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Kriging method for data reconstruction and spatial enhancement of stereo-particle image
velocimetry (S-PIV) data for a transitional boundary layer with a laminar separation bubble is
investigated. Particularly, the effect of various variogram models and their parameters are studied in
detail. In addition, we show that missing data clusters, or black zones, which often occur in PIV
measurements, can be estimated using kriging provided the data are well correlated. An important
issue in PIV measurements is that built-in PIV data processing software might have problems to
detect or to correct spurious erroneous vectors called “outliers.” It is shown that these outliers can
be eliminated or greatly alleviated using kriging. \, isosurface and stream traces show that noisy
vortical structures are eliminated but the main coherent structures are well preserved and smoothed,
thus procedures for the detection and tracking of vortex core lines can be effectively applied on
kriged data. Analytical test data for a more quantitative evaluation of the performance of kriging are

given in the Appendices. © 2008 American Institute of Physics. [DOI: 10.1063/1.3003069]

I. INTRODUCTION

With the ever increasing development of new and better
optical and microelectronic devices, particle image velocim-
etry (PIV) has been increasingly used in experimental fluid
dynamics as a nonintrusive, multipoint optical technique to
obtain quantitative data for complex flows. Nowadays, ste-
reoscopic, scanning/multiplane and tomographic PIV mea-
surements provide fully time-resolved three-dimensional
(3D) flow fields similar to the flow fields obtained by nu-
merical simulation (see, for example, Refs. 1-5). While PIV
measurements supply researchers with experimental quanti-
tative information for flow fields as never obtained previ-
ously, the acquisition of “real” flow data by the method is
complicated and requires certain conditions to be satisfied
for a reliable image quality. If the image quality is poor, for
example, due to a poor setup and alignment involving insuf-
ficient illumination, low levels of contrast, low or inhomoge-
neous seed density, etc., the cross-correlation evaluation of
moving particle displacements from the low-quality images
often results in spurious/erroneous velocity vectors. To alle-
viate this problem, PIV processing software is available to
detect and remove erroneous vectors automatically (see, for
example, edPIV reported in Ref. 6). However, because the
erroneous vectors are identified by comparing the results of
immediate neighbors, they may not be detected if the “bad”
vectors have very few immediate neighbors especially near
the boundaries. In addition, for a certain number of reasons
(e.g., shadowing, insufficient illumination, obstructed view,
etc.) snapshots with missing data clusters (region of “black
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zones”) may occur in some regions of the measurement do-
main. Therefore, it is essential that before analyzing and
postprocessing of PIV data using various coherent structure
extraction and vortex identification techniques such as A\,
visualization and proper orthogonal decomposition (POD),
the above mentioned erroneous vectors (outliers) and miss-
ing data clusters (black zones) need to be repaired/estimated.
In fact, in order to compute the standard POD modes of the
velocity field, each snapshot must be complete [except for
gappy POD applications which can be used to estimate miss-
ing data (see Refs. 7-9)].

Moreover, even in the absence of missing data clusters
and outliers, often the resolution of PIV measurements are
not sufficiently high for many of the data visualization meth-
ods that usually involve the evaluation of the derivatives of
the field variables, which further increase the noise level of
the experimental data because they amplify it.

In this paper, we demonstrate that kriging can be used as
an effective tool (i) to remove/alleviate outliers, (ii) to esti-
mate the missing data clusters (black zones), and finally (iii)
to reconstruct the PIV data for further coherent structure and
vortex extraction analyses on a much finer and smoother
mesh.

Il. KRIGING METHOD

Kriging is an unbiased estimation procedure that uses
known values and a variogram to determine unknown values.
Based on the variogram, optimal weights are assigned to
known values in order to estimate the data at unknown
points. The variogram characterizes the spatial continuity or
roughness/smoothness of a data set.'’ The variogram analy-
sis consists of first constructing an experimental variogram
from the available data and fitting a suitable variogram

© 2008 American Institute of Physics
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model to the experimental variogram. The experimental vari-
ogram is calculated by averaging one-half the difference
squared of the values over all pairs of observations with the
specified separation distance 7 and possible directions as
follows:

