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Abstract Fundamental mechanisms of jet noise are investigated by means of direct
numerical simulation. In the mixing layer, subharmonics ofthe respective vortex
pairing are found to be responsible for the main part of the generated noise which is
directed in downstream direction. By modifying the phase shift between introduced
disturbances it is possible to diminish or enhance relevantportions of the emitted
sound. Optimal control has been applied successfully to a plane mixing layer. In
the far field, the mean noise level could be reduced. Depending on the measurement
line, some distributed control or anti-noise is generated by the control. A more real-
istic configuration is achieved by adding a splitter plate representing the nozzle end.
Rectangular serrations lead to a breakdown of the large coherent spanwise vortical
structures and thus provide a noise reduction of 9dB.

1 Introduction

Noise reduction is of great interest for a variety of technical applications. This is
especially the case in aviation. Since most airports are located in highly populated
areas, the reduction of aircraft noise can improve the quality of life for many people.
Especially during take-off, jet noise is the largest aeroacoustic source of an aircraft.
Recent reductions of jet noise are mainly due to an increasedbypass ratio in the
turbojet engine. Currently a geometric variation of the nozzle end is considered,
known as chevron-nozzle. Its noise reduction is often explained by an increased
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mixing behind the trailing edge of the nozzle. However the underlying physical
mechanisms are not yet fully understood.

Within the subproject 5Mechanisms and Active Control of Jet-induced Noise, the
mechanisms of noise generation and its reduction are investigated using direct nu-
merical simulations (DNS). Such aeroacoustic simulationsface several difficulties
due to largely different scales of flow field and acoustics. The hydrodynamic fluctu-
ations are small-scale structures containing high energy compared to the acoustics
with relatively large wavelengths and small amplitudes. Therefore, high resolution is
required to compute the noise sources accurately. On the other hand a large compu-
tational domain is necessary to obtain the relevant portions of the acoustic far-field.
Due to the small amplitudes of the emitted noise, boundary conditions have to be
chosen carefully, in order not to spoil the acoustic field with reflections.

Since computational resources are limited, one possibility is the simulation of
low-Reynolds-number jets, e.g. done by Freund [12]. Our focus is set on the mix-
ing layer behind the nozzle end which is responsible for the most anoying high-
frequency noise. As sketched in figure 1, mixing layers occurbetween the primary
and the bypass stream and between the bypass stream and the freestream. Having
high Reynolds-number jets at an aircraft’s engine, the large diameter allows to ne-
glect curvature. This approach is widely used [6, 9] for large-eddy or direct numeri-
cal simulations, where an S-shaped velocity profile is prescribed at the inflow. This
flow field allows to investigate the fundamental mechanisms of noise generation and
its control. Beyond this, the nozzle end can be included in the simulation, leading
to a combination of wake and mixing layer. This provides a more realistic configu-
ration and allows to simulate wall-mounted actuators. In this context, the engrailed
nozzle end can be interpreted as a first passive ’actuator’.

Fig. 1 Sketch of a typical bypass jet engine with the occurring mixing layers behind the nozzles.

At the beginning of the project, a high-order, low-dispersion/low-dissipation nu-
merical scheme for the solution of the unsteady compressible Navier-Stokes equa-
tions was available [11]. However, more complex configurations and parallelization
requirements lead to the development of a new DNS code. The code is embedded
in a simulation framework including initial conditions, linear stability theory (LST)
and postprocessing based on EAS3 [10]. The numerical schemehas been verified
for aeroacoustic simulations by comparison with the benchmark problem [9]. An al-
ternative method of handling the multiscale problem is the coupling with an acoustic
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solver. Its principle functionality could be shown in cooperation with subproject 3
[2].

IMFT has gained experience in the application of optimal control theory, see e.g.
[1, 19]. The application of the adjoint equations has been extended to compressible
flows [17, 18]. The open-loop control with DNS is the only approach which allows
to deal with some one million of unknowns for each time step. The main drawback
of the open-looped control is a poor robustness due to the absence of a feedback
loop. With the real flow conditions being different from the ones used to design the
optimal control, at least the control law can be inefficient or may even increase the
noise emission. However, as demonstrated in [18], the sensitivity analysis which
can be seen as an initial step of an optimal control approach can propose some
essential information about the optimality in types and in the positions of sensors
and actuators for a feedback control system. With some few runs it is then possible
to have a better idea of the capacity of controlling the physics of the flow.

The numerical methods used for DNS and optimal control are addressed in sec-
tions 2.1 and 2.2, respectively. The fundamental mechanisms of noise generation in
a two-dimensional mixing layer are discussed in 3. Section 4describes the optimal
control applied to such a flow field. The influence of a serratednozzle end is treated
in section 5 and the emitted sound is compared to the case witha straight trailing
edge.

