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Summary

The analysis of complex flow fields based on the notion of organized motions of flow
field features with spatial and temporal coherence, the so-called coherent structures,
is one of the principal methods in the development of advanced analysis tools in
fluid mechanics. For decades the focus of research was on vortex structures as the
only coherent structure of interest, caused by the significant role of these structures
in the understanding of the main fluid dynamical events, e.g. turbulence in boundary
layers. A new topic is the extension of the flow field analysis by shear layer struc-
tures. The consideration of the shear layer structures allow additional informations
in dynamical processes, e.g. generation and decay of vortex structures.

1 Introduction

For real-life flow control applications it is desirable to have a better understanding
of fundamental fluid dynamical mechanisms and to possess methods for their auto-
matic detection, quantification and monitoring. Traditionally, people use the concept
of vortex structures, which are also known as coherent structures in the literature, to
describe and generalize a multitude of fluid motions. For a viscous flow, however,
shear layers are equally important. This leads to the question of their interactions,
i.e. the formation of new vortices either by shear layer roll-up or by the interaction
and merging of already existing vortices, and the formation of new shear layers by
vortices.

Such problems have been already studied in the past, e.g. in qualitative particle
visualization of flow fields to analyze vortex structures. However, without the avail-
ability of a quantitative analysis of fluid dynamics and of numerical methods for an
automatic detection of relevant events.

In the present work we first identify shear layers and vortices in a given flow
field using numerical implementations of analytical criteria. During their lifetime,
criteria, like position, size, vorticity, enstrophy, circulation, etc. of each structure are
recorded and tracked, such that a compact graphical representation of the identified
dynamics can be shown. We then look for the birth of new vortices, e.g. out of shear
layers or by the merging of two interacting vortices. Once these have been found



“by hand” we evaluate and compare the extracted data for these events. Our intent
is to find criteria for an automatic identification of events in general configurations
using these methods. The current state of the work will be explained on the analysis
of a two-dimensional laminar shear layer that has been generated by the merging of
two parallel streams with different velocities.

2 Identification of Coherent Structures
2.1 Vortex Structures

The main vortex identification criteria are derived from the definition of a vortex
structure as a finite volume of fluid particles with a rotational motion around a center
line. They can be classified according to the following categories:

– The first group contains conventional criteria like vorticity, pressure, as well as
the investigation of vortices using streamlines and pathlines. The inadequacies
of these criteria and methods were discussed, e.g., by Jeong and Hussain [5].

– The basic concept of the second group of criteria is the eigenvalue analysis of
the velocity gradient tensor ∇v in order to detect a vortical motion.

– The widely used Q or Okubo-Weiss criterion, which is described in section 2.2,
and λ2 [5] criterion are based on the decomposition of the velocity gradient
tensor into a rotational motion and shear stress.

– The latest group considers shear in the identification of vortex structure regions,
as higher shear was identified as a critical factor in the identification of vortex
structures.

One of the latest criterion, which is considering the effects of shear in the vor-
tex identification, is the approach of Kolář [6]. The triple decomposition method
of Kolář is an extension of the traditional double decomposition of the velocity-
gradient tensor ∇u in to a symmetric (Ω) and an antisymmetric (S) part. The mo-
tivation for the triple decomposition is the fact that vorticity cannot distinguish be-
tween pure shearing motion and vortical motion, and strain rate cannot distinguish
between straining motion and shearing motion. The advantage of a triple decom-
position of the velocity-gradient tensor compared to a double decomposition is the
inclusion of pure shearing motion as one of the elementary motions of a fluid ele-
ment.

The outcome of the triple decomposition of the velocity-gradient tensor is∇u =
SRES + ΩRES + (∇u)SH , where the term (∇u)SH represents the pure shearing
motion, the term SRES represents the new strain-rate tensor which neglects the
portion of strain rate effected by shear and the last term ΩRES represents the new
vorticity tensor which neglects the portion of vorticity effected by shear.

The new vortex identification criterion based on the outcome of the triple de-
composition of the velocity-gradient tensor is related to the vortex identification
by vorticity strength in the double decomposition. The newly determined scalar for
vortex identification is called ωRES and represents the corrected vorticity. The new
criterion is Galilean invariant, it requires no thresholds and the magnitude of the
scalar represents the strength of the rotational motion of a fluid element.



Although the influence of high-shear regions in the identification of vortex struc-
ture regions is a currently discussed topic in flow field analysis, the understanding of
it is still not clear. Hence it is necessary to analyze the effects of shearing on vortex
structure identification and vortex dynamics.

