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Abstract. Three different control concepts to attenuate disturbances in different
stages of the laminar-turbulent transition are presented. Active control via FIR
filter is a linear concept based on the principles of wave superposition suitable
for linear and weakly nonlinear disturbances. The concept of v-control originates
from turbulence control where it was basically intended to suppress quasi-steady
longitudinal disturbances. In our case the resonant behavior of nonlinear waves was
strongly altered. As a third concept the vorticity-control is a novel approach,
sensing the spanwise vorticity (shear stress) at the wall and prescribing v at the
wall in phase. This strategy yields a direct attenuation of both linear and nonlinear
waves as well as a change in their resonant behavior.

1 Introduction

Many concepts with the objective to actively delay the laminar-turbulent
transition are currently under investigation. In contrast to rather mathemat-
ical approaches based on optimal control theory, we follow a more practical
path here, which is based on the use of a FIR-filter as in the experiments of
Baumann & Nitsche [1], the “v-control” as in the work on turbulence control
of Hammond [6] and Choi et al [2] or the “vorticity-control”, a novel approach
in transition control (Fig. 1). Two questions are addressed: To what extent
can a linear technique be used in the non-linear regime of transition and to
what extent can the feedback of instantaneous signals from the flow field to
the wall be used for transition control, i.e. transition delay. Moreover, the
underlying control mechanisms are of major interest.

2 Numerical Method

All simulations were performed in a rectangular integration domain with
the spatial DNS-code developed by Konzelmann, Rist and Kloker [7]. The
flow is split into a steady 2D-part (Blasius base flow) and an unsteady 3D-
part. The z-(streamwise) and y-(wall-normal) directions are discretized with
finite differences of fourth-order accuracy and in the spanwise direction z
a spectral Fourier representation is applied. Time integration is performed
by the classical fourth order Runge-Kutta scheme. The utilized variables are
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Fig. 1. Different control strategies: a): FIR filter, b): v-control, c¢): vorticity control

normalized with Uy, = 302, # = 1.5-107°% and L = 0.05m (~ denotes
dimensional variables):
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where u, v and w are the components of the unsteady velocity disturbances.

This leads to the dimensionless Frequency § = 2nfL , where f is the Fre-
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3 Control Concepts and their Application

The (linear) FIR-filter is an on-line concept which has to be trained for each
flow condition or has to be adapted continuously. Superposition of anti-phase
disturbances is used to eliminate the initial perturbations. In our case, the
filter is trained once using data of simulations with successful cancellation to
obtain the filter coefficients for the subsequent runs avoiding time-consuming
calculations. Application of the FIR-filter to linear and weakly nonlinear
disturbances show a reduction in amplitude of about 1.5 to 2.5 orders of
magnitude at a fixed position downstream [3].

After obtaining excellent results in the linear case, active control via
FIRAfilters was applied to fundamental resonance which would lead to a K-
breakdown (Fig. 2). Due to the onset of fundamental resonance the phases
of the interacting modes (1,0) and (1,1) (the first index gives multiples of the
frequency 3, the second multiples of the basic spanwise wave number ) are
synchronized, i.e. their phase speed becomes equal (Fig. 3 (a)). With appli-
cation of control to the 2D mode the phase coupling is broken up and the
waves evolve independently (Fig. 2 and Fig. 3 (b)). As a result, the control
based on the wave superposition principle is most effective when applied at
an early stage of transition.
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Another approach, suitable for nonlinear disturbances is the “v-control”
originally applied to turbulent flows. In this case the instantaneous wall-
normal velocity at a sufficient distance from the wall (y = %) is prescribed
with opposite sign as a boundary-condition on the wall at the next time step

of the simulation.