2 Numerical Method

2.1 Direct Numerical Simulation

Direct numerical simulations are performed by the DNS-codeNS3D [5] solving the
unsteady three-dimensional compressible Navier-Stokes equations on multiple do-
mains. The purpose of domain decomposition is not only to increase computational
performance. The combination with grid transformation andthe concept of modular
boundary conditions allows to compute a wide range of problems. Computation is
done in non-dimensional quantities: velocities are normalized by the reference ve-
locity ũ∞, and all other quantities by their inflow values, marked withthe subscript
∞. Length scales are made dimensionless with a reference length L̃ and the timet
with L̃/ũ∞, where the tilde denotes dimensional values. Temperature dependence of
viscosityµ is modelled using the Sutherland law:

µ̃(T) = µ̃(T̃∞) ·T3/2 · 1+Ts

T +Ts
, (1)

whereTs = 110.4K/T̃∞ and µ̃(T̃∞ = 280K) = 1.735· 10−5kg/(ms). Thermal con-
ductivity ϑ is obtained by assuming a constant Prandtl numberPr = cpµ/ϑ . The
most characteristic parameters describing a compressibleviscous flow-field are the
Mach numberMa = u∞/c∞ and the Reynolds numberRe= ρ∞u∞L/µ∞. We use the
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conservative formulation of the Navier-Stokes equations which results in the solu-
tion vectorQ = [ρ ,ρu,ρv,ρw,E] containing the density, the three mass fluxes and
the total energy per volume:

E = ρ ·cv ·T +
ρ
2
·
(

u2 +v2+w2) . (2)

The simulation is carried out in a rectangular domain withx, y, z being the co-
ordinates in streamwise, normal and spanwise direction, respectively. The flow is
assumed to be periodic in spanwise direction. Thus a spectral discretization is used
in z-direction:

f (x,y,z,t) =
K

∑
k=−K

F̂k(x,y,t) ·ei(kγ0z) . (3)

f denotes any flow variable,̂Fk its complex Fourier coefficient,K the number of
spanwise modes andi =

√
−1. The fundamental spanwise wavenumberγ0 is given

by the fundamental wavelengthλz,0 representing the width of the integration domain
by γ0 = 2π/λz,0.

Spanwise derivatives are computed by transforming the respective variable into
Fourier space, multiplying its spectral components with their wavenumbers(i ·k·γ0)
for the first derivatives or square of their wavenumbers(−k2 · γ2

0) for the second
derivatives and transforming them back into physical space. Due to the non-linear
terms in the Navier-Stokes equations, higher harmonic spectral modes are generated
at each time step. To suppress aliasing, only 2/3 of the maximum number of modes
for a specificz-resolution are used [7]. If a two-dimensional baseflow is used and
introduced disturbances ofu, v, ρ , T, p are symmetric and disturbances ofw are
antisymmetric, flow variables are symmetric/antisymmetric with respect toz = 0.
Therefore only half the number of points in spanwise direction are needed (0≤ z≤
λz/2), or equivalently, thêFks are either purely real or imaginary.

The spatial discretization in streamwise (x) and normal (y) direction is done
by 6th-order compact finite differences. The tridiagonal equation systems result-
ing from the compact finite differences are solved using the Thomas algorithm. To
reduce the aliasing error, alternating up- and downwind-biased finite differences are
used for convective terms as proposed by Kloker [15]. The second derivatives are
evaluated directly which distinctly better resolves the second derivatives compared
to applying the first derivative twice, see [4]. Additionally, the numerical scheme is
more robust since the second derivative does not vanish for the least resolved wave.
Arbitrary grid transformation in thex-y plane is provided by mapping the physical
grid on an equidistant computationalξ -η grid:

x = x(ξ ,η) , y = y(ξ ,η) . (4)

Time integration of the Navier-Stokes equations is done using the classical 4th-
order Runge-Kutta scheme as described in [15]. At each time step and each interme-
diate level the biasing of the finite differences for the convective terms is changed.
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At the borders of each domain where no neighbor exists, specific boundary con-
ditions can be selected. For the current investigation, we use a one-dimensional char-
acteristic boundary condition [13] at the freestream. Thisallows straight outward-
propagating acoustic waves to leave the domain. An additional damping zone drives
the flow variables smoothly towards to a steady state solution, avoiding reflections
due to oblique waves. Having a subsonic flow, we also use a characteristic boundary
condition at the inflow. Additionally amplitude and phase distributions from linear
stability theory can be prescribed to introduce defined disturbances. Their phase
shift is defined with respect to the maximum amplitude of the streamwise velocity.
The disturbances due to the eigenfunctions are added after the characteristic bound-
ary condition is applied. Thus they are less affected by the characteristic treatment.

The outflow is the most crucial part as one has to avoid large structures passing
the boundary and contaminating the acoustic field. Therefore, a combination of grid
stretching and spatial low-pass filtering is applied in the sponge region. Disturbances
become increasingly badly resolved as they propagate through the sponge region. As
the strength of the spatial filter depends on the step size inx-direction, perturbations
are smoothly dissipated before they reach the outflow boundary. This procedure
shows very low reflections and has been already applied by Colonius et al. [8].

For the splitter plate representing the nozzle end, an isothermal boundary con-
dition is used with the wall temperature being fixed to its value from the initial
condition. The pressure is obtained by extrapolation from the interior gridpoints.
An extension of the wall boundary condition is the modified trailing edge, where
the end of the splitter plate is no more constant along the spanwise direction. As we
have grid transformation only in thex-y plane and not inz-direction, the spanwise
dependency of the trailing edge is achieved by modifying theconnectivity of the af-
fected domains. Instead of regularly prescribing the wall boundary condition along
the whole border of the respective subdomain, we can also define a region with-
out wall, now. At these gridpoints, the spatial derivativesin normal direction are
recomputed, now using also values from the domain on the other side of the split-
ter plate. The spanwise derivatives are computed in the samemanner as inside the
flowfield with the Fourier-transformation being applied along the whole spanwise
extent of the domain. Inside the notch the full equations with the newly computed
y-derivateives are solved. The concept of modular boundary conditions, chosen be-
cause of flexibility and maintainability, requires explicit boundary conditions and
by that a non-compact finite-difference scheme, here. Therefore explicit finite dif-
ferences have been developed with properties similar to thecompact scheme used
in the rest of the domain. The numerical properties of the chosen 8th-order scheme
are compared with standard explicit 6th-order finite differences and the compact
scheme of 6th order, regularly used in the flowfield. For the first derivative, the real
and imaginary parts of the modified wavenumberk∗mod are shown in figure 2: the
increase from order six to eight does not fully reach the gooddispersion relation of
the 6th-order compact scheme but at least increases the maximum ofk∗mod by 10%
compared with an ad hoc explicit 6th-order implementation. The imaginary part of
the modified wavenumber, responsible for dissipation, shows similar characteristics
as the compact scheme with the same maximum as for the rest of the domain.
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Fig. 2 Real and imaginary part of the mod-
ified wavenumberk∗mod for the first deriva-
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compact scheme.
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Fig. 3 Square of the modified wavenum-
ber of the second derivative for a wave with
wave numberk∗ = k·∆x. Comparison of 8th-
order explicit finite difference with 6th-order
explicit and compact scheme.