=
V(hi,j) = ZE (z;— Zj)z, (1)

where z; is the value of the variable at point i, z; (j=i+h) is
the value of the variable at & separation distance away from
point i, L; is the total number of data points for a given
separation distance, and vy is the variance. Important charac-
teristic features of the variogram are the range and the sill
(also the minimum variance value is called the nugger effect
but it will not be useful in PIV data smoothing). The range
represents the distance at which there is no longer a correla-
tion between the points, whereas the sill is the average vari-
ance of points at such a distance away from the point in
question that there is no correlation between the points.
When the variance is normalized using the value of the sill,
the correlation between points decreases as y— 1 and in-
creases as y— 0.

The variogram model is usually chosen from a set of
mathematical functions that describe the spatial relationship
of the data. Often used functions are polynomials, exponen-
tials, spherical, spline and the Gaussian functions.'™!" The
selection of a suitable variogram model is a crucial step of
the kriging procedure, as it has an important effect on the
weights and estimation error. In addition, each model func-
tion contains a correlation parameter by which the
estimation/smoothing level can be controlled as desired.

Using the variogram, the weights W; can be found by
solving the following system of linear equations:

}’(hi,j) Wi= }’(hi,p), (2)

where the coefficient matrix y(h; ;) can be calculated using
the available (design) data set via Eq. (1) once and for all,
while the right hand side vector y(h;,) needs to be evaluated
for each unknown point, p. Then, a standard LU decompo-
sition or since the coefficient matrix is symmetric and posi-
tive definite, a more efficient Cholesky factorization can be
used to solve Eq. (2) for each unknown point. Note that Eq.
(2) corresponds to simple kriging, in which the mean (i.e.,
the expectation in probability theory) is assumed to be zero.
On the other hand, ordinary kriging, being the most com-
monly used type of kriging, assumes a constant but unknown
expectation. This leads to the introduction of an additional
parameter \ (a Lagrange multiplier), which is used for the
minimization of the kriging error. This, in turn, allows us to
have a constraint on the weights as follows:

2 W=1. (3)
i=1

Then, the modified linear system for the ordinary kriging
consisting of n data points can be written as follows:

Phys. Fluids 20, 104109 (2008)

y(hy) Yhp) y(hy,) 1 W, ¥(hyp)

Yhay)  hy) Y(hy,) 1 W, Y(hyp)

Y(hnl) 7(hn2) Y(hnn) 1 Wn V(th)
i 1 1 1 0_ | A 1 L 1 ]

(4)

Having obtained weights through solving the linear sys-
tem, each new (unknown) point, Z(x,y) can be estimated
simply as linear combination of the available data as follows:

n

Z(x,y) = 2, Wiz (5)

i=1

In this paper, we employ ordinary kriging and refer to
Refs. 1013 for theory, details, and types of kriging.

For the past several decades, application of kriging has
been exclusively used with success mainly in geostatistics,
meteorology, and environmental sciences. Recently, applica-
tion of the procedure is extended to process engineering,
health sciences, and thermal and fluid sciences. For example,
kriging has been successfully applied to data recovery and
reconstruction of randomly generated laminar gappy flow
fields of uniform flow past a circular cylinder (Refs. 7 and 9).
It has been shown that kriging has a number of advantages
over other reconstruction techniques such as gappy POD
when temporal resolution of the flow data is not sufficiently
high. More recently, an investigation of spatial resolution
enhancement/smoothing of stereo-PIV data for a transitional
flat-plate boundary layer flow involving a laminar separation
bubble has been presented using both POD and kriging
methods.* In the current paper, while we extend our appli-
cation of kriging concentrating on the effect of various vari-
ogram models, we particularly investigate outlier resistance
of the procedure and the treatment of missing data clusters
which often occur in PIV data. In addition, we compare
smoothing capabilities of kriging to low-pass digital filters
commonly used in data smoothing.

lll. STEREO-PIV DATA

The stereo-PIV experiments for a transitional boundary
layer flow containing a laminar separation bubble were car-
ried out by Lang.'5 For detailed information on experimental
setup, findings, etc., we refer to Refs. 3 and 15. Here, we
briefly inform the reader about the investigated flow which
contains nonlinear transition stages in a laminar separation
bubble. The basic transition scenario is that when a laminar
boundary layer separates in a region of adverse pressure gra-
dient on a flat plate such that a laminar separation bubble
forms and the flow reattaches to form a turbulent boundary
layer due to sudden development of 3D disturbances.

