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A streamwise corner is obtained when two flat plates meet at an angle to
form a corner parallel to the free-stream flow direction. The interaction of the
two boundary layers creates a secondary flow that makes the flow suscepti-
ble to separation and early laminar-turbulent transition, which is unwanted.
Despite its simplicity, there are not many studies of this flow and current
understanding of instability, laminar-turbulent transition, and turbulence is
very incomplete. As such, existing computations cannot yet describe prema-
ture transition or separation observed in experiments.

On the long term the present work is intended to fill an obvious gap
in predicting, understanding, and controlling laminar-turbulent transition in
streamwise corners. The laminar base flow for a 90o right-angled corner is
considered. Linear stability computations have been performed using a two-
dimensional local linear stability theory to compute temporal growth rates and
a parabolized stability equations (PSE) approach for spatial growth. These
methods have been developed out of previous work by Alizard & Robinet for
two-dimensional flows [1].

Typical eigenvalue spectra for both approaches are compared in Fig. 1.
The temporal amplification is for Re = 707 (Rex = 2.5 × 105) and α = 0.2
for comparison with Parker & Balachandar [2]. The spatial case is for the
frequency Ω = 0.08 at Re = 450 based on the initial position x0 = 225. All
data are normalized with respect to the length scale δ =

√
2νx/U∞. Different

symmetries of the disturbance profiles are possible with respect to the corner
bisector: “even modes” whose streamwise velocity is symmetric, and “odd
modes” which are antisymmetric with respect to the bisector. On one hand
this information was used to reduce the number of unknowns by a factor of 2
(by computing each class of disturbances separately) and on the other hand
it was used to verify the code by solving the full problem without symmetry
conditions, see Fig. 1. A grid refinement study was performed at the same
time to assure the grid independence of the results.

All eigenvalue spectra exhibit a branch of eigenvalues which can be at-
tributed to Tollmien-Schlichting (TS-) modes and an isolated corner mode.
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Further insight into these is obtained from their corresponding eigenfunctions,
see figures 2-4. The two most unstable eigenvalues are odd and even. They cor-
respond to two-dimensional TS-waves of the flat-plate boundary layer. This
can be seen in the eigenmodes of Fig. 2 where the amplitudes develop the
shape of a TS-wave far away from the corner, both in y and z direction.
Accordingly, the other TS-modes correspond to pairs of oblique waves with
increasingly smaller transverse wave lengths, as illustrated by the local max-
ima in Fig. 3. The even-symmetric modes have a local maximum in the corner.
Compared to the odd symmetries where this maximum is absent (see Fig. 2,
left) they are more unstable than the odd ones, see Fig. 1.
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Fig. 1. Comparison of temporal (left) and spatial spectra (right)

Fig. 2. Streamwise velocity component of the most unstable odd (left) and even
(right) temporal TS modes at Re = 707 (Rex = 2.5 × 105) α = 0.2
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Fig. 3. Streamwise velocity contours of higher (even) TS-modes. Mode 3 (left),
mode 5 (right)

Fig. 4. Spatial structure of the temporal corner mode at Re = 707 (Rex = 2.5×105)
α = 0.2. Streamwise velocity component (left) and pressure (right).

The eigenfunctions are essential to classify the eigenvalues. As such, the
corner mode shown in Fig. 4 is clearly distinguished by a velocity maximum
which rides on the inflection point of the base-flow velocity profile in the corner
bisector. Because of this it is supposed to be related to an inviscid instability.
Away from the corner and along the plates the corner mode decays. Its relation
to the corner is best illustrated in a plot of its pressure eigenfunction in Fig. 4,
right.

Even if the corner mode is very close to the border between stable and
unstable disturbances, it is never unstable in the present local stability anal-
ysis. It seems that the local theory cannot explain why experimentalists ob-
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serve a premature laminar-turbulent transition of the corner flow compared to
the flat-plate boundary layer. Our comparison with Parker & Balachandar [2]
shows close but nor identical agreement. The latter can be attributed to slight
differences in the computed base flow, which is very sensitive, cf. Ridha [3].
This aspect is now further investigated in the work of Alizard et al. [4].

However, extending our computations to a full PSE that follows a given
frequency in downstream direction such that non-parallel growth of the flow
is no longer neglected, we made an unexpected observation, shown in Fig. 5.
Non-parallel effects are irrelevant for the TS modes as in the case of the Blasius
boundary layer, but the corner mode which was stable before now becomes
unstable as well. Different non-parallel criteria will be studied in order to
determine precisely the critical Reynolds number associated with the corner
mode. This discovery could help to explain experimental results.
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Fig. 5. Comparison of parallel theory with PSE analysis for Ω = 0.08

References

1. F. Alizard, J.-C. Robinet: Spatially convective global modes in a boundary
layer, Phys. Fluids., 19: 114105, 2007.

2. S.J. Parker and S. Balachandar: Viscous and inviscid instabilities of flow along
a streamwise corner, Theoret. Comput. Fluid Dynamics, 13, 231–270, 1999.

3. A. Ridha: Flow along streamwise corners revisited, J. Fluid Mech. 476, 223–265,
2003.

4. F. Alizard, J.-C. Robinet, U. Rist: Sensitivity to base flow variation of a stream-
wise corner flow, Proc. IUTAM Symposium on Laminar-Turbulent Transition,
June 23-26 2009, Stockholm, Sweden, 2009.