Several simulations have been performed applying v-control to the funda-
mental 2D modes (Fig. 4(a)) in the K-breakdown scenario already shown in
Fig. 2 (dotted lines). Despite an increased amplitude of the 2D mode (1,0)
they showed a delayed onset of resonance between the fundamental 2D mode
and the resonant 3D modes with the same frequency. Looking at the phase
speed of the interacting modes (Fig. 4(b)) a strong acceleration of the con-
trolled 2D mode is observed. The resonant mode (1,1) is not able to attain the
same phase speed as the fundamental one. Therefore, phase coupling between
the waves is impossible and fundamental resonance is delayed.

A novel approach reducing the amplitude of both linear and nonlinear
disturbances and simultaneously changing the resonant behavior of the inter-
acting modes is the vorticity-control. The instantaneous spanwise vorticity
w, at the wall is prescribed in phase as v-component at the wall multiplied
by an amplitude factor of 7.5 (with respect to the dimensionless quantities
used here). This concept requires only informations about the shear stress at
the wall which are easily avaliable in practice. Applying the vorticity-control
to the fundamental resonance scenario mentioned above, a strong damping
effect on the controlled mode can be observed (Fig. 5(a)). Moreover, an effect
similar to that obseved applying the v-control can be found. A strong deceller-
ation of the controlled mode (in Fig. 5(b) the fundamental 2D mode (1,0)) is
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Fig. 4. Secondary instability: control of the fundamental 2D mode via v-control at
r = 2.55...5.4, dotted lines: uncontrolled case.

initiated by application of the vorticity control. This suppresses a phase cou-
pling between the interacting modes and reduces the secondary growth of the
3D disturbances. An explanation for the damping of the unsteady 2D modes
which is not some kind of wave cancellation is obtained by the dimensionless
energy balance equation (for two-dimensional, linear disturbances):
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where capitals stand for steady quantities and overbars denote the temporal
average over one period in time. A detailed discussion of the energy balance
equation can be found in [4] and [5]. The term on the left hand side of
(1) represents the spatial increase of the fluctuation energy at a fixed z-
position i.e. the amplification or attenuation of the disturbances. The major
contribution to the right hand side is supplied by the first two terms. The
energy production term (first term on the right hand side) indicates whether
energy is transfered from base flow to disturbance ([ Rdy > 0) or vice versa
(/ Rdy < 0) and it dominates in combination with the dissipation term
v w2 dy the energy balance. The sign of R is determined by the sign of
the Reynolds stress —u/v’. This implies for wave like disturbances that the
phase-difference between u' and v’ is the most important property of these
variables for the energy balance. Figures 6(b) and (e) show besides the phases
of ' and v’ the phase difference between both. In the uncontrolled case
AO =10, —0,| > I for y/VRe < 0.02 (Fig. 6(e)) is observed. This leads to
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a Reynolds stress —u/v’ > 0 (Fig. 6(f)) and hence to an amplification of the
disturbance. On the other hand, application of vorticity control changes the
phases of v’ and v’ in a way that the Reynolds stress —u/v’ becomes negative
(Fig. 6(c)) and therefore leads to a decrease in amplitude. Although the
energy balance equation mentioned above has been derived for disturbances
with linear amplitude we can show, that it is valid for nonlinear 2D waves,
too, as long as saturation of the amplitude is not reached.
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Fig. 5. Secondary instability: control of the fundamental 2D mode via vorticity-
control at x = 2.55...5.4, dotted lines: uncontrolled case.

4 Summary

Three different unsteady control approaches to control disturbances were ap-
plied to both linear and nonlinear disturbances. Best results in the nonlinear
case were obtained by using vorticity-control, a concept which follows a very
simple yet effective control law. This approach is very robust in the sense
that it is allmost independent of the amplitude of the controlled wave. In
the cases we investigated a superposition of some kind of “anti-phase distur-
bance” could not be observed. Rather the changed phases of v’ and v’ are
the reason for the weakening of the controlled modes.
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Fig. 6. Energy relevant quantities vs. y. (a)...(c) controlled case, (d)...(f) uncon-
trolled case. (a), (d) velocity profiles in wallnormal and streamwise direction; (b),
(e) corresponding phases; (c), (f) energy properties
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