The experiments were performed in a laminar water tun-
nel facility at the Institute of Aerodynamics and Gas Dynam-
ics in Stuttgart University. A flat plate is mounted on the free
stream (U,=0.125 m/s) of the test section of a low-
disturbance water tunnel. To generate a pressure induced
laminar separation bubble, a displacement body (length of
the body L=0.69 m) was positioned in the test section above
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FIG. 1. (a) Velocity vectors (tangent to the plane) at planes x=310, x=360, and x=381. (b) Contours of streamwise component of velocity at the same planes

(dotted lines correspond to reverse flow). Dimensions are in millimeters.

the flat plate. The global Reynolds number based on the dis-
placement body length and the reference velocity (U.,
=0.125 m/s) is Re=10° in water. In order to compare ex-
perimental results, direct numerical simulations are per-
formed by Marxen.'® In simulations, general physical param-
eters of the flow are chosen to match the experimental setup
as closely as possible. It is shown that instantaneous experi-
mental and numerical results closely agree with each other
(see Ref. 17). Figure 1 shows the 3D PIV measurement do-
main with instantaneous (phase averaged) velocity vectors
(tangent to the plane) at downstream distances of x=310, x
=360, and x=381 mm as well as the streamwise velocity
component at the same planes. Coordinates X, Y, and Z cor-
respond to streamwise, cross-flow, and spanwise flow direc-
tions, respectively, and dimensions are in millimeters. There
is a large reverse flow as represented by dotted lines in Fig.
1(b) due to the separation bubble. While the flow is mainly
one directional in the upstream part of the separation bubble
(e.g., at x=310 mm), it is very complex and fully 3D for the
downstream part of the separation bubble (x>360). Table I
shows the minimum and maximum normalized velocity
components as well as the difference of the velocity compo-
nents for selected downstream planes. It is seen that the

cross-flow and spanwise components of velocity increases an
order of magnitude along the downstream flow direction. In
the experiment the shear layer instability has been controlled
by an oscillating wire upstream of laminar separation and a
steady spanwise roughness elements (see Refs. 3 and 15)
such that the unsteady nature of the flow became accessible
via phase averaging of individual snapshots. The disturbance
cycle has been divided into 18 equally spaced phase intervals
and each phase average has been computed from 25 instan-
taneous measurements at the according phase of the oscillat-
ing wire. Thus, a faithful representation of the 3D instanta-
neous flow field became available.

IV. SMOOTHING/ENHANCEMENT
OF STEREO-PIV DATA

It has been shown in Ref. 14 that kriging based on the
Gaussian variogram model can be used to smooth the span-
wise component of the vorticity field and the smoothness can
be controlled by variogram/correlation parameters. By
smoothing we mean to merely “re-evaluate” the PIV data at
its measurement points using kriging. Enhancement refers to,
on the other hand, interpolation and smoothing of the data. In

TABLE 1. The maximum and minimum values of velocity components at selected downstream planes, X (in
mm). The velocity components are normalized using the maximum speed in 3D field [V,,..= | (#>+v>+w?)

=92.5 mm/s].

Umax Umin Au Umax Unmin Av Wmax Wmin Aw
X=301 0.995 -0.612 1.607 0.096 -0.026 0.122 0.035 -0.011 0.046
X=310 0.950 -0.599 1.549 0.108 -0.036 0.144 0.053 -0.021 0.074
X=330 0.953 -0.687 1.640 0.220 0.0 0.220 0.104 -0.142 0.246
X=360 0.754 -0.682 1.436 0.081 -0.335 0.416 0.264 -0.122 0.386
X=381 0.972 —-0.682 1.654 0.346 -0.375 0.721 0.222 -0.210 0.432
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FIG. 2. (Color online) Common variogram models with the correlation parameter, 6. Gaussian, cubic, and spline models show a parabolic behavior near the

origin.

