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ABSTRACT
Using the tools of Direct Numerical Simulation (DNS) and

Linear Stability Theory (LST) we are studying active concepts to
control nonlinear stages of transition. Besides the investigation
of the well known wave superposition approach we developed a
new method to actively control transitional disturbances. This
concept uses the feedback of instantaneous flow data (wall shear
stress or spanwise vorticity), obtainable at the wall to drive plain
actuators. Avoiding long propagation distances between sensor
and actuator this procedure (called ωz-control) results in a very
effective damping in linear and nonlinear cases. With some extra
improvements like spatial filters between sensor and actuator it
is possible to delay transition even in strongly nonlinear scenar-
ios like the K-breakdown scenario (transition due to fundamental
resonance).

Both methods have been investigated in a Blasius boundary
layer. Besides the K-breakdown already mentioned for basic in-
vestigations a ”linear” scenario was used, consisting of Tollmien-
Schlichting waves with different propagation angles.

NOMENCLATURE
x, y, z Spatial coordinates (y: wall normal)
u, v, w Velocities in x�, y� and z-direction
h Spatial FIR-filter vector
A Amplitude factor between sensor- and actuator-signal
H linear transfer function, Fourier transformed h
α Spatial wavenumber

β Frequency
ωx, ωy, ωz Vorticity in x�, y� and z-direction
Θ Phase between sensor- and actuator-signal

INTRODUCTION
So far, mainly passive methods such as smooth surfaces or

advantageous pressure distributions have been used to reduce
aerodynamic drag of wings, shifting the boundary layer tran-
sition downstream. Unfortunately, beyond a certain Reynolds
number these approaches don’t work in a satisfactory manner.
In this case, approaches which actively damp disturbances in
boundary layers offer some new possibilities.

In this context some active approaches like the superposition
of disturbances with opposite phase to the initial disturbances
have been developed. Here, disturbances with the same ampli-
tude but opposite phase are superimposed to the initial distur-
bance. The (linear) addition of both modes results in the reduc-
tion or cancellation of the initial perturbation.

The superposition method works very well especially in
combination with adaptive FIR-filters for linear disturbances
(e.g. with very small amplitude) (Baumann et al., 1998) but once
the amplitude of the initial disturbance exceeds a certain level
resulting in nonlinear interactions between the modes, this linear
approach fails and other concepts, less influenced by nonlineari-
ties, have to be taken into account.

In contrast to approaches based on optimal control theory
which yield optimal results for a specific case, we follow a path
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which can be more or less directly implemented into application
using the direct feedback of instantaneous signals from the flow
field (Gmelin and Rist, 2000). Our approach, better suited for
nonlinear disturbances is the “ωz-control”. In this case the span-
wise vorticity at the wall is multiplied by a gain A and prescribed
as a v-boundary-condition on the wall (blowing/suction) with a
certain phase shift Θ (Fig. 1).
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vw=A*ωz

Θ
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x

Figure 1. CONTROL PRINCIPLE OF THE ωz-CONTROL.

All investigations (LST and DNS) have been performed in
a Blasius boundary layer with a free stream velocity of U∞ �
30m�s. The Reynolds number calculated with the displacement
thickness has a value of Reδ1 � 500 at the beginning of the ob-
served domain (x0 � 0�8443) and a value of Reδ1 � 1300 at the
end. All length scales are made dimensionless with L� 0�05m.

RESULTS OF THE LINEAR STABILITY THEORY (LST)
To study the behaviour of linear instability waves under the

influence of active ωz-control using LST the boundary condi-
tions at the wall for the Orr-Sommerfeld equation (and the Squire
equation) had to be changed (index w denotes wall properties) to

vw � A �ωz�w (1)

with A � jAj � eiΘ �

where jAj is the amplitude factor and Θ is the phase difference
between vw and ωz�w. Due to the ability to express ωz in terms of
u and v the existing eigenvalue problem remains homogeneous.
The resulting eigenvalues and eigenfunctions show very good
agreement to the results obtained using DNS. Fig. 2 shows the
comparison between u and v disturbance amplitude profiles ob-
tained from DNS and LST under the influence of the changed
boundary conditions. The difference which is nevertheless visi-
ble is due to nonparallel effects which are not considered in the
LST calculations.

Looking on Fig. 3 the influence of active control on the un-
stable region of the Blasius boundary layer flow can be observed.

Figure 2. COMPARISON BETWEEN u AND v DISTURBANCE AM-

PLITUDE PROFILES OBTAINED FROM DNS (SOLID AND DASHED

LINES) AND LST (DOTTED LINES). LINEAR CASE WITH jAj� 0�0001
AND θ � π�2 AT x � 3�46. (QUANTITIES ARE NORMALISED WITH

u∞ � 30m
s AND L� 0�05m.

