splitter plate and sponge
zone.

Since the flow is assumed to be periodic in spanwise direction a spectral dis-
cretization in z-direction is used:

f(x, y, z, t) =

K
∑

k=−K

F̂k(x, y, t) · ei(kγ0z) . (3)

f denotes any flow variable, F̂k its complex Fourier coefficient, K the number of
spanwise modes and i =

√
−1. The fundamental spanwise wavenumber γ0 is given

by the fundamental wavelength λz,0 representing the width of the integration domain
by γ0 = 2π/λz,0.

Spanwise derivatives are computed by transforming the respective variable into
Fourier space, multiplying its spectral components with their wavenumbers (i ·k ·γ0)
for the first derivatives or square of their wavenumbers for the second derivatives
and transforming them back into physical space. Due to the non-linear terms in the
Navier-Stokes equations, higher harmonic spectral modes are generated at each time
step. To suppress aliasing, only 2/3 of the maximum number of modes for a specific
z-resolution are used [6]. If a two-dimensional baseflow is used and disturbances of
u, v, ρ, T , p are symmetric and disturbances of w are antisymmetric, flow variables
are symmetric/antisymmetric with respect to z = 0. Therefore only half the number
of points in spanwise direction are needed (0 ≤ z ≤ λz/2) and equation (3) is
transferred to

f(x, y, z, t) = F0r(x, y, z, t) +2 ·
K

∑

k=1

Fkr(x, y, t) · cos (kγ0z) (4)

for f ∈ [u, v, ρ, T, p]

f(x, y, z, t) = −2 ·
K

∑

k=1

Fki(x, y, t) · sin (kγ0z) (5)

for f ∈ [w] .
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The spatial discretization in streamwise (x) and normal (y) direction is done
by 6th-order compact finite differences. The tridiagonal equation systems of the
compact finite differences are solved using the Thomas algorithm. To reduce the
aliasing error, alternating up- and downwind-biased finite differences are used for
convective terms as proposed by Kloker [11]. The second derivatives are evaluated
directly which distinctly better resolves the second derivatives compared to applying
the first derivative twice. The square of the modified wavenumber k∗

mod over k∗ is
shown for different schemes in figure 3. The exact solution for the second derivative
is k∗2. While the relative error of the second derivatives is less than 1% up to a
modified wavenumber of k∗ = 1.00 or k∗ = 1.74 for 4th and 6thorder, respectively,
the result of computing the first derivative twice is only good up to k∗ = 0.62 and
k∗ = 1.42 accordingly. Due to that, our scheme provides a resolution advantage of
factor 3 for the viscous terms compared to a standard scheme of 4thorder, often used
for compressible flows. Moreover, another advantage of direct second-derivatives
computation is the fact, that k∗2

mod does not vanish for the least resolved waves with
k∗ = π providing better accuracy and stability of the code.
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2 m
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2nd derivative CFD O6
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Fig. 3. Comparison of second derivative versus twice the first derivative for a wave
with wave number k∗ = k · ∆x.

Arbitrary grid transformation in the x-y plane is provided by mapping the phys-
ical grid on an equidistant computational ξ-η grid:

x = x(ξ, η) , y = y(ξ, η) . (6)

According to [1], the first derivatives can be computed as:

∂

∂x
=

1

J

[(

∂

∂ξ

)(

∂y

∂η

)

−
(

∂

∂η

)(

∂y

∂ξ

)]

(7)

∂

∂y
=

1

J

[(

∂

∂η

)(

∂x

∂ξ

)

−
(

∂

∂ξ

)(

∂x

∂η

)]

(8)
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· ∂x

∂η
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with the metric coefficients (∂x/∂ξ), (∂y/∂ξ), (∂x/∂η), (∂y/∂η) and J being the
determinant of the Jacobi matrix. To compute second spatial derivatives, equations
(7) and (8) are applied twice. Here one has to take into account that the metric
coefficients and by that also the Jacobi determinant are a function of ξ and η as
well.