this study, we have investigated several variogram models
(e.g., Gaussian, cubic, spline, exponential, and spherical) in
detail. Figure 2 shows the common variogram models with
the correlation parameter, 6. As seen from Fig. 2, for all
variogram models with decreasing values of € the correlation

increases (i.e., for a selected separation distance, vy decreases
as 6 decreases). More importantly, however, is the behavior
of the variogram function near the origin (i.e., initial slope of
the curve), which reflects the rate of decrease in the correla-
tion. As reported by Lophaven et al.,'"® the variogram func-
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FIG. 3. (Color online) PIV data filtering using kriging with various variogram models and Butterworth IR filtering. Data are extracted at x=360 plane (z

=100 line).

tions that show parabolic behavior near the origin (e.g.,
Gaussian, cubic, and spline) are well correlated and can be
used for smoothing of data. In fact, by reducing the correla-
tion parameter to a sufficient value (specific for a given
model), we are able to show that Gaussian, cubic, and spline
models can all be used to smooth PIV data as shown in Fig.

3, where cross-flow (v) and spanwise velocity components
(w) at the z=100 line (x=360 plane) are extracted for a de-
tailed comparison. In addition, we also compare kriging
smoothing with common low-pass digital filters [e.g., fast-
Fourier-transform—based FIR filter and Butterworth IIR digi-
tal filter]. Note that the variogram parameter (6) in kriging
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FIG. 4. The effect of Gaussian correlation parameter in smoothing/filtering of experimental data. Left column: the cross-flow velocity, right column: the

spanwise velocity.

and the cutoff frequency (f,) in various digital filters work
similarly, i.e., the smoothing increases as 6 or f, is decreased
(see Fig. 3). The data in Fig. 3 indicate that kriging follows
the original data points more closely than the digital filter,
i.e., it is more adaptive to local gradients, while the filter
seems to average these out. The latter effect will also occur
when the smoothing parameter of kriging is too small. Thus,

each subfigure shows the acceptable limits for this parameter
for each method.

Using either exponential or spherical variogram models
it was not possible to smooth the data as these have a too
sharp linear increase in vy (and hence a too fast drop off of
correlation) near the origin as clearly depicted in Fig. 2.
However, such “linear” variogram models can be used for
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FIG. 5. The effect of the Gaussian correlation parameter in estimating experimental data at y=15 plane (new plane). Left column: cross-flow velocity, right

column: the spanwise velocity.

the interpolation of exact data, i.e., “free” from measurement
errors and noise (e.g., numerical data or highly accurate
point measurements such as laser Doppler anemometry). For
most of the measurements including the present PIV data, a
so-called “smoothing” variogram model (e.g., Gaussian, cu-
bic, or spline) shall be used for a certain level of smoothing.

In the remaining of the paper, we present results based on the
Gaussian variogram model as similar smoothing results are
obtained for cubic and spline models as long as the vari-
ogram parameter is chosen suitably.

Figure 4 shows typical contours of our stereo-PIV data
set (x=360) and smoothing using the Gaussian variogram

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



104109-8 H. Gunes and U. Rist

TABLE II. Divergence of the 3D normalized velocity field for original and
smoothed PIV data.

v.v
PIV data 0.0528
Correlation parameter, 6

5 0.0283

1 0.0280

Kriging smoothing 0.5 0.0275
(Gaussian variogram 0.1 0.0238
model) 0.05 0.0254
0.01 0.0224

0.001 0.0183

0.0005 0.0209

Phys. Fluids 20, 104109 (2008)

model with different correlation parameters (note that these
are much higher than the lower limit observed in Fig. 3). The
left column presents the cross-flow velocity, while the right
column shows the spanwise velocity component. In order to
obtain 3D smooth/enhanced data, we perform kriging
smoothing/interpolation for all constant x-planes separately
as described in Ref. 14. Then, the estimated velocity compo-
nents at an (unknown) plane y=15 are shown in Fig. 5 as a
function of the Gaussian variogram parameter, 6. Note that
large values of 6 corresponds to linear interpolation while
gradual smoothing is obtained with decreasing 6. Note that
we have concentrated on kriging of the cross-flow (v and w
components of the velocity) only. The reason is that these
components have finer structures (compared to u) and are
therefore more difficult to interpolate, estimate, or smooth.
Since the flow under consideration is incompressible, the ve-

b) Kriging smoothing (Gaussian model with 6 =0.1)