For the second derivative, shown by the modified wavenumber square(k∗2)mod

in figure 3, the increase of its order improves the propertiesof the explicit finite
difference towards the compact scheme.

2.2 Optimal Control

The uncontrolled mixing layer is computed with DNS. Some typical iso-vorticity
lines at one time instance are shown in figure 4. The real computational domain
(Ω ) is much larger than what is shown in the figure. A line(Ω2) located quite far
from the mixing layer instabilities defines the location where the noise emission is
targeted for reduction. It is called the measurement domain, usually where sensors
could be positioned. Two control domains, a smaller one(Ω11) and a larger one
(Ω10) are fixed at the birth of the mixing layer. The measurement andcontrol do-
mains have been determined from the previous sensitivity analysis [18, 17]. There
it has been demonstrated that the noise emission, far from the mixing layer, is very
sensitive to any perturbation at the origin of the mixing layer. To decrease the noise
emission and for the well-posedness of the control problem we target to minimize
the following objective functional:

J(f) =

∫ T

0

∫

Ω2

(p(x,t)− p(x))2dxdt + ℓ2
0

∫ T

0

∫

Ω1n

fTBTBfdxdt (5)
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wherep(x) denotes the temporal mean value of the pressure at the locationx in the
uncontrolled case. The weighted matrixB allows to test different types of forcing
(control) by keeping only the desired components of the control vector f. The ℓ0

coefficient gives a bound to the control cost. Settingℓ0 = 0 leads to find the most
effective control without taking into account the energy cost which could theoreti-
cally go to infinity. Several numerical experiments have shown that for our case, the
cost of the energy is always negligible. Hence we will setℓ0 = 0 in the following
for simplicity.

The minimum of the functional is obtained from an iterative procedure using a
conjugate gradient algorithm. The gradient of the cost functional with respect to the
control variable is calculated by a small perturbation of anassociated Lagrangian
functional including all the constrains: the goal, the control cost, the main Navier-
Stokes equations and the boundary conditions. It can be shown [17, 19] that the
Lagrange coefficient associated to the governing equationsis the adjoint vectorr
of the state variables (density, momentum vector and pressure) called vectorq =
(ρ ,mx,my, p)). The adjoint variables are solutions of the adjoint compressible two-
dimensional Navier-Stokes equations [17]:

F
∗(q)r = (p(x,t)− p(x))2δ (Ω2), (6)

with r = (p∗,m∗
x,m

∗
y,ρ∗) as the adjoint vector andδ (Ω2) a function equal to 1 over

Ω2 and equal to 0 elsewhere. The source term comes from the derivative of the
Lagrangian functional (eq. 5) with respect to the direct state. Finally the gradient of
the Lagrangian functional with respect to the control is given by

∇Jf = ℓ2
0Bf + r. (7)
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When the control iterative algorithm is converged, this gradient is equal to zero and
the solution provides the optimal controlf from the adjoint state.

3 Fundamentals of Mixing-Layer Noise

3.1 Flow Parameters

The fundamental mechanisms of jet noise are investigated byconsidering a two-
dimensional mixing layer where an S-shaped velocity profileis prescribed at the
inflow. The flow parameters have been closely matched to the case of Colonius et al.
[9]. This allows to validate the numerical scheme for aeroacoustic simulations. The
Mach numbers of the upper and lower stream areMaI = 0.5 andMaII = 0.25, respec-
tively. As both free stream temperatures are equal (T̃I = T̃II = 280K), the ratio of the
streamwise velocities isuI/uII = 2. The Reynolds numberRe= ρI uI δ (x0)/µ = 500
is based on the vorticity thickness at the inflow which is usedto normalize length
scales. A cartesian grid is used with 2500x850 grid points inx- andy-direction. In
streamwise direction, the grid is uniform with spacing∆x = 0.157 up to the sponge
region where the grid is highly stretched. In normal direction, the grid is contin-
uously stretched with the smallest stepsize∆y = 0.15 in the middle of the mixing
layer and the largest spacing∆y = 1.06 at the upper and lower boundaries. In case
of the three-dimensional simulation, thez-direction is discretized with 9 grid points
and∆z= 0.491. This is equivalent to 10 spanwise modes (dealiased) with γ0 = 0.8
in the symmetric case.

