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Methods for data reconstruction and spatial enhancement of experimental data for a transitional
boundary layer with laminar separation bubble are investigated. Particularly, proper orthogonal
decomposition �POD� is applied to direct numerical simulation �DNS� data to extract the
DNS-based POD modes, which are projected onto the experimental data �via a least-squares
procedure� in order to obtain model coefficients. These model coefficients are then used to
reconstruct, “interpolate,” and smooth the experimental data based on the DNS modes. In addition,
in order to compare and assess the effectiveness of the present DNS-based procedure, Kriging
interpolation is performed on the experimental �as well as numerical� data. These procedures are
applied to time periodic �experimental� instantaneous spanwise vorticity ��z� at a constant spanwise
location. We have demonstrated that particle-image-velocimetry �PIV�-based POD modes can be
smoothed by Kriging interpolation, thus a noise-free reconstruction of PIV data can be achieved. It
is also found that for very low resolution experimental data, DNS-based interpolation is superior
over Kriging interpolation. On the other hand, Kriging interpolation based on the Gaussian
correlation model works very well for sufficiently high resolution experimental data. The correlation
parameter can be used to control the degree of smoothness in the data reconstruction. Both
procedures effectively eliminate the unwanted noise in the experimental data. One important
difference between the two procedures is that, with quite some confidence, the DNS-based
procedure can also be used for “extrapolation” since the model coefficients do not depend on spatial
variation. In fact, we show that near-wall spanwise vorticity, which is not available from
experimental data, can be recovered faithfully. Moreover, the enhancement �interpolation and
smoothing� of full three-dimensional PIV data has been performed by Kriging interpolation
employing a Gaussian correlation model. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2740710�

I. INTRODUCTION

With the recent development of state-of-the-art quantita-
tive data measurement techniques such as particle image ve-
locimetry �PIV� and magnetic resonance imaging �MRI�, ex-
perimentalists can now obtain flow �image� data with
increasingly well resolved spatio-temporal accuracy, while
ever expanding computational methods and hardware re-
sources provide the computing community with even more
highly resolved spatio-temporal numerical data compared to
quantitative measurement techniques. When compared with
the numerical data, an important feature of the experimental
flow data is that it usually contains some undesired back-
ground noise and turbulence. In three-dimensional complex
flows, structure extraction and vortex identification and
tracking methods are of particular importance in order to

visualize and understand the flow physics. In addition, many
of the data visualization methods involve the evaluation of
the gradients of the field variables, which further increase the
noise level of the experimental data due to inevitable numeri-
cal differentiation errors. Therefore, utilization of various fil-
tering as well as resolution enhancement techniques is usu-
ally required on the experimental data before employing any
vortex identification method.1

In our recent paper,2 we have analyzed proper orthogo-
nal decomposition �POD� reconstruction of a transitional
boundary layer flow with and without control and shown that
POD modes extracted for a particular flow condition may be
used to model the flow with modified conditions �through a
control action, a change of Reynolds number, etc.� by modi-
fying the temporal coefficients of the modes. While the cross
projection approach �see Prabhu et al.3� is useful to evaluate
the “suitability” of the nonoptimal POD modes �i.e., whether
POD modes can be used for modified conditions�, it has no
practical use in the reconstruction of the unknown flow dy-
namics as it requires the complete flow field to be known a
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priori. On the other hand, the least-squares method2 offers a
simple and effective approach to calculate the temporal co-
efficients, which we will use in this paper.

On the other hand, a recent new trend in simulation
driven by experimental data has been presented by Sirisup et
al.4 and Ma et al.,5 who extracted POD modes from �digital�
PIV experiments and obtained an “experiment-based” POD
simulation in an effort to implement a numerical algorithm in
which simulation and experiment serve a “symbiotic feed-
back” system. In this way, experimental data are used to
construct “realistic” simulation models to accurately predict
the evolution of a given experimental state. In addition, the
information extracted from the simulation may be used to
enhance/improve the experimental results as well as to
modify the experiment, e.g., to reorient the measurements to
the proper location �see Refs. 4 and 5�.

In this paper, we investigate the possibility of using
DNS-based POD modes �i.e., POD modes extracted from
DNS� in order to enhance �interpolate and smooth� the reso-
lution of PIV data, a first step in realizing the integration of
simulation and experiment for flow prediction. A least-
squares fit of the low-resolution �and inherently noisy� PIV
data on the DNS-based POD modes is performed in order to
compute the temporal coefficients for the hybrid model.
Then, these computed coefficients are used along with the
high-resolution DNS-based POD modes in order to recon-
struct the PIV data with the same high resolution as the DNS
data. In addition, in order to assess the effectiveness of the
present POD-based procedure, Kriging interpolation is also
used to enhance the PIV data.

Kriging is an effective statistical estimation procedure
that was named after D. G. Krige, a South African engineer
who developed the procedure in order to predict mine ore
ground water reserves more accurately from multipoint mea-
surements. For the past several decades, Kriging has been
used with success in geology and environmental engineering
to interpolate the regionalized data �i.e., variables that fall
between randomly scattered and completely deterministic
data�. It is assumed that the regionalized variable varies in a
continuous form from one location to the next, and therefore
points that are near each other have a certain degree of spa-
tial correlation, but points that are widely separated are sta-
tistically independent.6 Unlike other estimation procedures,
Kriging provides a measure of the estimation error and asso-
ciated confidence in the estimates.7

In ordinary Kriging, a model variogram, consisting of a
set of mathematical functions that describe the spatial rela-
tionship, is constructed based on the known values. The ap-
propriate model is chosen by matching the shape of the curve
�i.e., polynomial, exponential, Gaussian, etc.� of the experi-
mental variogram to the shape of the curve of the mathemati-
cal function �see Refs. 6 and 8�. Based on the variogram
used, optimal weights are assigned to known values in order
to calculate the data at unknown points. The second approach
in Kriging interpolation is based on the correlogram rather
than the usual variogram �see Sacks et al.9 for more infor-
mation�. It employs a polynomial regression routine that
minimizes estimation variance from a predefined covariance
model.