FIG. 6. Isocontours of cross-flow (left column) and spanwise (right column) normalized velocity at oscillation phase 180°. Dark gray v, w=-0.11, light gray

v, w=0.11.
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seen that for all smoothing cases, the incompressibility/

divergence-free constraint is generally improved by a factor
of 2 even though we did not impose it as part of kriging
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FIG. 7. (Color online) Time evolution of the streamwise moving vortical structures of stereo-PIV data obtained by kriging. Left column: streamwise plane

(z

130 mm), the vector color/shade denotes the out

moves with the fluid are added for the purpose of illustration. Right column: plane y

out-of-plane component v (cross

locity vector field should theoretically satisfy the divergence-

free condition (solenoidal field) but this constraint cannot

generally be imposed on flow measurements.

In Table II, we present divergence of the 3D normalized
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PIV data Smoothed PIV data
FIG. 8. (Color online) Vortices extracted using \,-method for original and smoothed PIV data at oscillation phase 180° (A\,=-18).
a) oscillation phase 0° b) oscillation phase 80°
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FIG. 9. (Color online) Time evolution of vortices extracted using \,-method for smoothed PIV data. (\,=-22). (Gaussian model with §=0.1.)
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b)

FIG. 10. (Color online) (a) Original stereoscopic PIV measurement in the
y-z plane (x=360 mm). (b) Enhancement of the stereoscopic PIV data by
kriging interpolation. Note that the instantaneous counter-rotating vortex
pairs with the strong back flow in the transition region are accurately cap-
tured [see Lang et al. (Ref. 3)]. The vector color/shade shows the stream-
wise component of the velocity.

implementation. As the correlation parameter decreases, di-
vergence values decrease and the data are gradually more
smoothed. However, there is a limit for the lowest useful
correlation parameter. The divergence starts to oscillate when
0 falls below 0.1. This observation correlates very well with
the investigations shown in Fig. 3, where increasingly large
deviations from the given data point occur for lower corre-
lation parameters as well. If the correlation parameter is too
low we seem to have a problem of “overcorrelation™ of the
data. For example, for #=0.05, unexpected wiggles are ob-
servable in the data in Fig. 4.

Figure 6 shows two representative isocontours of cross-
flow (left column) and spanwise velocity (right column) for
original and smoothed PIV data. Negative and positive v in
these illustrations correspond to the downward and upward
motions, respectively, at the downstream and upstream ends
of a spanwise-oriented vortex that is generated by roll up of
the separated boundary layer. This latter motion is illustrated
in Fig. 7. A reference speed of 80 mm/s has been subtracted
from the streamwise velocity component in order to visualize
it in a qualitative manner in a frame of reference that ap-
proximately moves with the flow. The left column in Fig. 7
shows streamwise cuts with instantaneous streamlines as an
additional visual clue to illustrate the qualitative structure.
Figure 6 and the right column of Fig. 7 demonstrate that the
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100 110 120 130 140
z

b) iso contour lines of velocity components

FIG. 11. (Color online) Enhancing/smoothing of experimental data contain-
ing outliers (x=381 plane).

according structures have a crescentlike or zigzag shape
which becomes more pronounced as the vortices travel
downstream.

Thus, the structures get “pushed forward” at z=140 and
100 mm compared to z=120 mm. This leads to an increase
in spanwise gradients and amplification of the spanwise ve-
locity component w, as can be seen in the right column of
Fig. 6, especially for z>130 mm. In order extract the domi-
nant vortices and to illustrate their 3D structure, we use the
N,-method of Jeong and Hussain." According illustrations
will be shown in Figs. 8 and 9. Since this method relies on
the velocity gradient tensor, i.e., the spatial derivatives of the
velocity components, it is necessary to use smoothed data
instead of raw data for it. The difference is well illustrated in
Fig. 8 by a comparison of the structures obtained with and
without kriging. Some exemplary streamlines are also shown
in order to relate the 3D structure to Fig. 7.