Already small amplitudes are sufficient for a strong damping ef-
fect. Thus, for an amplitude factor jAj larger than approximately
5 � 10�5 and for a phase angle of Θ � 0, the boundary layer is
stable for all considered frequencies and downstream positions.
Detailed investigations concerning the dependence of the eigen-
values on the phase angle are illustrated in Fig. 4. Amplification
rate αi and streamwise wavenumber αr change in an almost sinu-
soidal way with Θ. Thus, with the right phase angle for a given
gain A a broad range of desired amplification can be reproduced.
To achieve maximum performance in terms of attenuation the
phase shift Θ has to be adjusted between π�4 and π�2.

DIRECT NUMERICAL SIMULATION (DNS)
To investigate the behaviour of nonlinear waves in the Bla-

sius boundary layer and to verify the LST results in the lin-
ear case, a number of calculations using DNS were carried out.
All simulations were performed in a rectangular integration do-
main with the spatial DNS-code (Rist and Fasel, 1995) already
used for preliminary results in earlier publications (Gmelin et
al., 1998). The flow is split into a steady 2D-part (Blasius
base flow) and an unsteady 3D-part. The x-(streamwise) and y-
(wall-normal) directions are discretized with finite differences of
fourth-order accuracy and in the spanwise direction z a spectral
Fourier representation is applied. Time integration is performed
by a classical fourth-order Runge-Kutta scheme.
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Figure 3. CURVES OF ZERO AMPLIFICATION FOR THE BLASIUS

BOUNDARY LAYER FLOW WITH DIFFERENT GAINS A AND PHASE

ANGLES Θ. FREE STREAM VELOCITY WAS U∞ � 30m
s AND x

WAS MADE DIMENSIONLESS with L � 0�05m. THE DOTTED LINE

MARKS THE POSITION IN THE x/β-DIAGRAM OF THE CALCULA-

TIONS SHOWN IN FIG. 4

NONLINEAR 2D-MODES
We were able to show the excellent performance of the new

approach for linear waves and a very good agreement to results
of the linear stability theory (Gmelin and Rist, 2000). For nonlin-
ear cases (i.e. cases with high amplitudes, where modes cannot
evolve independently) we found a good attenuation of the funda-
mental modes, but at a certain amount of control high frequency
modes (higher harmonics and nonlinearly generated waves) were
amplified strongly and let the fundamental modes rise again.
Looking at Fig. 4 b) one can observe that the optimal phase shift
between ωz and v is more or less independent of the frequency.
Thus, controlling with a fixed time delay (corresponding to the
phase Θ in our LST calculations) between sensor and actuator
signal yields for different frequencies to different, non optimal
control phases, an effect which can be observed in the DNS-
results shown in Fig. 5. The solid lines in Fig. 5 show the umax-
amplitudes vs. x of a nonlinear pure 2D simulation where ωz-
control is applied with a fixed time delay between sensor and ac-
tuator signal. This delay corresponds to a phase shift of Θ� π�2
for the fundamental mode (1,0) (the first index denotes multiples
of the disturbance frequency β � 10, the second multiples of the
basic spanwise wave number γ � 20) which is desirable but to a
phase shift of approximately Θ � π for the first higher harmonic
mode with β � 20 (undesirable). Besides a proper damping of
the fundamental mode (1,0) it can be seen that the first higher
harmonic mode is damped worse. Compared to the amplification
rate of the uncontrolled mode calculated with LST (single line in
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Figure 4. VARIATION OF THE EIGENVALUES WITH RESPECT TO

THE PHASE ANGLEΘ BETWEENωz�w AND vw FOR jAj� 1 �10�4 AT

THE POSITION MARKED IN FIG. 3 FOR DIFFERENT FREQUENCIES.

Fig. 5), the mode (2,0) is less attenuated, an effect which is not
in accordance with the goal of control. To avoid this disadvan-
tageous behaviour it is necessary to prescribe the desired phase
shift dependent on the streamwise wavenumber resp. frequency.
Therefore we applied a spatial FIR-Filter of length l (Fig. 6) to
the input data. l samples in x-direction are multiplied with the
filter-vector h to get the wall-normal velocity v at the wall:

vw�x� t� � jAj
x�l�2�1

∑
x��x�l�2

h�x�� x�
l
2
�1�

� �z �

i(Fig. 6)

�ωz�w�x
�� t� (2)

Transformed in Fourier space via the convolution theorem we
obtain:

Vw�x�α� � A �H�α� �Ωz�w�x�α� (3)
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Figure 5. umax-AMPLITUDES OF A NONLINEAR 2D-MODE (1,0)

WITH ACTIVE CONTROL VIA ωz-FEEDBACK. DUE TO THE HIGH AM-

PLITUDE A HIGHER HARMONIC MODE (2,0) IS GENERATED.

whereVw, H and Ωz�w are the transformed vw, h and ωz�w respec-
tively. This corresponds to a multiplication of the input signal
with a complex transfer function to obtain the output Vw-signal.
Thus, it is possible to filter the input data with respect to their
spatial wavenumber and to choose the optimal phase relation for
every mode. An additional desired effect is the prevention of
instabilities, which might be introduced unintentionally by the
actuator response to the flow field. In Fig. 5 the effect of this
spatial filter on the damping capabilities of the ωz-approach can
be seen clearly (dashed lines). Besides a better damping of the
fundamental mode, the first higher harmonic (2,0) is affected in
a proper way and is attenuated as well.