Time integration of the Navier-Stokes equations is done using the classical 4th-
order Runge-Kutta scheme as described in [11]. At each time step and each interme-
diate level the biasing of the finite differences for the convective terms is changed.
The ability to perform computations not only in total value but also in disturbance
formulation is provided by subtracting the spatial operator of the baseflow from the
time derivatives of the conservative variables Q.

2.3 Parallelization

To use the full potential of the NEC-SX8 vector computer at HLRS, we have chosen
a hybrid parallelization of both MPI and Microtasking. As shared memory paral-
lelization, Microtasking is used along the spanwise direction. The second branch of
the parallelization is domain decomposition using MPI. Due to the fact that the
Fourier transformation requires data over the whole spanwise direction, a domain
decomposition in z would have caused high communication overhead. Therefore do-
main decomposition is applied only in the ξ-η plane. At each boundary (left, right,
top, bottom) of a domain, one can specify the neighbour or one of the implemented
boundary conditions. The explicit formulation of the boundary conditions allows
to easily implement new boundary conditions or modifications of them. As the do-
main decomposition must not influence the result, the compact finite differences are
used in the whole computational domain. Solving the resulting tridiagonal equation
system is the crucial part of the parallelization concept. The Thomas algorithm re-
quires two recursive loops (forward and backward) [4]. Therefore each MPI process
has to wait until the previous neighbour has finished its part of the recursive loop.
An ad-hoc implementation would result in a serialisation of the Thomas algorithm.
To avoid that, we make use of the fact that we have to compute not only one but up
to 25 spatial derivatives depending on the spatial direction. The procedure is imple-
mented as follows: the first domain starts with the forward-loop of derivative one.
After its completion, the second domain continues the computation of derivate one
while the first domain starts to evaluate derivative number two simultaneously. For
the following steps, the algorithm continues accordingly. The resulting pipelining is
shown exemplary for the forward-loop in figure 4, the backward loop works in the
opposite direction, accordingly.

If communication time is neglected, the theoretical speedup for forward- and
backward-loop is expressed by:

speedup =
m · n

m + n − 1
(10)

with n being the number of domains in a row or column, respectively, and m the
number of equations to be solved. Theoretical speedup and efficiency of the pipelined
Thomas algorithm are shown in figure 5 for 25 equations as a function of the num-
ber of domains. For 30 domains, efficiency of the algorithm decreases to less than
50 percent. Note that all other computations, e.g. Fourier transformation, Navier-
Stokes equations and time integration, are local for each MPI process. Therefore the
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Fig. 4. Illustration of pipelining showing the forward-loop for three spatial deriva-
tives on three domains. Green colour is denoted to computation, red to communi-
cation and grey colour shows dead time.

efficiency of the pipelined Thomas algorithm does not affect the speedup of the en-
tire code that severely. The alternative to the current scheme would be an iterative
solution of the equation system. The advantage would be to have no dead times, but
quite a number of iterations would be necessary for a converged solution. This would
result in higher CPU time up to a moderate number of domains. As shared memory
parallelization is implemented additionally, the number of domains corresponds to
the number of nodes and therefore only a moderate number of domains will be used.
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Fig. 5. Theoretical speedup and efficiency of the pipelined Thomas algorithm versus
number of domains n for 25 equations.

2.4 Boundary conditions

At the borders of each domain where no neighbour exists, one can select a specific
boundary condition. Up to now a variety of boundary conditions have been imple-
mented. According to their properties, the code knows where time integration has
to be done and where values are prescribed. This allows to easily implement new
boundary conditions or modifications of existing ones, e.g. for disturbance genera-
tion.
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For the jet-noise investigation, we use a one-dimensional characteristic boundary
condition [10] at the freestream. This allows outward-propagating acoustic waves to
leave the domain. An additional damping zone forces the flow variables smoothly to
a steady state solution, avoiding reflections due to oblique waves. Having a subsonic
flow, we also use a characteristic boundary condition at the inflow, allowing upstream
propagating acoustic waves to leave the domain. Additionally amplitude and phase
distributions from linear stability theory (see 2.6) can be prescribed to introduce
defined disturbances. The outflow is the most crucial part as one has to avoid large
structures passing the boundary and contaminating the acoustic field. Therefore, a
combination of grid stretching and spatial low-pass filtering is applied in the sponge
region. Disturbances become increasingly badly resolved as they propagate through
the sponge region. As the spatial filter depends on the step size in x-direction,
perturbations are smoothly dissipated before they reach the outflow boundary. This
procedure shows very low reflections and has been already applied by Colonius et
al. [7].