The dominant structure is either V- or A-shaped, depend-
ing on the direction of view. Traditionally, if the tip of such a
structure points into downstream direction it is called a
A-vortex. The opposite structure should then be called a
V-vortex. Recently, such vortical structures have been ob-

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



104109-12  H. Gunes and U. Rist

Phys. Fluids 20, 104109 (2008)

9 100 30 —— T 1% 90 700

a) PIV data

L D\ e . -
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FIG. 12. Kriging estimation of black zone for PIV data at plane x=360. (a) PIV data (with missing data in a rectangular zone shown). Estimation of missing
zone data using Gaussian variogram model with (b) =1 and (c) #=0.1. From top to bottom: contours of the streamwise, cross-flow, and spanwise velocity

components.

served by Burgmann et al’ for a transitional separation
bubble of an airfoil. They used the term “C-shaped vortex”?
which agrees with the rather obtuse angle of the V’s in the
present visualizations. However, note that the complete
structure is of zigzag shape, i.e., a spanwise sequence of V-
and A-shaped vortices. These types of vortices are common
in transitional boundary layer flows as reported by Meyer
et al*!

In the following figure we shall try to convey the un-
steady development of the dominant vortices using vortex
extraction and visualization output (\, isosurfaces) of the
smoothed 3D data sets. The isovalue (A\,=-22) has been
selected such that only the vortex centers appear. This can be
controlled by comparing the side views in Fig. 9 with the
streamlines in Fig. 7. Thus, the initial vortex at x
~325 mm in Fig. 9(a) is just about to cross the chosen
threshold. As it becomes stronger in Fig. 9(b) it develops into
a C-shaped structure when viewed from above. At its lower
part, i.e., at z> 130 mm where the spanwise velocity in Fig.
6 was already observed to be strongest, we may detect the
left part of a A-vortex (whose right part is outside the mea-
surement region). This A-shaped vortex becomes more acute
and stretched into streamwise direction in the course of time
depicted through Figs. 9(c), 9(d), and 9(a) (recall the period-
icity of the data because of periodic forcing and phase aver-
aging).

The breakdown process at x>360 mm is rather com-
plex and consists of simultaneous mixing in spanwise and
wall-normal directions with typical length scales around
10-20 mm, which are still too difficult to faithfully extract
them from the existing data. Nevertheless, one such structure

)

[

d) Linear interpolation (40x40 points)

FIG. 13. Reconstruction of periodic functions using kriging and linear in-
terpolations. Left column: f;(y,z)=sin(y)cos(z), middle column: f,(y,z)
=cos(y)sin(2z), and right column: f5(y,z)=cos(y)In(z).
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TABLE III. Comparison of kriging and linear interpolation for reconstruct-
ing missing lines.

rms error Kriging interpolation Linear interpolation
fiy,2) 3.58x107 1.95% 10!
f(y.2) 6.65X 1073 3.51%107!
f3(0,2) 0.9% 107! 3.53x 107

is shown in Fig. 10 in a cross-stream (spanwise) cut. The raw
data and the interpolated data are shown for comparison. A
streamwise vortex pair appears as z=120-130 mm under
(i.e., closer to the wall than) the dominant spanwise zigzag
structure. We also show it here to prove its existence in ad-
dition to Ref. 3. Unfortunately, more and finer-resolved mea-
surements are needed to fully clarify its spatial structure and
its connection to the structures further away from the wall.

T ---=--- original data .,
'; Kriging é

w -02F
-04F
-06¢}
-08¢F

-1

a) Kriging interpolation
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V. TREATMENT OF OUTLIERS

It is known that in PIV measurements, built-in data pro-
cessing software often fails to detect or might be unable to
correct the spurious erroneous vectors called outliers. On the
other hand, through simple examples, Armstrong and
Boufassa,”* for example, compared the robustness of ordi-
nary and log-normal kriging with respect to the outlier resis-
tance. They found that although log-normal kriging is more
resistant to outliers, its estimate is very sensitive to slight
changes in the sill of the variogram of the logs. In addition,
log-normal kriging is suitable for log-normally distributed
data so we report here the result of ordinary kriging with a
Gaussian variogram model.