In the current paper, we adopt the Kriging interpolation
based on the correlogram, implemented in the Matlab Tool-
box DACE �Lophaven et al.10�. Detailed information and
aspects of the Matlab Toolbox DACE are given in Refs. 11
and 12. A brief overview of the method is also presented in
Ref. 13. Given a sample of grid points and corresponding
function values �design dataset�, Kriging interpolation is
based on a “surrogate model,” which is obtained by the pre-
determined regression and correlation models. The correla-
tion model usually contains a correlation parameter that de-
fines implicitly the correlation length, which is optimized
based on the variance estimate. Then, the constructed surro-
gate model is used to predict �interpolate� the function at
unknown grid points. The regression model used in our study
is based on second-order polynomials, and we employ a
Gaussian correlation function as Ri=exp�−�idi

2�, where di is
the distance and �i defines implicitly the correlation length.
The Gaussian correlation function is suitable for continu-
ously differentiable flow fields since it shows a parabolic
behavior near the origin. It is also a suitable model function
for experimental data, where usually some smoothing is nec-
essary due to the background noise and/or measurement er-
rors. Given a range of �, an optimization procedure based on
the variance estimate is performed in order to find the opti-
mum value �*. In addition, if the flow field is anisotropic, it
is necessary to identify different correlation functions in each
direction. This is accounted for by allowing different corre-
lation parameters, �i, in two or three dimensions. See Lo-
phaven et al.10,11 for more information about the optimiza-
tion of the correlation length, the anisotropy issue, and other
computational aspects of the procedure.

We have also developed our own Kriging interpolation
method based on the variogram model. In general, both cor-
relogram and variogram models give similar results, but cur-
rently employing the DACE Toolbox is computationally
much more efficient. The reader is referred to Ref. 14 for a
discussion about Kriging based on a variogram model.

Recently, Kriging interpolation and POD-based methods
have been successfully applied to data recovery and recon-
struction of randomly generated laminar gappy flow fields of
uniform flow past a circular cylinder �see Refs. 13 and 15�.
Kriging interpolation has also been applied to large spatial
gappiness or for flow fields with black zones with consider-
able success for relatively smooth data. In this paper, we will
apply Kriging interpolation to more complicated, wall-
bounded transitional boundary layer flow involving a laminar
separation bubble. In addition, a new DNS-based “interpola-
tion” will be introduced to enhance and smooth the experi-
mental data by making use of the POD modes obtained from
DNS. Finally, the peculiarities of DNS-based interpolation
and Kriging interpolation are discussed.

II. EXPERIMENTAL „PIV… AND NUMERICAL „DNS…
DATA

The PIV experiments were carried out by Lang,16 while
the DNS simulations were performed by Marxen.17 For de-
tailed information on both works, we refer to the aforemen-
tioned dissertations. Summaries can be found in Lang et al.18
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and Marxen and Rist.19 Here, we briefly inform the reader
about the investigated flow problem, nonlinear transition
stages of a flat plate boundary layer flow involving a laminar
separation bubble. The basic transition scenario is that in
which a laminar boundary layer separates in a region of ad-
verse pressure gradient from a flat plate, undergoes laminar-
turbulent transition, and reattaches as a turbulent boundary
layer to form a laminar separation bubble.

The experiments were performed in a laminar water tun-
nel facility at the Institute of Aerodynamics and Gas Dynam-
ics in Stuttgart University. A flat plate is mounted in the free
stream �U�=0.125 m/s� of the test section of a laminar wa-
ter tunnel. To generate a pressure-induced laminar separation
bubble, a displacement body �length of the body L=0.69 m�
was positioned in the test section above the flat plate. The
global Reynolds number based on the displacement body
length and the reference velocity �U�=0.125 m/s� is Re
=105 in water. For experimental setup and other detailed
information, see Ref. 18. For DNS calculations, general

physical parameters of the flow are chosen to match the ex-
perimental setup as closely as possible.

The comparison of phase-averaged results both from
PIV and DNS are given in Fig. 1 as reported by Marxen and
Rist,19 where instantaneous contours of the spanwise vortic-
ity ��z� at the spanwise location z=0 are shown in a time
periodic signal. As shown in Fig. 1, the instantaneous experi-
mental and numerical results agree closely with each other.

For the purpose of this investigation, a total of 9 snap-
shots from PIV and a much finer sampling of 50 snapshots
from DNS data are used in order to extract the POD modes.

III. EXTRACTION OF POD MODES: PIV-BASED
VERSUS DNS-BASED MODES

The POD procedure is now well documented, and there-
fore we do not repeat it here but state that we implement the
snapshot version of POD introduced by Sirovich.20 We refer
to the book by Holmes et al.21 and various papers �Deane et

FIG. 1. Contours of the spanwise vor-
ticity at z=0 for single time instants
�from top to bottom: t /T0

=0 ,0.2,0.4,0.6,0.8�. Comparison of
phase-averaged results from PIV �Ref.
16� �left� and DNS �Ref. 17� studies
�right�.