For the splitter plate representing the nozzle end, an isothermal boundary con-
dition is used with the wall temperature being fixed to its value from the initial
condition. The pressure is obtained by extrapolation from the interior gridpoints.
An extension of the wall boundary condition is the modified trailing edge, where
the end of the splitter plate is no more constant along the spanwise direction. As
we have grid transformation only in the x-y plane and not in z-direction, the span-
wise dependency of the trailing edge is achieved by modifying the connectivity of
the affected domains. Instead of regularly prescribing the wall boundary condition
along the whole border of the respective subdomain, we can also define a region
without wall, now. At these gridpoints, the spatial derivatives in normal direction
are recomputed, now using also values from the domain on the other side of the
splitter plate. The spanwise derivatives are computed in the same manner as inside
the flowfield with the Fourier-transformation being applied along the whole span-
wise extent of the domain. The concept of modular boundary conditions, chosen
because of flexibility and maintainability, requires explicit boundary conditions and
by that a non-compact finite-difference scheme, here. Therefore explicit finite differ-
ences have been developed with properties quite similar to the compact scheme used
in the rest of the domain. The numerical properties of the chosen 8th-order scheme
are compared with standard explicit 6th-order finite differences and the compact
scheme of 6th order, regularly used in the flowfield. For the first derivative, the real
and imaginary parts of the modified wavenumber k∗

mod are shown in figure 6: the
increase from order six to eight does not fully reach the good dispersion relation of
the 6th-order compact scheme but at least increases the maximum of k∗

mod by 10%
compared with an ad hoc explicit 6th-order implementation. The imaginary part of
the modified wavenumber, responsible for dissipation, shows similar characteristics
as the compact scheme with the same maximum as for the rest of the domain. Also
for the second derivative, shown by the square of the modified wavenumber k∗2

mod

in figure 7, the increase of its order improves the properties of the explicit finite
difference towards the compact scheme.
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2.5 Initial condition

For the current investigation, an isothermal laminar subsonic jet with the Mach
numbers MaI = 0.8 for the upper and MaII = 0.2 for the lower stream has been
selected. As both temperatures are equal (T1 = T2 = 280K), the ratio of the stream-
wise velocities is UI/UII = 4. This large factor leads to strong instabilities behind
the nozzle end, so a moderate number of grid points in x-direction is sufficient to
simulate the aeroacoustic source. The Reynolds number Re = ρ∞U1δ1,I/µ∞ = 1000
is based on the displacement thickness δ1,I of the upper stream at the inflow. With
δ1,I(x0) = 1, length scales are normalized with the displacement thickness of the
fast stream at the inflow. The boundary layer of the lower stream corresponds to
the same origin of the flat plate.

The cartesian grid is decomposed into sixteen subdomains as illustrated in figure
8: eight in streamwise and two in normal direction. Each subdomain contains 325 x
425 x 65 points in x-, y- and z-direction, resulting in 42 spanwise modes (dealiased)
and a total number of 143.6 million gridpoints. The mesh is uniform in streamwise
direction with a step size of ∆x = 0.15 up to the sponge region, where the grid
is highly stretched. In normal direction, the finest step size is ∆y = 0.15 in the
middle of the domain with a continuous stretching up to a spacing of ∆y = 1.06
at the upper and lower boundaries. In spanwise direction, the grid is uniform with
a spacing of ∆z = 0.2454 which is equivalent to a spanwise wavenumber γ0 = 0.2
, where λz/2 = π/γ0 = 15.708 is the spanwise extent of the domain. The origin of
the coordinate system (x = 0, y = 0) is located at the end of the nozzle. The nozzle
end itself is modeled by a finite thin flat plate with a thickness of ∆y. Due to the
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vanishing thickness of the nozzle end, an isothermal boundary condition at the wall
has been chosen. The temperature of the plate is T wall = 296K, being the mean
value of the adiabatic wall temperatures of the two streams.