The initial condition, obtained from the similarity solution of the boundary-layer
equations, is used for linear stability theory. The most amplified disturbance is found
for the fundamental frequencyω0 = 0.6293 at the inflow. The eigenfunctions from
linear stability theory are used to introduce defined disturbances at the inflow. The
flow is forced with the fundamental frequency and its first three subharmonics (1/2,
1/4 and 1/8) with the maximum of|û| = 0.001 for all disturbances. The phase shift
is ∆Θ = −0.028 for the first,∆Θ = 0.141 for the second subharmonic and∆Θ =
0.391 for the third subharmonic. In an additional simulation the phase shift ofω0/4
is altered to∆Θ = 3.141. Note that it is not clear how the phase shift is specified in
[9] since the phase distribution varies along the normal direction. Here it is defined
with respect to the maximum of|û| such thatΘ = 0 at the location of|û|max in case
of no phase shift. An additional steady disturbance(0,1) with amplitude|û| = 0.01
is introduced in the three-dimensional simulation with∆Θ = 3.141. The modes are
denoted as(h,k), with h andk being the multiple of the fundamental frequencyω0

and the spanwise wavenumberγ0, respectively.
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3.2 Two-Dimensional Simulation

The spanwise vorticity is shown in figure 6 being similar to the reference solution of
Colonius et al. [9]. Since eigenfunctions from viscous linear stability theory instead
of inviscid ones as used in [9] are used here, disturbances are introduced slightly
more efficient. Accordingly the rollup of the mixing layer and the vortex pairing
occur a bit earlier.

x

y

50 100 150 200 250 300
-20

-10

0

10

20

Fig. 6 Snapshot of the spanwise vorticity for∆Θ(ω0/4) = 0.141 after 76 fundamental periods.
Contour levels range from−0.26 to 0.02 with an increment of 0.04. The reference solution of
Colonius et al. [9] is shown above.

The maximum amplitudes of the normal velocityv along the y-direction and
the corresponding amplification rates are shown in figures 7 and 8, respectively.
In the initial region of the integration domain the amplitudes grow exponentially.
Despite the spatial amplification rate(−αi) is a very sensitive value, its values cor-
respond well to those of linear stability theory. Further downstream, modes(1,0),
(1/2,0), (1/4,0) saturate at positionsx = 90, x = 120 andx = 240, respectively.
These streamwise locations correlate well with the positions where the respective
vortices are fully developed (figure 6). At the location where (1/2,0) and(1/4,0)
saturate (x = 120 andx = 240), the growth of the respective subharmonics(1/4,0)
and(1/8,0) is interrupted before their amplitude increases again.

The alternative phase shift∆Θ(ω0/4) = 3.141 does not affect the initial growth
of the amplitudes as shown in figure 9. Yet the development of the second sub-
harmonic differs fromx ≈ 120 onwards. There, its phase is adjusted to the one
of the first subharmonic. This can be seen in figure 10 showing the phase speed
cph = ω · (∂Θ/∂x)−1 of the first two subharmonics aty = 0. Phase adjustment is
found for both cases, but for∆Θ(ω0/4) = 3.141, the phase speed varies more and
subharmonic resonance of mode(1/4,0) is achieved with a reduced amplitude com-
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Fig. 7 Maximum amplitudes of the
normal velocity v along y-direction for
∆Θ(ω0/4) = 0.141.
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Fig. 8 Amplification rates of the normal ve-
locity v for ∆Θ(ω0/4) = 0.141. Symbols
denote results from linear stability theory.
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Fig. 9 Maximum amplitudes of the
normal velocity v along y-direction for
∆Θ(ω0/4) = 3.141. Dotted lines denote the
previous case with∆Θ(ω0/4) = 0.141.
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Fig. 10 Phase speedcph of the normal ve-
locity v aty= 0 compared with the prevoius
case.

pared to∆Θ(ω0/4) = 0.141. Accordingly, its saturation is further downstream and
faster resonance of the third subharmonic is provided. Thisleads to an increased
amplitude of(1/8,0) by a factor of almost four downstream ofx≥ 270.

The acoustic field is visualized by the dilatation which is the divergence of the
velocity field ∇ · u. For both 2-d simulations, the sound with frequencyω0/2 is
emitted fromx≈ 120, being the position of the first vortex pairing. Both, intensity
and directivity show good agreement with the reference solution of Colonius et
al. [9]. In case of∆Θ(ω0/4) = 0.141, the sound with frequencyω0/4 is emitted
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Fig. 11 Emitted sound with frequency
ω0/4, visualized by the real part of the
Fourier-transformed dilatation with con-
tour levels ranging from−2 · 10−6 to
2·10−6 for ∆Θ(ω0/4) = 0.141
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Fig. 12 Real part of the Fourier-
transformed dilatation field with fre-
quency ω0/4 for ∆Θ(ω0/4) = 3.141.
Contour levels are the same as in figure
11.

mainly perpendicular to the flow direction as shown in figure 11. With the alternative
disturbance of mode(1/4,0), the emitted sound is more intense and is directed
mainly in downstream direction. The latter case corresponds to the results of [9]
and [4].

3.3 Three-Dimensional Simulation

The quite high amplitude of the introduced mode(0,1) allows two-dimensional
disturbances to interact with, generating unsteady oblique disturbances. The initial
growth of the two-dimensional disturbances is similar up tothe saturation of the
first subharmonic as shown in figure 13. Non-linear interaction of the steady distur-
bance(0,1) with two-dimensional instability waves rapidly genrates oblique modes,
shown in figure 14. Atx ≈ 130, disturbances(1,1) and (1/2,1) reach a level of
|v̂| ≈ 5 ·10−5. The increased amplitudes of the oblique modes come up with alarge
amplitude of the steady mode(0,1). This inhibits the growth of the second subhar-
monic (1/4,0)), known from the corresponding two-dimensional case. As shown
by the phase speed given in figure 15, the phase of the second subharmonic(1/4,0)
is not able to adapt to the dominant disturbance and its resonance is prevented.