2.2 Shear Layer Structures

One of the main characteristics of shear-layer structures is that shear regions are also
regions of high vorticity, comparable to vortex structures. Although most studies of
flow-field features are based on vortex-structure analysis due to their importance
for fluid dynamics, the significance of shear layers on vortex dynamics is not neg-
ligible. Shear layers are of interest, for example in vortex generation, vortex-vortex
interaction, vortex-shear layer interaction, but also in the understanding of vortex
structures and their identification in flow fields.

The main Eulerian shear layer identification criteria are also based on the double
decomposition of the velocity gradient tensor ∇u.

As shear layer regions are defined as regions of high strain, the identification of
shear layers is based on the strain-rate tensor S. In order to identify a shear layer,
it is preferable to compute a scalar value that represents the strength of the strain.
One of the most important criteria is the Q criterion, i.e., the second invariant of
the velocity gradient tensor, which is typically used for the identification of vortex
regions, but can also be used to identify areas of high shear stress. It determines if
a point of a flow field is dominated by rotation, i.e., ‖Ω‖ > ‖S‖ → Q > 0, or by
strain, where ‖Ω‖ < ‖S‖ → Q < 0. Hence it follows that a point is identified as
part of a shear layer if Q < 0, where the norm stands for the Frobenius norm of Ω
and S with ‖Ω‖ =

√
Tr(ΩΩT ) and ‖S‖ =

√
Tr(SST ), respectively.

Another method was proposed by Haimes et al. [2], where an eigenvalue analy-
sis of the strain-rate tensor is applied. Since S is symmetric and positive, it has al-
ways three real eigenvalues (λS1, λS2, λS3). The vector formed by the eigenvalues
of S defines the principal axis of deformation and the norm of the second principal
invariant is used as a measure of the shear. According to Haimes et al., the rate of
shear stress is defined by:

SH =

√
(λS1 − λS2)2 + (λS1 − λS3)2 + (λS2 − λS3)2

6
. (1)

In this work, we use the criterion by Haimes et al. since the criterion works
directly on the shear stress tensor and the outcome is a measure for the strength of
shear stress on a fluid element.

Each of the criteria, Q and SH , is independent of the variation of a reference
frame with constant speed; therefore, both criteria are at least Galilean invariant.
Furthermore, the criterion of Haimes et al. is also rotational invariant in contrast to
the Q criterion, where the result depends on the orientation of the reference frame
(for more detailed information see [3]). Another disadvantage of the Q criterion
consists of its exclusive behavior, i.e., either a region is detected as a vortex or as
shear layer. Thus, the criterion decides which of both features, the vortex strength
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Figure 1 Snapshots of the vorticity field of the 2D mixing layer.

or the strain, dominates at a point inside the flow. In our opinion, this makes the
Q criterion actually insufficient for the temporal exploration of shear layers, since
they might undergo a roll-up process in order to activate the generation of new
vortices. This makes it necessary to know both values, especially at points where
both quantities are simultaneously present.

3 Identification of Vortex Generation in a Shear Layer

The present investigations are based on the results of a two-dimensional direct nu-
merical simulation of a subsonic mixing layer behind a flat plate [1]. The analyzed
case is isothermal with the Mach numbers MaI = 0.8 for the upper and MaII = 0.2
for the lower stream. The ratio of the streamwise velocities is UI/UII = 4 and the
temperatures of both streams are T = 280K.

The wake of the plate consists of two shear layers of opposite sign, cf. figure 1.
The upper one, which is stronger starts to roll-up into vortices at x ≈ 60. Another
observation is the merging of back-to-back vortex structure pairs at x > 80. The
problem with vorticity, used in figure 1, is that it cannot distinguish between vortices
and shear layer. For that purpose we use the methods introduced above, namely
λ2 for vortex and SH for shear-layer identification. According results for the first
snapshot in figure 1 are shown in figures 2a and 2b, respectively.

The shear layer identification in figure 2b shows how the strong upper shear
layer disappears further downstream (note the obvious contrast to the vorticity in
figure 1). Inside the vortices, especially as they grow in strength, the shear develops
a local minimum. This has to be expected because a solid-body rotation in the vortex
cores should be shear-free. At the same time new shear is generated by friction at the
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Figure 2 Visualization of a two-dimensional flow field downstream a flat plate. (a) λ2 (blue
regions: λ2 < 0.05 ∗ (λ2)min; green regions: 0.05 ∗ (λ2)min < λ2 < 0.001 ∗ (λ2)min and
shear layers (black lines: SH values between 0.03 1

s
and 0.27 1

s
; red lines: SH values between

0.006 1
s

and 0.012 1
s

, (b) Shear layer visualization with the approach of Haimes and display
of vortex structures (lines).

edges of the detected vortices and around them. This kind of behaviour has already
been observed earlier in the analysis of isolated vortices [4].