The initial condition along the flat plate is obtained from similarity solutions
of the boundary-layer equations. Further downstream, the full boundary-layer equa-
tions are integrated downstream, providing a flow-field sufficient to serve as an initial
condition and for linear stability theory. The resulting streamwise velocity profiles
of the initial condition are shown in figures 9 and 10. Behind the nozzle end, the flow
field keeps its wake-like shape for a long range. As high amplification rates occur
here, the flow is already unsteady before a pure mixing layer has developed. This
means that the pure mixing layer investigated earlier [2, 5, 7] has to be considered
as a rather theoretical approach.
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Fig. 8. Grid in x-y plane showing every 25th gridline and illustrating the domain
decomposition. Insert: implementation of the splitter plate at the borders of the
corresponding domain.
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2.6 Linear Stability Theory

Spatial linear stability theory (LST) [12] is based on the linearisation of the Navier-
Stokes equations, split into a steady two-dimensional baseflow and wavelike distur-
bances

Φ = Φ̂(y) · ei(αx+γz−ωt) + c.c. (11)

with Φ = (u′, v′, w′, ρ′, T ′, p′) representing the set of fluctuations of the primitive
variables. As only first derivatives in time occur, the temporal problem, where the
streamwise wavenumber α = αr is prescribed, is solved first by a 4th-order matrix
solver providing the complex eigenvalues (ωr, ωi), with ωr being the frequency and
ωi the temporal amplification. Once an amplified eigenvalue is found, the Wielandt
iteration iterates the temporal to the spatial problem by varying the spatial ampli-
fication −(αi) such that ωi = 0. This can also be done for a range of streamwise
wavenumbers αr and x positions to obtain a stability diagram. A selected spatial
eigenvalue (αr, αi) can be fed into the matrix solver to obatin the eigenfunction,
being the amplitude and phase distribution of the primitive variables along y. The
eigenfunctions can be used directly in the DNS-code for disturbance generation at
the inflow.

As the flow is highly unsteady behind the nozzle end and enforcing an artificial
steady state does not work properly, we use the initial condition derived from the
boundary-layer equations to compute eigenvalues and eigenfunctions. According to
figure 11, a fundamental angular frequency of ω = 0.0688 was chosen for the upper
boundary layer. The amplification keeps almost constant in downstream direction.
As the two boundary layers emerge from the same position, the lower boundary layer
is stable up to the nozzle end. Behind the edge of the splitter plate, amplification
rates 50 times higher than in the upper boundary layer occur due to the inflec-
tion points of the streamwise-velocity profile. Maximum amplification in the mixing
layer takes place for a frequency of roughly three to four times of the fundamental
frequency of the boundary layer as illustrated in figure 12.
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3 Numerical Results

For the pure mixing layer without splitter plate [2], we already found that intro-
ducing a steady longitudinal vortex leads to a break-up of the big spanwise vortices
and may reduce the emitted sound originating from vortex pairing. A variety of
wall-mounted actuators are cogitable for the generation of streamwise vortices, our
approach is to engrail the trailing edge of the splitter plate. Here, a rectangular span-
wise profile of one notch per spanwise wavelength with a depth of 10 in x-direction
has been chosen as a first choice. At the inflow of the upper boundary layer, the flow
is disturbed with the Tollmien-Schlichting (TS) wave (1, 0) with the fundamental fre-
quency and an amplitude of ûmax = 0.005, being the same as for the two-dimensional
simulation, performed earlier [3]. The TS wave generates higher harmonics in the
upper boundary layer, driving the roll-up of spanwise vortices (Kelvin-Helmholtz in-
stability) and the subsequent vortex pairing behind the splitter plate. An additional
oblique wave (1, 1) with a small amplitude of ûmax = 0.0005 is intended to provide
a more realistic inflow disturbance than a purely two-dimensional forcing. A total
number of 80000 time steps with ∆t = 0.018265 has been computed, corresponding
to an non-dimensional elapsed time of t = 1461, with the last four periods of the
fundamental frequency used for analysis.