For this case, the spanwise vorticity at the symmetry planez = 0 is shown in
figure 16. The initial region is similar to the two-dimensional simulations: the mix-
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Fig. 13 Maximum amplitudes of the normal
velocityv of 2-d modes(h,0).
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Fig. 14 Three-dimensional disturbances
(h,1) of the maximum amplitude ofv.
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Fig. 15 Phase velocities of the first and second subharmonics, basedon the normal velocity at
y = 0.

ing layer rolls up into vortices and the first pairing takes place atx ≈ 120. Further
downstream three-dimensional effects increase and the vortical structures differ. The
vortices break up into small-scale structures forx> 150. Compared to figure 6, large
scales almost disappear.

The emitted sound with frequency of the second subharmonic is shown in figure
17. Compared to the corresponding two-dimensional case of figure 12, a sound re-
duction by roughly two is observed in the lower half of the domain. An additional
source is located atx ≈ 130. Thus, the emitted sound in upstream direction is due
to the suppressed resonance of mode(1/4,0). The acoustic source atx ≈ 220 is
not tonal but emits broad-band noise. This is shown exemplarily for the undisturbed
frequency 3/4 ·ω0 in figure 18.
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Fig. 16 Snapshot of the spanwise vorticity for the three-dimensional simulation at the symmetry
planez= 0. Contour levels correspond to those of figure 6
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Fig. 17 Emitted sound with frequency
ω0/4, visualized by the real part of the
Fourier-transformed dilatation with con-
tour levels ranging from−2 · 10−6 to
2·10−6 for ∆Θ(ω0/4) = 0.141
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Fig. 18 Real part of the Fourier-
transformed dilatation field of the undis-
turbed frequency 3/4·ω0 with the same
contour levels as on the left side.

The above results show that subharmonics play an important role in the mecha-
nism of sound generation. A varied phase shift can alter the process of subharmonic
resonance and thus the major part of the generated noise. Theresonance of two-
dimensional modes can be suppressed by a spanwise moculation of the flow.
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4 Optimal Control of Mixing-Layer Noise

4.1 Computational Aspects

A non uniform mesh with 601×501 nodes has been designed to improve accuracy
in the mixing layer. The grid is uniform in thex-direction up to a given valuexp

which corresponds to the size of the physical box. Then the streamwise step size
∆x is increases successively up to the outflow boundary of the computational do-
main where the step size is∆xf inal ≈ 300∆x0. This is a simple way for filtering
undesired upstream convected structures, coming from possible numerical wave re-
flection from the outlet boundary.

The boundary conditions in the north, south and east frontier of the computational
domain are given from the characteristic theory [16]. They allow the exit of acoustic
and entropy waves, limiting reflections.

At the west frontier, the inlet of the domain, the flow is excited by its highest
unstable eigenmode, given by linear stability theory. Its frequency isω0 = 1.226.
Forcing the flow at this location by its eigenmode decreases drastically the numeri-
cal transient behavior and increases the convergence speed.

The upper flow velocity is the reference velocity with a Mach numberMaI = 0.8.
The Mach number of the lower stream isMaII = 0.2. The reference temperature
is set toT0 = 280K. The reference lengthL is given from a Reynolds number of
R = 2500. It corresponds to a shear layer thickness ofδ given byδ/L = 0.3738
at the inlet of the computational domain. The total durationof the simulation is
tend = 51.24 being 10 periods of the introduced instability, calculating over 10240
time steps.

The gradient of the Lagrangian functional is determined from the direct simula-
tion of the adjoint Navier-Stokes equation. The design of the adjoint code is very
similar to the one of the direct state simulation. Non-reflecting boundary conditions
based on the characteristic theory are also proposed to prevent numerical errors in
the dual (adjoint) space. Note that incoming and outcoming characteristics are in-
verted between the direct and adjoint equations. A buffer zone is added in the dual
space upstream of the computational domain used in the direct calculations, in the
same way as the one existing downstream in the physical domain. Wave propagation
is very similar in physical and in dual space. The location ofthe new buffer zone is
explained by the fact that adjoint equations are integratedbackward in time.

The optimal control is obtained after approximately 5 to 7 global iterations.
During each global iteration, the gradient of the cost functional is given from a
conjugate-gradient algorithm which requires itself 10 iterations of the direct-adjoint
simulations of the Navier-Stokes equations.
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mass forcing and the unactuated case, in dB.
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4.2 Simulation Results

The adjoint simulations have been validated with a sensitivity analysis [18]. Since
the adjoint variables are also gradients of the cost functional, it is possible to com-
pare the evolution of the variation of a non-dimensional cost functionalI = Jn/J0