064101-3 Spatial resolution enhancement/smoothing Phys. Fluids 19, 064101 �2007�

Downloaded 28 Jun 2007 to 129.69.43.206. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



al.,22 Noack and Eckelman,23 Rempfer,24 Liakopoulos et
al.,25 Jing et al.,26 Ma and Karniadakis27� for a detailed dis-
cussion of theoretical and numerical issues of the POD pro-
cedure.

Employing the method of snapshots, we have extracted
POD modes from datasets corresponding to both the PIV
measurements and to DNS. In all of our computations, we
extract the POD modes for the fluctuating velocity field. We
also note that applying POD to the total velocity field is also
possible. The only difference would be that the most ener-
getic mode �we can call it zero mode� would then contain the
mean flow. It is well known that POD modes �k�x ,y� can be
used to reconstruct the dataset �from which they are ex-
tracted� optimally for a given number of N terms as follows:

�z�x,y,t� � �
k=1

N

ak�t��k�x,y� , �1�

where ak�t� denotes the temporal coefficients of POD modes.
For a given dataset, the maximum number of modes that can
be obtained is equal to the number of snapshots, M. How-
ever, in general �with the possible exception of turbulent
flows�, the first few modes capture the most of the energy of
the flow, as quantified by the normalized eigenvalues. In
other words, in general, the number of POD modes to recon-
struct the field variables to an acceptable degree is much
lower than the number of snapshots required for a sufficient
temporal resolution of the flow.

Equation �1� is called the “reconstruction formula,” and
since the POD modes are orthogonal by construction, the
temporal coefficients ak�t� can be obtained from Eq. �1� by a
“direct projection” formula as

ak�t� = �
�

�z�x,y,t�,�k�x,y�d�, k = 1,2, . . . ,N . �2�

The above equations relate to the specific example of the
spanwise component of vorticity �a scalar field� at a constant
spanwise location �z=0�, but the extension is obvious for a
three-dimensional vector field as well. We also report some
results on the three-dimensional velocity vector field in the
second part of this paper.

Since eigenvalues of the covariance matrix represent the
energy content of the modes, we show the distribution of
eigenvalues obtained from PIV measurements and DNS in
Fig. 2. The comparison of PIV versus DNS eigenvalues
shows a remarkable similarity for almost all of the modes. In
particular, most of the fluctuating kinetic energy is captured
by the first four modes for both PIV- and DNS-based modes,
i.e., the first four PIV-based modes capture 89.1% while the
first four DNS-based modes capture 90.9% of the total en-
ergy. Ma et al.5 make a similar comparison of digital PIV
and two-dimensional DNS results for a flow past a circular
cylinder at Reynolds number 610. They report that the fluc-
tuating kinetic energy content of only the first six modes
agrees with each other, and for higher modes the energy
spectrum of the DNS-based modes decays sharply, while the
spectrum of PIV-based modes decreases rather monotoni-
cally with a nearly constant slope. They state two probable
causes for this discrepancy: �i� the noise and the background

turbulence of experimental data, and �ii� limitation of the
two-dimensional simulation. They also report that the eigen-
value spectrum for the two-dimensional simulations decays
faster compared to three-dimensional simulations. This is in
agreement in our 3D simulations, and combining our find-
ings with theirs, we can say that the limitation of the two-
dimensional simulation seems to be a major source of the
spectrum discrepancy while the noise and the background
turbulence of the experimental data seem to play only a mi-
nor role.

Figures 3 and 4 show the comparison between PIV- and
DNS-based POD modes, while corresponding coefficients of
the modes are given in Figs. 5�a� and 5�b�, respectively. The
comparison of experimental and numerical POD modes
�versus time� reveals that the first four most energetic modes
show a considerable similarity, while deviations are evident
for higher-order modes. It is also noted that for DNS results,
well-organized, small-scale coherent structures are observ-
able for even very high-order, low-energy content modes
�e.g., the 15th and 19th modes shown in Fig. 4�b��. The
high-order PIV-based POD modes, on the other hand, are
noisy. By comparing the coefficients of the PIV- and DNS-
based POD modes �Figs. 5�a� and 5�b��, we see that they are
quite similar as well but we also note that a mode and a
corresponding coefficient “phase shift” in mode pairs is ob-
servable, as already reported in Prabhu et al.3 and Gunes and
Rist2, for instance.

IV. RECONSTRUCTION OF PIV DATA

A. Reconstruction of PIV data via PIV-based
POD modes

In order to compare and assess the differences, we will
use both PIV- and DNS-based modes in reconstructing the
original PIV data. Next, we will investigate noise filtering
�smoothing� and the possibility of enhancement of the spatial
resolution of original PIV data.

FIG. 2. Comparison of eigenvalues computed from experimental �PIV� and
numerical �DNS� results.
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Let us write the decomposition of the PIV dataset utiliz-
ing both PIV- and DNS-based modes:

�z
PIV�x,y,t� � �

k=1

N

ak
PIV�t��k

PIV�x,y� , �3�

�z
PIV�x,y,t� � �

k=1

N

ak
model�t��k

DNS�x,y� , �4�

where the model coefficients ak
model can be calculated by a

cross projection of the DNS-based modes on the PIV data as

ak
model�t� = �

�

�z
PIV�x,y,t�,�k

DNS�x,y�d� . �5�

Figure 6�a� shows the reconstruction of a representative in-
stantaneous snapshot of the experimental spanwise vorticity
�PIV data� for a different number of PIV-based POD modes
�direct projection�. The original PIV data are shown for com-
parison. It is seen that only the first five modes are sufficient
for an accurate reconstruction �with an rms error of 0.1204�
since PIV-based modes are optimal for the experimental data.
It is also noted that because PIV-based modes contain experi-
mental noise �see Fig. 3�, the reconstructed PIV data �span-
wise vorticity field� are as noisy as with the original PIV
data. Here, in order to smooth the PIV data, we first employ
the Kriging procedure on the noisy POD modes, and recon-
struct the original data with optimal but smoothed PIV-based
modes as shown in Fig. 6�b�. As all the PIV-based modes are

smoothed �including the average PIV data-mode zero�, the
reconstruction results in smooth data fields for any selected
number of modes. It is seen in Fig. 6�b� that the first five
smoothed POD modes accurately capture the PIV data �with
an rms error of 0.1960�. The reconstruction error as a func-
tion of mode numbers is given in Table I. We note that, while
using all the original modes leads to zero reconstruction er-
ror, hence containing the noise as well, the smoothed modes
result in a converged rms error of 0.1701. So, this difference
is obviously due to the removal of the noisy part of the data.
We show in Fig. 7�a� the smoothed POD modes �they may be
compared with the original POD modes in Fig. 3�.

Since the POD modes are smoothed, they are expected
to no longer be orthogonal �relative to the scalar product that
was used when the original/noisy POD modes were deter-
mined� and optimal. Therefore, as suggested by one referee,
we also considered smoothing the PIV data first, and then
determining POD modes for the smoothed PIV data. The
resulting eight most energetic orthogonal set of POD modes
obtained for the smoothed PIV data is shown in Fig. 7�b�.
The orthogonal set of POD modes is crucial if one is re-
quired to construct an accurate low-dimensional model to
investigate the characteristics of the dynamical system. How-
ever, for the data reconstruction/smoothing and interpolation
purposes, as implemented in the current paper, the POD
modes may not be required necessarily to be orthogonal. In
addition, we think that smoothing POD modes, rather than
smoothing PIV data itself �i.e., this requires all snapshots to

FIG. 3. The eight most energetic PIV-
based POD modes of spanwise vortic-
ity �left column: odd number modes,
right column: even number modes�.
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be smoothed separately�, might have the following advan-
tages:

�i� POD leads to a natural separation of the large scales
from the small ones �low-order modes contain large scales
and high-order modes small scales� and at the same time
there is a good separation of the coherent part �low-order
modes� from the incoherent part �higher-order modes�.

�ii� Smoothing of each snapshot before performing the
POD requires more computer time and contains the danger
that large and coherent structures are more affected by the
smoothing procedure than in our case.

�iii� Smoothing of the large-scale structures will not de-
teriorate the small-scale structures, and vice versa.

�iv� When the smoothing is performed individually for
each snapshot, due to instantaneous flow complexity and/or
measurement errors, the noise content of some snapshots
may be quite different from the rest and, therefore, it is dif-
ficult to control and adjust the smoothing parameter for each
snapshot, i.e., it is likely that some snapshots are too much
�oversmoothed� or too little smoothed, which in turn will
affect the POD modes.

For the problem at hand, comparing orthogonal and non-
orthogonal POD modes, the most energetic four modes are
very close to each other, while there is a considerable differ-
ence in less energetic higher-order modes �see Figs. 7�a� and
7�b��. Also, Table II shows the energy content of each
orthogonal/nonorthogonal POD mode. While the first four
orthogonal/optimal modes capture 94.71% of the flow fluc-
tuating energy, the nonorthogonal/nonoptimal modes capture
90.95% of the same energy. We can conclude that while the
orthogonality property of the POD modes is eliminated theo-
retically by smoothing the modes, especially the most ener-
getic POD modes are not “far away” from the orthogonality
condition when they are smoothed.

In addition, in smoothing PIV data first, there is a danger
that small-scale important features of the flow �higher-order
structures� may be confused with noise and lost along with
the latter during the smoothing process. Actually, we inves-
tigate Kriging interpolation/smoothing in Sec. V in detail and
show that by controlling the correlation parameter, one can
choose the degree of smoothness for the Gaussian correlation
function �see, for example, Fig. 17�.

FIG. 4. �a� The eight most energetic
DNS-based POD modes of spanwise
vorticity �left column: odd number
modes, right column: even number
modes�. �b� Higher order DNS-based
POD modes. The 15th �left� and 19th
�right�.
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Finally, in Table I, we compare the reconstruction errors
as a function of PIV-based mode number. The reconstruction
error for both procedures, i.e., mode-smoothing and PIV-data
smoothing, give similar results for low-order modes �for the
two most energetic pairs�, while there is some difference if
one considers other �high-order� modes. This is in agreement

with the fact that the four most energetic smoothed POD
modes and POD modes obtained from smoothed PIV data
resemble each other, as shown in Figs. 7�a� and 7�b�.

As a concluding remark in this section, there is no clear
advantage for one or the other procedure �perhaps apart from
the argument of computer time, especially when a larger

FIG. 5. Coefficients of �a� PIV-based
POD modes, �b� DNS-based POD
modes
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number of snapshots are available�. Both methods can be
used depending on the application. For data reconstruction/
smoothing and interpolation, mode-smoothing may be appro-
priate while PIV-data smoothing shall be employed for low-
dimensional representation of flow data, which requires
orthogonal POD modes.