The instantaneous flowfield is illustrated in figure 13, showing the λ2 vortex
criterion. Small vortices emerge from the longitudinal edges, slightly deforming the
first spanwise vortex of the Kelvin-Helmholtz instability. Further downstream, mul-
tiple streamwise vortices exist per λz,0, being twisted around the spanwise vortices.
This vortex interaction leads to a breakdown of the big spanwise vortices. From
x ≈ 120 onwards, the Kelvin-Helmholtz vortices known from the two-dimensional
investigations are now an accumulation of small-scale structures.

A spectral decomposition is shown in figures 14 and 15, based on the maximum of
v along y. The normal velocity has been chosen as it is less associated with upstream
propagating sound. The modes are denoted as (h, k) with h and k being the multiple
of the fundamental frequency ω0 and the spanwise wavenumber γ0, respectively.
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Fig. 13. Perspective view of the engrailed trailing edge and the vortical structures in
the instantaneous flow field, visualised by the isosurface λ2 = −0.005. The distance
from the plane of the splitter plate (y = 0) is coloured from blue to red.

As figure 14 shows, the nonlinear interaction of the introduced disturbances (1, 0)
and (1, 1) in the upper boundary layer generates nonlinearly the mode (0, 1) up
to an amplitude of v̂ = 2 · 10−5. From x = −25 onwards, the upstream effect of
the notch at the end of the splitter plate prevails. The engrailment at the end of
the splitter plate (−10 ≤ x ≤ 0) generates steady spanwise disturbances (0, k)
with peaks up to v̂ = 8 · 10−3 at the corners. In the notch (7.8 ≤ z ≤ 23.6),
the combination of wake and mixing layer originates further upstream at x = −10
instead of x = 0. This results in a spanwise deformation, corresponding to the
disturbance (0, 1). Its amplitude decreases behind the splitter plate up to x = 15.
Higher harmonics in spanwise direction (0, 2) and (0, 4) are generated at the notch as
well, but only mode (0, 2) shows a similar upstream effect as mode (0, 1). Behind the
splitter plate, the amplitudes of the first two higher harmonics in spanwise direction
stay almost constant at an amplitude of v̂ ≈ 6 · 10−4 and v̂ ≈ 4 · 10−4, respectively.
As two streamwise vortices per λz,0 emerge from the longitudinal edges, the steady,
spanwise higher harmonics mainly correspond to these streamwise vortices. The
similar amplitudes behind the splitter plate indicate that the engrailed trailing edge
introduces a spanwise deformation due to the different origin of the mixing layer as
well as longitudinal vortices. For x > 40, all steady modes grow due to non-linear
interaction with the travelling waves, resulting in a spanwise deformation of the
mixing layer.

The introduced two-dimensional TS wave grows slowly in the upper boundary
layer. Figure 16 reveals the good agreement of its amplification rate with linear
stability theory. Near the end of the splitter plate, the amplification rate differs
from LST due to the discontinuity in geometry. With an amplitude of the driving TS
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wave of v̂ ≈ 2 ·10−3, shown in figure 15, the generated higher harmonic modes (2, 0),
(3, 0) reach an amplitude of v̂ ≈ 3 · 10−4 and v̂ ≈ 2 · 10−5, respectively. According to
the forcing at the inflow, only low-amplitude oblique disturbances (2, 1) and (3, 1)
are generated in the upper boundary layer. Behind the splitter plate, the growth of
two-dimensional disturbances (h, 0) is only weakly affected by the engrailed trailing
edge. The growth rate of the fundamental frequency shows excellent agreement with
linear stability theory. The higher the frequency of the disturbances, the more differs
their amplification rate with a slightly lower mean amplification value compared to
LST. The initially small three-dimensional disturbances (h, 1) grow instantaneously
at the beginning of the notch (x = −10) by approximately one order of magnitude.
Further downstream, they are driven by their two-dimensional counterparts (h, 0).
Saturation of the first two higher harmonics (2, 0) and (3, 0) occurs at x ≈ 70, the
position of the first vortex roll up. The two-dimensional fundamental disturbance
(1, 0) saturates at x ≈ 140. This corresponds to the pairing of the accumulated
small-scale structures.

x
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Fig. 14. Generation of the steady
modes (0, k) at the trailing edge, based
on the maximum of v over y.
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Fig. 15. Maximum amplitude of nor-
mal velocity v along y for unsteady
modes (h, k).