and its gradient given by the adjoint quantity (eq. 7). It hasbeen verified on figure
5 where the index on the horizontal axis is the index of the global iterations.λ is
the parameter (or variable) usually used in the conjugate gradient algorithm which
determines the steepest descent direction. The evolution of the functional and its
derivatives correspond perfectly, especially the minimumis reached when the gra-
dient (from adjoint equations) is given as null. In this case, the control is a source
term in the continuity equation and it can be interpreted as some injection of mass on
the larger actuation domain named (Ω11). The minimum found by the algorithm cor-
responds to a 10,4 % decrease of the functional after 5 globaliterations. The mean
noise reduction over the horizontal line (measurement line) is 0.5dB. It is weak
compared to the previous work of Wei and Freund [20] where a reduction of 3dB
was reached after 4 global iterations. Following Wei and Freund’s conclusions the
actuation subtly modifies the small space and time scales of the flow in such a way
that general organization is improved from an aeroacousticviewpoint. The discrep-
ancy between the success of the control in the two studies is explained as follows.
In [20], the inlet boundary condition is the sum of the fundamental eigenmode and
three harmonics. These 4 modes are perturbed randomly in thefrequency domain
and in amplitudes. Such an approach artificially increases the noise emission. The
role of the final control is then to reduce the noise, and it happens that such artificial
noise is canceled. Since we introduce just the fundamental mode without random
perturbation the initial noise level is weak in our test case. Thus the actuation has
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less work to do, since the flow is well organized. Another point is that we have the
Mach numberMaI = 0.8 instead of 0.9 in [20], being initially more noisy.

The difference of the sound pressure level (SPL) between theactuated and the
unactuated flow is shown in figure 19. The decrease is not important on the mea-
surement line (Ω2) where noise reduction was targeted, but a reduction of 3dB is
reached in other locations in the shear layer. In an oppositeway, some local 3 dB
increase of noise level can be observed, but the noise seems not to propagate but to
stay localized. Finally, noise control appears effective in a larger part of the flow,
outside of the targeted line. This mean global reduction is not discussed in [20].

An analysis of the pressure spectrum has been performed. We chose to calculate
the spectrum at a point on the measurement lineΩ2 of coordinates(43.5,−25)
with the largest noise reduction. The spectra in the actuated and unactuated case are
presented in figure 20. A local minimum at a reduced frequencyω0 ≈ 0.61 is shown
in the unactuated spectrum. This could be a subharmonic at frequencyω0/2 of the
initial fundamental mode. Even if the reduction is weak, actuation plays a positive
role in a broad band of frequency, except close toω0 ≈ 0.61 where noise emission
is increased. Actuation seems to regularize the acoustic spectrum. This broadband
effect should be investigated more closely in the future.

A Principal Component Analysis (PCA) of the control function (actuation mode)
has been used to compare with the conclusions of Wei and Freund [20]. It is a
singular value decomposition following a Karhunen-Love transform, also known as
Proper Orthogonal Decomposition (POD). The actuation is decomposed as

f(x,t) =
N

∑
i=1

λi(t)Φi(x). (8)

Details can be found in [17]. The first mode is dominant and 55.7 % of the energy is
contained in the first two modes. There is a discrepancy with the previous work [20]
where 10 modes are necessary to provide 50 % of the total energy. The structure
of the actuation is less simple in our study than in Wei’s flow.However, similar to
Wei’s conclusion, the modes are essentially spatially distributed around the mixing
layer and the characteristic length scale decreases with the rank of the mode but
remains in the same order of magnitude. This agreement confirms that the control
essentially acts on some large scale, deeply modifying the flow structure.

Simultaneous actuation on the fourth equation of the Navier-Stokes model has
weakly increased the efficiency of the control, since a noisereduction of 0.6 dB
has been pointed out. The conclusions given above are alwaysvalid but the area of
local increase or decrease of noise emission are larger thanin the previous case. The
actuation on the whole Navier-Stokes equations is not so different from a unique
actuation by injection of mass. It only confirms that the highest sensitivity of the
noise emission is a mass source [18]. Spectrum and PCA analysis just support this
conclusion. Some studies where the actuation domain was small (called Ω10 on
figure 4) have demonstrated that noise reduction can be difficult or even might be
impossible when the distribution of the control is too restrictive. This seems to be a
limit of the open-loop control approach.
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Fig. 21 Difference of the acoustic level (SPL) between the actuatedand the unactuated case in dB
(control on the fourth component of the Navier-Stokes equations). The measurement lineΩ ′

2 is in
white, aty = −24

If the measurement line is small (white lineΩ ′
2 on fig. 21) and the actuation

domain is the larger one, a larger noise reduction of 6 dB has been reached with
6 global iterations in the control algorithm. As in the previous example, locally a
reduction or an increase of 9 dB can be seen in some parts of thephysical domain.
However, globally and far from the mixing layer a mean reduction is conserved.
The Principal Component Analysis has shown that with a smallsize of the targeted
line which is quite far away from the noise emission, the optimal control approach
provides an anti-noise control. The actuation acts as a wavewhich arrives at the
small measurement line (approximately seen as a point) withan opposite phase and
with the same amplitude as the wave which arrives at the same location but in the
unactuated case. The actuation is more effective since the noise to be reduced is
concentrated in a small area and the final goal is easier than the reduction of noise
on a long line.

5 Serrated Nozzle End

5.1 Flow Parameters

The nozzle end of a jet is modelled by a finite flat splitter plate with two-different
free-stream velocities above and below. The Mach numbersMaI = 0.8 for the up-
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per andMaII for the lower stream have been chosen according to chapter 4.Again
the free-stream temperatures are equal (T̃I = T̃II = 280K), leading to a ratio of the
streamwise velocitiesuI/uII = 4. The Reynolds numberRe= ρ∞U1δ1,I/µ∞ = 1000
is based on the displacement thicknessδ1,I of the upper stream at the inflow. With
δ1,I (x0) = 1, length scales are normalized with the displacement thickness of the
fast stream at the inflow. The boundary layer of the lower stream corresponds to the
same origin of the flat plate.
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Fig. 22 Streamwise velocity profiles of the
baseflow at the inflow (similarity solution of
the BL equations).
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Fig. 23 Combination of wake and mix-
ing layer behind the thin splitter plate, ob-
tained from downstream integration of the
BL equations.