B. Reconstruction of PIV data via DNS-based
POD modes

In the preceding section, we have shown that PIV data
can be reconstructed and smoothed effectively employing
PIV-based POD modes along with the Kriging procedure. In
this section, we will investigate the possibility of reconstruc-
tion of PIV data employing DNS-based POD modes. This
task is important because in many instances, the experimen-
tal data have very low resolution or are only partially avail-
able, and extracting additional information/data from avail-
able DNS data can be highly desirable. Before employing
DNS-based modes to reconstruct PIV data, for a comparison
we present reconstruction of the DNS data using DNS-based
modes in Fig. 8 �direct projection�. Similar to the PIV data,
the DNS data are reconstructed with few modes accurately
�with an rms error of 0.2333 for the first five modes�. We
also note the noise-free spatial distribution of the reconstruc-
tion as expected.

Having mentioned that PIV- and DNS-based modes are
only optimal for their corresponding data, we will now in-
vestigate reconstruction, smoothing, and spatial resolution
enhancement of PIV data employing �theoretically nonopti-
mal but closely related� DNS-based modes. As reported by
Prabhu et al.,3 the “cross projection” represents the ability of

TABLE I. Reconstruction error as a function of PIV-based mode number.
Smoothed POD modes are obtained by the Kriging procedure �middle col-
umn�, while in the right column, we smooth PIV data first, and then deter-
mine POD modes for the smoothed PIV data.

Mode
number

Reconstruction error

Using original
POD modes

Using smoothed
POD modes

Using smoothed
PIV data

2 0.2798 0.2927 0.2956

3 0.2597 0.2737 0.2751

4 0.2536 0.2714 0.2740

5 0.1204 0.1960 0,2274

6 0.0247 0.1715 0.1928

7 0.0226 0.1713 0.1888

8 0.0040 0.1701 0.1876

9 0.0 0.1701 0.1876

FIG. 6. Reconstruction of PIV data us-
ing PIV-based POD modes �direct pro-
jection�. �a� Original �noisy� PIV-
based POD modes, �b� PIV-based
POD modes smoothed by the Kriging
procedure.
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nonoptimal POD modes �here DNS-based modes� to de-
scribe the actual PIV data. Therefore, by reconstructing the
spanwise vorticity �z

PIV using Eq. �4�, we can evaluate a
priori the potential of DNS-based modes in reconstructing
the PIV data. If DNS-based modes can be used for recon-
struction, it is predicted that only the few most energetic
modes are necessary for the reconstruction since it has been
shown previously that almost 90% of the energy is captured
by the first four modes both for PIV and DNS data.

The cross projection formula to evaluate the model co-
efficients �Eq. �5�� actually requires all PIV data �i.e., �z

PIV

for all points� to be supplied in order to calculate the model
coefficients, and the equation implicitly assumes that the
DNS-based modes satisfy the orthogonality condition on the

PIV measurement points �domain�. On the other hand, in
order to calculate the model coefficients, a least-squares
method proposed by Gunes and Rist2 may be used for a
partially available or very coarse PIV dataset �e.g., data with
missing zones� and the method does not require that DNS-
based modes are orthogonal. That is, by providing flow data
only at selected locations �xiyi� and employing a least-
squares fit on Eq. �4�, one can calculate the model coeffi-
cients without requiring the use of Eq. �5�. Particularly, we
can write a least-squares error as

E = min��
k=1

P 	
�
j=1

N

aj� j,k
DNS� − �z,k

PIV�2 �6�

and a least-squares fit formulation reduces to the following
system of algebraic equations for the model coefficients:
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� . �7�

In Eq. �7�, P denotes the total number of data points in the
PIV measurements while N denotes the number of most en-
ergetic DNS-based POD modes and determines the size of
the coefficient matrix. The PIV data are utilized to evaluate
the right-hand side �RHS� of the linear system, while the
coefficient matrix is computed once and for all from DNS
data. The size of the linear system depends on the number of

TABLE II. The energy content �in percent� of orthogonal and nonorthogonal
POD modes.

Mode
number

Orthogonal
POD modes

Nonorthogonal
POD modes

1 48,41 45,08

2 36,56 34,58

3 5,85 6,49

4 3,89 4,80

5 2,09 3,40

6 1,38 2,38

7 1,02 1,80

8 0,80 1,51

FIG. 7. �a� The eight most energetic PIV-based smoothed �nonorthogonal�
POD modes of spanwise vorticity �left column: odd number modes, right
column: even number modes�. �b� Orthogonal set of POD modes obtained
for the smoothed PIV data �left column: odd number modes, right column:
even number modes�.
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modes used in Eq. �4�. By employing a triangular decompo-
sition, the hybrid model coefficients can be calculated effi-
ciently for different PIV data sets.

In order to investigate the performance of each recon-
struction procedure in detail, we employ the root mean
square �rms� error for each snapshot as follows:

rmsN��z� =

� 1

TN
�
i=1

TN

��z,C
N �x,y� − �z�x,y��2

� 1

TN
�
i=1

TN

��z�x,y� − �z�2

, �8�

where TN is the total number of nodal points in the flow
field, �z,C

N denotes the reconstructed spanwise vorticity via N

FIG. 8. Reconstruction of DNS data via DNS-based modes �direct projec-
tion�. �a� Original DNS data, �b� five DNS-based modes, �c� seven DNS-
based modes, �d� nine DNS-based modes.

FIG. 9. The effect of the mean flow in reconstructing PIV data via DNS-
based POD modes �cross-projection with the least-squares approach�.