The present example also reveals the dependence of the results on the chosen
threshold. To show this, we have considered two different λ2 thresholds in figure
2. However, they indicate that the identification of the strong vortices in the down-
stream part of the domain is independent of the chosen threshold. But the identi-
fication of the first occurrence of a vortex is strongly threshold dependent. It may
happen directly at x = 0 or at any position further downstream, such that an objec-
tive definition is not possible.

For the purpose of a better understanding of vortex formation in the present sce-
nario we consider the amplification of the fundamental disturbance and its higher
harmonics in figure 3 (obtained from a Fourier analysis of the flow field). This de-
composition allows to identify the emergence of the first structures out of very-
small-amplitude instabilities. Initially, the fundamental frequency dominates as this
one is the most unstable in the upstream boundary layer. As the wake of the flat
plate is encountered beyond x = 0 the most unstable frequency shifts to a three
times higher value, cf. [1]. This is why the second harmonic (3 · f0) grows faster
there. At x ≈ 50 all modes of the disturbance spectrum finally saturate. This co-
incides with the formation of the first observable local vorticity maximum within
the shear layer in figure 1. The distance of the ensuing individual vortices perfectly
agrees with the wave length of the according shear layer instability, i.e. the second
higher harmonic. A change occurs around x ≈ 87 where the fundamental frequency
supersedes the second harmonic again. This can be associated to the vortex pairing
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Figure 3 Maximum amplitude of the streamvise velocity u′ downstream of the flat plate.
The fundamental frequency and the two higher harmonics of the fundamental frequency are
plotted.

between neighbouring vortices in the instantaneous pictures. Note that the funda-
mental herewith becomes a subharmonic of the second harmonic. The considera-
tion of figure 3 confirms that the emergence of vortices from the free shear layer
is a continuous process that starts at very low amplitudes such that the threshold-
sensitivity of the vortex identification scheme is not a failure of the latter but rather
a true consequence of the underlying physics.

In figures 4 and 5 we discuss the streamwise evolution of vorticity ω, shear SH ,
residual vorticity ωRES , and −λ2 further. The idea is to show the interplay between
vorticity, shear and vortical motion from the initial formation of vortices until the
beginning of the pairing stage. For these plots the mean flow has been subtracted and
the fluctuation amplitudes are shown as root-mean-square (rms) values. A similar
analysis could be performed for instantaneous data but here we confine ourselves to
the average.

Figure 4 presents vertical cuts through the data at x = const while figure 5
follows the amplitudes at y = 0 in streamwise direction. Initially, vorticity and
shear are identical and the vortex criteria remain at negligible values, which con-
firms our statements made further above. The first vertical cut shown in figure 4a
clearly depicts the amplitude of a shear-layer instability. At the next station, the
shear maximum at y = 0 starts to decrease with respect to vorticity. As the vortex
criteria start to grow at the same time, we see that the emergence of vortices has
started now. At x = 65 a changeover takes place: shear SH and residual vorticity
ωRES become equally large. This corresponds to the emergence of a clear vorticity
‘blob’ in figure 1 and one might think about suggesting this cross-over point as a
possible unbiased criterion for the first occurrence of a vortex out of a shear layer.
What follows is a dominance of the residual vorticity over shear inside the mixing
layer which indicates that the latter has been split into vortices. The widening of
the mixing layer in y-direction and the continuous decrease of the maxima further
downstream is due to the averaging process when computing the rms over many
individual vortices. A second increase of the shear maximum after x ≈ 80 can be



attributed to the generation of new shear layers that surround the individual vor-
tices which has already been mentioned in connection with figure 2b. An additional
growth occurs in-between neighbouring vortices before they merge because of the
high friction there. This contributes to the increase of SH,rms as well.
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Figure 4 Amplitudes of ωrms, Srms, ωRES,rms and λ2,rms at different x-positions

4 Conclusion

Although the focus of research was on vortex structures for decades, the discussions
about the importance of shear regions in the identification of vortex structures re-
vealed the relevance of shear in the understanding of the vortex dynamics and flow
field analysis. As shown in section 2.2 it is possible to define an additional type of
coherent structures, in this case the coherence is based on shear. The example in
section 3 shows the importance of shear layer structures in the formation of new
vortex structures, hence the mechanism is a roll-up of the shear layers caused by
instabilities and the first observation of vortex structures is influenced by the cho-
sen threshold. However, a decomposition of vorticity into pure shear and residual
vorticity, which is solely due to vortical motion, yields deeper insights into the dy-
namics of vortex formation out of a shear layer and the further development of these
vortices. Our next step will be a more detailed analysis of vortex merging using the
methods presented here.
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