The cartesian grid is made of sixteen subdomains: eight in streamwise and two
in normal direction. Each subdomain contains 325 x 425 x 65 points in x-, y- and
z-direction, resulting in a total number of 143.6 million gridpoints. The origin of
the coordinate system (x = 0, y = 0) is located at the end of the nozzle end. Since
the flow is symmetric toz= 0, the spanwise resolution corresponds to 42 spanwise
modes (dealiased). The fundamental spanwise wave number isγ0 = 0.2, where∆z=
0.2454 andλz/2 = π/γ0 = 15.708 is the spanwise extent of the domain. The mesh
is uniform in streamwise direction with a step size of∆x = 0.15 up to the sponge
region, where the grid is highly stretched. The inflow is located atx = −97.5 and
from x= 250 on, the mesh is smoothly stretched. In normal direction,the finest step
size is∆y = 0.15 in the middle of the domain with a continuous stretching upto a
spacing of∆y = 1.06 at the upper and lower boundaries. Due to the tiny thickness
∆y = 0.15 of the splitter plate, an isothermal boundary condition at the wall has
been chosen. The temperature of the plate isTwall = 296K, being the mean value of
the adiabatic wall temperatures of the two streams.

The initial condition along the flat plate is obtained from similarity solutions
of the boundary-layer equations, given in figure 22. Furtherdownstream, the full
boundary-layer equations are integrated downstream, providing a flow-field suffi-
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cient to serve as an initial condition and for linear stability theory. To avoid a peak
of the normal velocity near the trailing edge, it is smoothedthere. Since linear sta-
bility theory does not account for the wallnormal velocity,this modification does
not affect its results. As shown in figure 23, the flow field keeps its wake-like shape
for a long range. As high amplification rates occur here, the flow is already unsteady
before a pure mixing layer has developed.

5.2 Linear Stability Theory
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Fig. 24 Spatial amplification rates from
LST in the upper boundary layer.
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plate.

The stability diagram for two-dimensional disturbances inthe upper boundary
layer is shown in figure 24. In accordance to the maximum amplification, the fun-
damental frequencyω0 = 0.0688 is chosen. In the boundary layer, the amplification
rate is only weakly dependent on the streamwise position. Asthe two boundary
layers emerge from the same position, the lower boundary layer is stable up to the
nozzle end. Behind the splitter plate, amplification rates 50 times higher than in the
upper boundary layer occur due to the inflection points of thestreamwise-velocity
profile. Maximum amplification in the mixing layer takes place for a frequency of
roughly three to four times of the fundamental frequency of the boundary layer as
illustrated in figure 25.
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5.3 Simulation Results

The upper boundary layer is forced with the two-dimensionalTollmien-Schlichting
(TS) wave(1,0) with an amplitude of|û| = 0.005 and an additional oblique wave
pair (1,1) with |û| = 0.0005. Within this simulation, a rectangular serration with
one notch per spanwise wavelength and a depth of 10 is considered. For the straight
trailing edge, three-dimensional effects are less important and the reader is referred
to [3].
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Fig. 26 Maximum amplitude of the normal
velocityv for steady modes(0,k).
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Fig. 27 Maximum amplitude of the normal
velocity v for unsteady modes(h,0) and
(h,1).

A spectral decomposition is shown in figures 26 and 27, based on the maximum
of v alongy. The normal velocity has been chosen as it is less associatedwith up-
stream propagating sound. In the upper boundary layer, non-linear interaction of the
introduced disturbances(1,0) and(1,1) generates the steady mode(0,1) up to an
amplitude of|v̂| = 2 ·10−5 (figure 26). Fromx = −25 onwards, this is exceeded by
the upstream effect of the engrailment. The serrated trailing edge (−10≤ x ≤ 0)
generates steady spanwise disturbances(0,k) up to |v̂| = 8 ·10−3. In the notch, the
combination of wake and mixing layer originates further upstream, which corre-
sponds to the steady spanwise mode(0,1). Its amplitude decreases behind the trail-
ing edge up tox = 15. Higher harmonics in spanwise direction(0,2) and(0,4) are
generated at the notch as well, staying almost constant behind the splitter plate.

Figure 27 shows that the TS-wave generates higher harmonicsin the upper
boundary layer. With an amplitude of the driving TS-wave of|v̂| = 2 ·10−3, modes
(2,0), (3,0) reach amplitudes of|v̂| = 3 ·10−4 and|v̂| = 2 ·10−3, respectively. The
increased steady modes at the engrailment interact with thetwo-dimensional waves,
generating unsteady oblique modes(h,1). Behind the splitter plate, the first two
higher harmonics are growing stronger than the fundamentaldisturbance. Saturation
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is found atx ≈ 70 andx ≈ 160 for the higher harmonics and mode(1,0), respec-
tively. With relevant amplitudes of the oblique waves, these disturbances grow sim-
ilarly to their two-dimensional counterparts and saturateat a level of|v̂| ≈ 4 ·10−2.
Non-linear interaction of modes(h,1) creates steady modes(0,k). As figure 26
shows, this exceeds the direct effect of the notch atx ≈ 15 andx ≈ 35 for mode
(0,1) and its higher harmonics, respectively.
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Fig. 29 Spatial amplification rates of 2-d
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The spatial growth rates are compared with linear stabilitytheory in figures 28
and 29. In the upper boundary layer, good agreement is observed. However a super-
imposed variation with wavelengthλx ≈ 20 is visible. This is equivalent to a phase
speed|cph| = 0.22 which corresponds to the upstream propagating acoustic wave
with cph ≈ 1−1/MaI = −0.25. Hence the difference to LST is caused by the emit-
ted noise of the mixing layer and not due to the three-dimensional geometry. Good
agreement with LST is observed for the fundamental disturbance(1,0) behind the
splitter plate. Yet higher frequencies show a slightly lower mean amplification com-
pared to linear stability theory.