FIG. 10. Comparison of mean spanwise vorticity of PIV and DNS data.
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modes, while �z�x ,y� denotes the “actual” spanwise vorticity
obtained from the PIV measurements. Note that in order to
normalize with respect to the “variance” of the field, we
evaluate the variance as

� 1

TN
�
i=1

TN

��z�x,y� − �z�2, �9�

where �z is the average of the PIV vorticity field, �z�x ,y�.
We also note here that using a relative error is not particu-
larly suitable here because at some �but only few� points, the
field values are so small that small deviations give very large
relative errors, which make a reasonable comparison impos-
sible.

Figure 9 shows the reconstruction of the PIV data em-
ploying �N=6� DNS-based POD modes obtained by the
least-squares approach. For a comparison, we also show the
original PIV data at the top of the figure. It is important to
note that the extracted POD modes �shown in Figs. 3 and 4�
are for the fluctuating part of the vorticity. To visualize the
instantaneous vorticity, the mean vorticity needs to be added.
The mean vorticity contours shown in Fig. 10 for both PIV
and DNS datasets are very similar. However, we still notice
some background noise for PIV data as expected. �It is pos-
sible to smooth the mean vorticity employing Kriging�.
Therefore, we prefer the mean vorticity from DNS for two
reasons: �i� it eliminates the background noise associated
with the PIV measurements, �ii� in a case in which only
partial measurements are at hand in a domain of interest, the
mean experimental velocity cannot be used. Therefore, in all

FIG. 11. Reconstruction of PIV data with various numbers of DNS-based
POD modes �via the least-squares approach�.

FIG. 12. The model coefficient as obtained by the least-squares approach.

FIG. 13. The rms error of reconstruction for PIV data as a function of
DNS-based POD modes �with the least-squares approach�.

FIG. 14. Spatial resolution enhancement of PIV data to a fine DNS grid of
�116�156� using nine DNS-based POD modes.
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the reconstructions in this paper that follow, we use the DNS
mean spanwise vorticity.

The effect of the number of DNS-based POD modes on
the reconstruction of PIV data is shown in Fig. 11. We see

that the shear layer due to laminar separation is captured by
only the first few modes. The model coefficients obtained
from the least-squares approach �Eq. �7�� are given in Fig.
12. These coefficients are used along with the DNS-based

FIG. 15. Resolution enhancement of
“gappy” PIV data using nine DNS-
based POD modes. The left column
shows the gappy PIV data �obtained
by discarding a significant part of the
available PIV data�, and the right col-
umn shows the enhancement of PIV
data via DNS-based POD modes. The
“DNS-based” interpolation refers to
using POD modes extracted from
DNS in the reconstruction of gappy
PIV data.

FIG. 16. The enhancement of the
gappy PIV data using various
procedures.
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POD modes in order to reconstruct PIV data shown in Fig.
11. The reconstruction rms error, defined in Eq. �8� as a
function of mode number, is given in Fig. 13. The error
decreases sharply with the first few modes and levels off to a
constant value for higher modes. That is, higher-order DNS-
based modes have almost no contribution in reconstructing
PIV data, while they all contribute in reconstructing DNS
data.

Here, an explanation of the computational requirement is
appropriate. In order to be able to compute the model coef-
ficients either from Eq. �5� or Eq. �7�, the DNS-based POD
modes should be obtained on the experimental �PIV� grid. To
achieve this, we first interpolate high spatial resolution DNS
data �spanwise vorticity� onto the low spatial resolution PIV
data. Then, applying the POD procedure, DNS-based modes
are obtained on the PIV measurement points. Note that once
the model coefficients are obtained using either Eq. �5� or
Eq. �7�, they are independent of the spatial variations, thus
they can be used with high spatial resolution DNS-based
modes in order to obtain high-resolution PIV data. Therefore,
we compute again DNS modes, now on a finer computa-
tional grid. Figure 14 shows the spatial resolution
enhancement/smoothing of PIV data to a fine DNS grid of
�116�156� using nine DNS-based POD modes. This proce-
dure can be thought as a novel “DNS-based” interpolation
employing DNS-based POD modes. In addition, notice that
the wall and the near-wall vorticity, not available in the origi-
nal PIV measurements, are also accurately predicted by this
procedure since DNS-based modes contain this information.
In this particular measurement campaign of Lang16, the span-
wise vorticity at the z=0 plane had been obtained on a fine
“experimental grid” �76�38�. However, full three-
dimensional measurement campaigns carried out with stereo-
scopic PIV were much coarser �e.g., only nine planes in
wall-normal direction�. Therefore, in order to see whether
DNS-based interpolation works for coarser measurements
points, so-called “gappy” PIV data were generated artificially
by omitting data points from present PIV snapshots. Figure
15 shows the resolution enhancement/smoothing of the
gappy PIV data using nine DNS-based POD modes. We refer
to the procedure as “DNS-based” interpolation, which means
we use smooth �noise-free� POD modes extracted from DNS
in the reconstruction of gappy PIV data. It is seen that DNS-
based POD modes can be used to extract the important fea-
tures of the experimental data, not available in the low-
resolution gappy PIV data. In fact, the performance of DNS-
based interpolation is particularly pronounced for PIV data
with a very high gappiness �10�5�, as shown in Fig. 15.

V. KRIGING INTERPOLATION

A. Kriging interpolation of PIV data

In our study, we employ a Gaussian correlation model
since the flow field is continuously differentiable and we
would like to smooth the experimental data. We also used
other correlation models �e.g., exponential, linear, spherical�
and found out that the Gaussian correlation model is neces-
sary for smoothing. The regression model used in all of our
studies is based on second-order polynomials. Each time-
snapshot is treated as separate data and therefore a separate
regression and correlation model may be used for each snap-
shot, if required. Although Kriging based on a surrogate
model is almost always used for interpolation, it can also be
used for extrapolation, i.e., the surrogate model can estimate
a value at points both inside and outside the neighborhood of
the design dataset. Obviously, the interpolated values are
much more accurate than the extrapolated values. In fact, our

FIG. 17. Kriging interpolation of experimental data for various values of
correlation parameters.
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numerical experiments show that the accuracy sharply dete-
riorates outside the design dataset.