In order to evaluate the effect of the modified trailing edge, the emitted sound
is compared with a two-dimensional simulation with the same flow parameters, per-
formed earlier [3]. The acoustic field, visualised by the dilatation ∇u, is given for
the two cases in figures 18 and 19 for the two-dimensional simulation and the en-
grailed trailing edge, respectively. In both cases, no reflections from the boundaries
are visible. For the two-dimensional simulation, the acoustic field is determined by
long-wave sound, originating mainly from x ≈ 150 and x ≈ 220. This corresponds
to the positions of vortex pairing [3]. The emitted sound for the engrailed trailing
edge is mainly high-frequency noise with short wavelengths.

Despite being a two-dimensional simulation, the acoustic field in figure 18 is
less clearer than for the pure mixing layer [7]. Nevertheless two main sources can be
determined at x ≈ 150 and x ≈ 220, corresponding to the positions of vortex pairing
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Fig. 16. Amplification rate of the
Tollmien-Schlichting wave, compared
with linear stability theory (marked
with symbols).
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Fig. 17. Amplification rates of two-
dimensional disturbances behind the
splitter plate, compared with linear
stability theory (marked with sym-
bols).

[3]. The emitted sound for the engrailed trailing edge is mainly high-frequency noise
with short wavelengths as shown in figure 19. The main sources are located at
x ≈ 140 and x ≈ 200 which is equivalent to the pairing of the allocations of the
small-scale structures. For both, the two-dimensional case and the modified trailing
edge, sound generation takes place not directly at the edge of the splitter plate, but
further downstream in the mixing layer.

The dilatation plots themselves do not show clearly whether the emitted sound
is reduced. By placing an observer in the acoustic far-field (x = 195, y = −121.8, z =
0), marked by a cross in figure 19, the sound pressure level can be evaluated more
precisely. The time-dependent pressure fluctuations are shown in figure 20 over four
periods of the fundamental frequency. For both cases, the pressure fluctuations are
almost random. The two-dimensional sample is dominated by low-frequency fluc-
tuations compared to the engrailed-trailing-edge case. The pressure fluctuations of
the two- and three-dimensional case are p′

2D = 0.0139 and p′

3D = 0.00693, respec-
tively. This means that the engrailed nozzle end leads to a reduction by a factor
two, corresponding to a decrease of the noise by -6dB.
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Fig. 18. Snapshot of the far-field
sound for the two-dimensional simu-
lation showing the dilatation ∇u in a
range of ±3 · 10−4.

Fig. 19. Snapshot of the dilatation
field ∇u for the engrailed trailing edge
at spanwise position z = 0. Contour
levels are the same as in figure 18.
The position of the acoustic observer
is marked by a cross.
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Fig. 20. Acoustic pressure fluctuations in the far-field at the observer’s position
(x = 195, y = −121.8) for 2-d and 3-d trailing-edge simulation. The plotted time
interval corresponds to four periods of the fundamental frequency.

4 Computational Aspects

The simulation was run on the NEC-SX8 Supercomputer of the hww GmbH,
Stuttgart, using 16 nodes which corresponds to a total number of 128 processors.
On each node, one MPI process was executed, each with shared-memory paralleliza-
tion having eight tasks. The computation of 80000 time steps required 46 hours
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wall-clock time. This leads to a total CPU-time of nearly 6000 hours and a specific
computational time of 1.8µs per gridpoint and time step (including four Runge-
Kutta subcycles), being only the double value of the incompressible N3D code of
the IAG [13]. With a sustained performance of 694.7 GFLOP/s, 34% of the the-
oretical peak performance of the computer are reached. The code shows a vector
operation ratio of 99.47% with an average vector length of 206 and a total memory
size of 162 GB. As the array sizes of each domain are equal, only slight perfor-
mance differences between the MPI processes exist. Profiling shows that the main
computational time (40%) is spent in the Fourier-transformation, followed by the
evaluation of the Navier-Stokes equations with 17.4% CPU-time. The computation
of the spatial derivatives in streamwise and normal direction requires 10% and 16%,
respectively. Time-integration is only a minor part with 1.7% CPU-time.