Figure 30 shows an instantaneous view of the vortical structures, visualized by
the isosurface of theΛ2 vortex criterion [14]. Due to the earlier beginning of the
mixing layer in the notch a spanwise deformation of the Kelvin-Helmholtz vortices
occurs. Atx = 50, the croissant-shaped vortex is still one coherent structure. The
strong spanwise gradients lead to streamwise vortices which are twisted around the
spanwise eddies. This leads to an early breakdown of the large spanwise rollers.
Further downstream, the Kelvin-Helmholtz vortices known from dominantly two-
dimensional cases, e.g. [3], are now an accumulation of small-scale structures.

The acoustic field is visualized by the real part of the Fourier-transformed di-
latation field. The emission with the fundamental frequencyis compared with the
straight trailing edge in figure 31. The engrailed nozzle endleads to a notable re-
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Fig. 30 Snapshot of vortical structures behind the engrailed splitter plate along two spanwise
wavelengths, visualized by the isosurfaceΛ2 = −0.005.

a) b)

Fig. 31 Real part of the Fourier-transformed dilatation field at thesymmetry planez= 0 for ω0:
a) engrailment, b) straight trailing edges. Contour levelsare in the range of∇u = ±3·10−3.

duction of the generated noise which propagates in downstream direction. In both
cases an upstream emission originates fromx≈ 50 in the upper half of the domain.
Its characteristic corresponds to the one due to the suppressed resonance in figure
17 for the pure mixing layer. Hence this emission is due to thephase adaptation for
resonance or its suppression, respectively. The acoustic field with frequency 7/4·ω0

is illustrated in figure 32 where the emitted sound is reducedas well. For both ge-
ometries, its main source is located atx≈ 140.

For a more quantitative evaluation of the generated sound, avirtual microphone
is placed at (x = 195,y = −121.8,z= 0). At this position, a detailed time record is
taken along 8 periods of the fundamental frequency. The temporal Fourier-analysis
of the pressure fluctuations is given in figure 33 for the straight and the serrated
trailing edge. The main reduction is found for frequencies up to the third higher har-
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a) b)

Fig. 32 Same as figure 31 but for frequency 7/4·ω0: a) engrailment, b) straight trailing edges.
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Fig. 33 Acoustic spectrum of the pressure at the virtual microphone(x = 195,y = −121.8, z= 0)
for the rectangular engrailment and a straight trailing edge.

monic. For high frequencies, the sound spectrum decays. Theoverall sound-pressure
level is p′rms = 0.003047 andp′rms = 0.00108 for the straight and the serrated trail-
ing edge, respectively. Thus the rectangular engrailment reduces the sound pressure
level by 9dB.

6 Conclusions

A numerical scheme for direct numerical simulation including direct sound com-
putation has been developed and verified by comparing with linear stability theory
and the benchmark problem of Colonius et al. [9]. The existence of a markable
subharmonic could be identified as the main acoustic source in a mixing layer. Ac-
cordingly it is possible to reduce the emitted sound by a varied phase shift of the
introduced particular subharmonic. An additional spanwise mode with high ampli-
tude is capable to inhibit the resonance mechanism. Three-dimensional effects lead
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to a broad-band emission of noise instead of the tonal noise of a two-dimensional
mixing layer.

Optimal control of noise emission in a mixing layer has been successfully carried
out. The methodology of DNS plus Adjoint DNS plus conjugate gradient algorithm
works with efficiency. Depending on the size of the targeted area for noise reduction,
a small or a significant decrease of the local noise level has been reached. Globally,
far from the mixing layer, the mean noise level always decreases. The principal
component analysis has shown two kind of actuation: some distributed control for a
large measurement area and some anti-noise control for a small measurement area.

Including the nozzle end, modelled by a thin splitter plate,provides a more re-
alistic configuration of the flow field. Additionally, it allows to investigate possible
actuators directly at the wall and forcing terms inside the flow field can be avoided.
In this context, passive control by a rectangular engrailment of the trailing edge
has been investigated. The resulting spanwise modulation of the Kelvin-Helmholtz
vortices leads to a breakdown of the coherent structures further downstream. This
simple modification of the geometry showed a noise reductionof 9dB.

The next step is to add the splitter plate in the optimal control algorithm, too. Fu-
ture direct numerical simulations will focus on various actuators at the splitter plate.
This includes various shapes of the trailing edge as well as active actuators. One
possible strategy can be the forcing of the most amplified frequency and its subhar-
monics. Optimizing the phase shifts may prevent the resonance mechanism accord-
ingly to the pure mixing layer. Further simulations with larger Reynolds numbers
are planed, where one or both boundary layers along the splitter plate are turbulent.
This will be realized by a turbulent inflow, prescribing time-dependent quantities
from previous simulations. Due to the flexibility of the DNS-code, it can be ap-
plied to other geometrical configurations as well, e.g. a complete airfoil at a low to
moderate Reynolds numbers is conceivable.
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