In order to compare to the DNS-based “interpolation,”
we carried out Kriging interpolation as well as linear inter-
polation of low-resolution gappy PIV data. Figure 16 shows
the reconstruction of the two gappy PIV data sets,
�10�10� and �19�19�, respectively. For very coarse
�10�10� gappy PIV data, DNS-based interpolation is cer-
tainly superior to Kriging and linear interpolation. This is an
expected result with very low-resolution gappy PIV data,
since both Kriging and linear interpolations use only avail-
able gappy PIV measurements, and there is simply not
enough information to extract the hidden features of the flow.
On the other hand, the prediction of Kriging interpolation is
improved significantly for the second gappy PIV data with
�19�19� resolution, while the prediction of DNS-based in-
terpolation does not change practically. Kriging interpolation
of noisy PIV data for various values of the correlation pa-
rameters �i is shown in Fig. 17. As can be seen, the correla-
tion parameter given in the Gaussian correlation function

Ri=exp�−�idi
2� is related to the correlation length and it is

crucial for the Kriging interpolation of noisy data. Actually,
by controlling the correlation parameter, one can choose the
degree of smoothness for the Gaussian correlation function
�see Fig. 17�. Figure 18�a� shows the variation of Gaussian
correlation function with the correlation parameter. The cor-
relation increases as the correlation parameter decreases, i.e.,
the points in a larger region contribute to the evaluation of
the unknown points resulting in a smoother “average” data.
We also note that Fig. 17�f� shows the Kriging interpolation
with the optimized coefficients. Here, the anisotropy is ac-
counted for in the different values of correlation parameter
for each direction. The correlation parameter in the stream-
wise direction is �x=0.31, while in the wall normal direction
it is �y =0.62 �see Fig. 18�a��. So, the PIV data in the stream-
wise direction are more correlated, as expected. Thus, the
experimental noise in PIV data is eliminated and a very
smooth data field is obtained with Kriging interpolation
based on the Gaussian correlation function. On the other
hand, we also performed Kriging interpolation based on the

FIG. 18. Variation of the correlation
functions with the correlation param-
eter: �a� Gaussian function, �b� expo-
nential function.
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exponential correlation function, Ri=exp�−�idi�. Surpris-
ingly, no smoothing at all could be achieved when we used
the exponential correlation function for all the correlation
parameters, i.e., all the correlation parameters investigated
for the exponential function resulted in the “original” noisy
PIV data. This includes the computed “anisotropic” opti-
mized correlation parameters ��x=2.8, �y =4.8� as well as a
range of correlation parameter inputs between �=0.01 and
10. This may be explained by the parabolic behavior of the
Gaussian function near the origin compared to the linear be-
havior of exponential function as shown in Fig. 18�b�.

B. Kriging interpolation of DNS data

In order to compare and quantify the reconstruction er-
ror, we have also applied the Kriging interpolation to DNS
data. Similar to PIV data, we omitted the values of the vor-
ticity on most nodes and obtained three “gappy” DNS
datasets consisting of equidistant �10�10�, �20�20�, and
�30�30� grids. Figure 19 shows the contours of the gappy
DNS data �left column� and the corresponding reconstructed
contours of the vorticity by Kriging interpolation �right col-
umn�. At the top of the figure, “targeted” original DNS data
are shown for visual comparison. To quantify the accuracy of
the reconstruction, the rms errors, defined similarly as in Eq.

�8� over the computational domain, are given in Table III.
Obviously, the local error varies at each point, as shown in
Fig. 20. It is noted that for the flow with high gappiness ratio
�10�10�, the reconstruction error is concentrated in the
shear layer, close to the wall and in the downstream part of
the separation bubble. On the other hand, for the flow with
medium and low gappiness ratios, i.e., gappy data with
�20�20� and �30�30�, the shear layer is reconstructed vir-
tually free of error, while only a small reconstruction error is
observable near the wall and in the downstream part of the
separation bubble. Finally, in Figs. 21 and 22 we show span-
wise vorticity variations on selected lines in x and y direc-
tions, respectively. Note that the spanwise vorticity varia-
tions on the constant lines x=0.45 and 0.50 �shown in Fig.
22� represent one of the highest reconstruction errors, as re-

TABLE III. The rms error for DNS data reconstruction.

Gappy DNS data
Equidistant grid points rms error

10�10 0.702

20�20 0.356

30�30 0.206

FIG. 19. Reconstruction of gappy data
via Kriging interpolation. At the top,
target DNS data are shown for visual
comparison.
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vealed in Fig. 20. It is seen that except for very large gappy
data, Kriging interpolation can be faithfully used to enhance
the data.