Having 21 derivatives in x- and 25 derivatives in y-direction, the theoretical
speedup of the pipelined Thomas algorithm is, according to equation (10), 6 for the
streamwise and 1.92 for the normal direction. This means that the efficiency of the
corresponding parts of the code is 75% and 96%, respectively. Taking into account
that the major parts of the code (FFT, Navier-Stokes equations) are local for each
MPI process, the overall efficiency regarding MPI parallelization is around 96%.
As mentioned in section 2.3, this does not include communication times. Neverthe-
less, profiling shows that the time spent for data transfer is negligible. A limiting
factor for the shared-memory parallelization is the spanwise resolution. For a sym-
metric computation, the number of gridpoints in z-direction is (2n + 1), with the
integer n depending on the number of spanwise modes (here n = 6). By that, the
spanwise resolution is not a multiple of 8 (the number of shared-memory tasks).
The spanwise resolution of 65 points used here means that seven processors pass a
Microtasking-loop eight times and 1 processor nine times. By that the efficiency of
a shared-memory parallelized loop decreases to 90%. This value corresponds well to
the profiling results, showing that 10.5% of the CPU-time is spent in the barriers,
framing a Microtasking-loop (e.g. subroutines ex lpminit, ex lpmterm). This prob-
lem does not exist for non-symmetric simulations, the spanwise resolution is then
an exact multiple of eight. Including the losses of both types of parallelization, an
overall efficiency of 86% on 128 processors was reached.

To achieve further gains in performance, we intend to optimise the code further,
with the main focus on the Fourier-transformation as it requires the most of the
computational time. By using the FFT from the SX8 internal library instead of our
own subroutines [8], we hope to achieve improvements, since this increased the speed
of the incompressible N3D code by 20-30% [13].

5 Conclusion

The sound generation of an isothermal subsonic jet with Mach numbers MaI = 0.8
and MaII = 0.2 has been simulated using spatial DNS. The nozzle end is mod-
elled by a thin finite flat plate with spanwise engrailment at its trailing edge. This
modification of the nozzle end serves as a first example of an actuator for noise
reduction, generating streamwise vortices and a spanwise deformation of the flow.
Further downstream, the induced longitudinal vortices are bended around the span-
wise vortices of the Kelvin-Helmholtz instability, leading to a breakdown of the large
coherent structures. By that, the spanwise vortices, known from two-dimensional
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simulations are now an accumulation of small scale structures. The emitted sound
is compared to a two-dimensional simulation with the same flow parameters. The
engrailed trailing edge leads to higher-frequency noise, while the generated sound
of the two-dimensional simulation is dominated by low-frequency noise. Despite the
parameters of the notch were chosen arbitrarily, a noise reduction of 6dB could
be achieved. Therefore, we are confident that further improvements in jet-noise re-
duction are possible. Besides finding the optimal parameters for the engrailment
(shape and dimensions), we also intend to test different types of active and passive
actuators.

The investigation was performed using our complete simulation framework of
preprocessing, stability analysis, DNS and postprocessing. Due to the combination
of frontend machine and supercomputer, a comfortable combination of our tools is
possible. This does not only increase the usability, it also provides reproducibility of
the complete set of results. The DNS code NS3D uses a hybrid parallelization of MPI
and Microtasking. The achieved computational performance is 694.7 GFLOP/s on 16
nodes of the NEC-SX8 vector computer, corresponding to 34% of its theoretical peak
performance. The parallel efficiency of the code was investigated by a combination
of theoretical analysis and profiling. For this simulation, a scaling of 86% on the 128
processors was reached.
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