NONLINEAR 3D-DISTURBANCES
As a test case for the effect of the ωz-approach on distur-

bances with large 3D-amplitudes, a typical K-breakdown sce-
nario (Fig. 7) is investigated where a fundamental 2D mode (1,0)
with large amplitude and a steady disturbance (0,1) are excited
initially. Because of nonlinear interactions the 3D-mode (1,1) is
generated and falls in resonance with the fundamental 2D-mode.
The other 3D modes arise due to nonlinear combinations. When
the strongly amplified 3D-waves have reached the amplitude
level of the fundamental mode, saturation can be observed and
transition to turbulence takes place (dotted lines) downstream of
x� 4�3.

Simultaneously with the occurrence of resonances we can
see the formation of Λ-vortices (Fig. 8 a)) leading to typical
”spikes” in the local velocity-signal. These transitional structures
collapse rapidly and lead to the formation of turbulent spots by
generation of smaller scale structures.

Applying ωz-control (with the spatial FIR-filter described
above) to the K-breakdown scenario in a very late, nonlinear
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Figure 6. TRANSFER FUNCTION AND FILTER COEFFICIENTS OF

THE SPATIAL FIR-FILTER USED TO STABILISE THE ωz-CONTROL.

stage (Fig. 7) two main control effects can be distinguished: first,
the direct damping of nonlinear disturbances and secondly, the
disruption of the resonant behaviour. The first effect is compa-
rable to a linear ωz-control case where it is possible to directly
damp TS-disturbances, the second effect results from the modi-
fied wave speed of the resonant modes which are ’detuned’ due
to the altered wave number (Fig. 4) under the influence of control
(Gmelin et al., 2001).

The formation of Λ-vorticies followed by a rapid collapse in
the uncontrolled case consequently can be prevented in the con-
trolled case (Fig. 8 b)) and transition can be shifted far down-
stream.

Unsteady modes are damped very efficiently but steady dis-
turbances (modes (0,1), (0,2)) are hardly influenced by the con-
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Figure 7. K-BREAKDOWN, umax-AMPLITUDES VS. x. MODES (h,0)
AND (h,1) CONTROLLED (jAj� 1�25 �10�4, Θ� π

2 ). DOTTED LINES:

UNCONTROLLED CASE. ONLY THE MOST IMPORTANT MODES ARE

SHOWN HERE. SMALL PICTURE: SPATIAL DISTRIBUTION OF THE

CONTROL GAIN jAj WITH A SINE-LIKE RAMP FUNCTION ON BOTH

SIDES.

trol and decay only because of the loss of energy-transfer from
the unsteady modes. From Fig. 9 it can be seen that after ap-
proximately ten fundamental time periods of control the unsteady
parts of the disturbances have already vanished whereas the re-
maining streak-like structures are convected downstream very
slowly.

To compare the feedback-approach with ”traditional” super-
position techniques in Fig. 10 the umax-amplitudes of the funda-
mental mode (1,0) of six different simulations are shown. Be-
sides the uncontrolled case (dotted) and the simulation with ωz-
control applied (solid) four cases can be observed, where control
was applied via superposition of antiphase disturbances (dashed).
These simulations show that the application of the wave super-
position principle at a late stage of transition (Fig. 10) results
in a negligible damping effect due to nonlinear interactions be-
tween the occuring modes which were not affected by the linear
approach. In late stages of transition ωz-control clearly outper-
forms wave superposition approaches.

CONCLUSIONS
With the aid of Direct Numerical Simulations (DNS) it was

possible to develop a simple, yet effective control algorithm to
actively control the laminar-turbulent transition occurring in a
2D boundary layer. It combines two main effects: the direct
attenuation caused by a change of the energy properties and a
reduced resonance according to an altered phase velocity of the

Figure 8. VISUALISATION OF VORTEX-STRUCTURES FOR THE UN-

CONTROLLED (a) AND UNCONTROLLED (b) CASE WITH AID OF THE

λ2-CRITERIUM OF JEONG AND HUSSAIN (Jeong and Hussain, 1995).

involved modes. Calculations using LST show a strong depen-
dence of the resulting wave number and amplification rate on the
chosen amplitude and phase difference between ω�

z (sensed) and
v�wall (stimulated).

It is shown that this approach is superiour to wave superpo-
sition methods especially close to transition where the boundary
layer instabilities have reached a highly nonlinear stage. Fur-
ther investigations have to show how far transition can be shifted
downstream and whether a complete relaminarisation of the flow
is possible using this approach. Also strategies to reduce steady
three-dimensional (streak-like) disturbances to return the flow to
its undisturbed state would be highly welcome.
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Figure 9. CONTOURS OF SPANWISE VORTICITY AT THE WALL FOR
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