C. Kriging interpolation of three-dimensional PIV data

Even though PIV techniques are rapidly developing for
three-dimensional experimental measurements, the resolu-
tion in certain directions may still not be sufficient for mod-
ern data visualization methods �e.g., see Jeong and Hussain28

for the 	2 method�, so accurate interpolation/enhancement in
certain direction�s� is necessary in order to implement these
methods. In this section, we interpolate full three-
dimensional stereoscopic PIV measurements carried out by
Lang16 for a flat plate with separation bubble. While his
three-dimensional measurements in streamwise �x� and span-
wise �z� directions are quite finely sampled �81 points in x
and 44 points in z direction�, only nine equidistant planes
�y=4,6 ,8 , . . . ,20� are available for the wall-normal direc-
tion. Therefore, our task is to employ Kriging interpolation
to increase the resolution in the wall-normal direction. Since
the no-slip condition requires that the velocity vector be zero
on the wall, we incorporate this information into our Kriging
interpolation in addition to the given nine wall-normal
planes. The resolution of 3D PIV data can be enhanced by
employing Kriging interpolation on each x=const plane or
on a 3D zone. First, we performed Kriging interpolation
separately on each x=const plane. We also performed Krig-
ing interpolation on a three-dimensional domain �not indi-
vidual planes�. For this case, however, the computational do-
main needed to be partitioned into subdomains �64 volumes�
in order to be able to compute the correlation matrix with
regard to the available computer resources and efficiency. It
is found out that both two- and three-dimensional application
of Kriging interpolation have been in good agreement with
each other. We performed Kriging interpolation for all 18
phase-averaged snapshots available from 3D PIV measure-
ments. Here, we present results for enhancement of a repre-
sentative snapshot. Figures 23–25 show instantaneous stereo-
PIV data �top figure� of Lang16 and corresponding
enhancement with Kriging interpolation �bottom figure�.
Figure 23 illustrates the velocity vectors at a selected plane
x=360, while Figs. 24 and 25 show velocity vectors at the
peak �z=120� and valley �z=135� planes, respectively.
Figure 26 shows the velocity vectors of selected “new”
�unknown� planes �y=5, 11, and 15� calculated by Kriging
interpolation.

VI. CONCLUSIONS

In this paper, POD and Kriging methods are investigated
for the purpose of data reconstruction and spatial enhance-
ment �e.g., interpolation to high-resolution and/or smoothing

FIG. 20. Distribution of reconstruction error in the computational domain
for different ratios of gappy DNS data �21 contour levels are shown;
�−6:6��.

FIG. 21. Reconstruction of spanwise
vorticity variation in the x direction
using Kriging interpolation.
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of noisy data� of experimental data for a transitional bound-
ary layer with a laminar separation bubble. For the first pro-
cedure, POD is applied to DNS data to extract the DNS-
based POD modes, which are then projected onto available
experimental data in order to obtain the coefficients of the
hybrid model based on the DNS modes. The hybrid model is
then used to enhance �interpolate and smooth� the experi-
mental data as well as for “extrapolation” since the model
coefficients do not depend on spatial variation. In fact, we
showed that near-wall spanwise vorticity, which is not avail-

able from experimental data, can be recovered faithfully.
We have also shown that Kriging interpolation can be

used effectively for the reconstruction, interpolation, and
smoothing of two- and three-dimensional experimental data.
Comparing POD-based and Kriging interpolation, it is found
out that for very low resolution of experimental data, DNS-
based interpolation �if available� is superior over Kriging in-
terpolation. On the other hand, Kriging interpolation works
well for sufficiently high-resolution experimental/numerical
data. Both procedures effectively eliminate the background
noise and measurement errors in experimental data. Unlike
the DNS-based procedure, the performance of the Kriging
procedure drops sharply when it is used for extrapolation,
therefore its usage should practically be limited solely for
interpolation. We have shown that PIV-based POD modes
are noisy, and by smoothing these modes by Kriging inter-
polation, noise-free reconstruction of PIV data can be
achieved. Then, the coefficients can also be interpolated by

FIG. 22. Reconstruction of spanwise
vorticity variation in the y direction
using Kriging interpolation.

FIG. 23. Enhancement of 3D stereo-PIV data by Kriging interpolation �ve-
locity vectors at plane x=360�. �a� Instantaneous PIV data �44�10�, �b�
Kriging interpolation �44�81�.

FIG. 24. Enhancement of 3D stereo-PIV data by Kriging interpolation �ve-
locity vectors at peak plane z=120�. �a� Instantaneous PIV data �44�10�,
�b� Kriging interpolation �44�81�.
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piecewise cubic Hermite interpolating polynomials to in-
crease both spatial and temporal resolution of the PIV data.

In general, it is important to note that in Kriging inter-
polation, the correlation function and the corresponding cor-
relation parameter are suitably selected so that the correlation
model predicts the design datasets almost exactly. However,
when the values of the design dataset are not exact, i.e., if the
source points have some uncertainty or contain background
noise as in experimental data, the Gaussian correlation func-
tion with an appropriate correlation parameter should be
used to obtain smoother interpolated data. It has been shown
that the degree of smoothness can be controlled by the cor-
relation parameter. On the other hand, when the design data
sets are exact �i.e., free from noise and background distur-
bances as in DNS�, Kriging interpolation based on the expo-
nential, spline, or Gauss function �with large correlation pa-
rameters� can be used.

For future work, the following issues might be interest-
ing to investigate: �i� the DNS-based procedure can be uti-
lized to predict large missing regions and compare with
Kriging predictions, �ii� a hybrid spatio-temporal dataset can
be formed by combining the experimental and numerical
snapshots in a certain way �e.g., consecutively� so that data
reconstruction and enhancement procedures investigated in
this paper are performed utilizing the hybrid POD modes,
�iii� currently there is no guarantee that the reconstructed
flow in the missing region satisfies the conservation equa-
tions of the flow. However, in a future work, it may be pos-
sible to implement a Kriging interpolation in an iterative
scheme such that, for example, the recovered missing region
satisfies the continuity equation.
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