As the stereo-PIV data is phase averaged, in most of the
flow field the outliers are minimal or nonexistent. For this
reason, in order to investigate the treatment of outliers using
kriging specifically, we have selected the very downstream

EEEEsES

Original data
1r——=—— Linear interpolatioprln

-,
a =

b) Linear interpolation

FIG. 14. Comparison of kriging and linear interpolations for selected periodic functions at missing line y=2.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



104109-14  H. Gunes and U. Rist

1
Kriging

Phys. Fluids 20, 104109 (2008)

0.75F
0.5}
0.25F
w3 Of
025}
0.5}
-0.75F

0.75¢ 01}
0.5
025}
)-: of @ o}
0.25¢
_0»5_
075t

0.05}

-0.05¢

01}

z 6 8 10 2 4 76 8 10

075
05F
025
w0
-0.25¢
-05F
075

FIG. 15. The performance of kriging interpolation at different “missing” y-locations: (a) y=4, (b) y=6, (c) y=8, and (d) y=10.

part of the separation bubble (x=381, i.e., the last measured
plane, see Fig. 1) which contains noticeable outliers as
shown in Fig. 11. It is clearly seen from the vector field as
well as the isocontour lines of velocity components that out-
liers can be effectively eliminated or greatly reduced using
kriging. We also mention here that POD, which employs the
spatiotemporal data, is also very resistant to outliers as re-
ported in Ref. 23.

VI. RECONSTRUCTION OF LARGE MISSING DATA
CLUSTERS (BLACK ZONES)

In this section, we extend our investigation on the capa-
bility of kriging for reconstructing large missing data clusters
or black zones. Kriging has been shown recently to be an
effective data recovery tool for fluid flow problems with

smooth data, obtained from a two-dimensional DNS flow
past a circular cylinder (Refs. 7 and 9). However, the most
common reality is that these black zones usually occur in
experimental data (e.g., PIV) for several reasons mentioned
in Sec. L. In addition, in the experimental investigations, the
black zones may usually occur for all snapshots in a mea-
surement campaign, so it is not ordinarily possible to apply
the gappy POD to estimate missing data. Kriging is not how-
ever restricted by this problem since it uses only spatial cor-
relation. In order to gain experience with the kriging recon-
struction for nonsmooth data, we apply it here to predict
large missing data clusters of noisy experimental data.
Figure 12 shows PIV data (left column) and its kriging
reconstructions (middle column, 6=1; right column, #=0.1)
for streamwise, cross-flow, and spanwise components of ve-
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locity, from top to bottom, respectively. The rectangular
missing data clusters indicated by dashed lines are actually
omitted from the PIV data, but shown in Fig. 12 for com-
parison with the kriging reconstruction. First of all, we per-
formed kriging with a Gaussian variogram model, which re-
sulted in a “smooth” reconstruction as expected but this lead
to interface problems as the known “outer” data were noisy.
To eliminate this problem, before reconstruction of the black
zone, we first smooth the outer data and then carry out the
reconstruction of the black zone as shown in Fig. 12. Then, it
is seen that the interface problem is eliminated and a com-
plete, smooth data sheet is obtained. Another important point
is that, while the streamwise component and the cross-flow
component of the velocity vector are reconstructed faithfully,
kriging interpolation fails to accurately reconstruct the span-
wise component. This may be attributed to a very compli-
cated, low correlation spatial distribution of the spanwise
velocity component and a complete loss of information
through the black zone.

VIl. CONCLUSIONS

We have shown that kriging can be effectively used for
data smoothing and spatial enhancement of stereo-PIV data
for a transitional boundary layer with laminar separation
bubble. In addition, outliers (unrealistic vectors) that are of-
ten observed in PIV measurements can be eliminated and/or
greatly reduced. Another common problem in PIV measure-
ments is that for a certain number of reasons (e.g., shadow-
ing, insufficient illumination, obstructed view, nonhomoge-
neous seeding concentrations, etc.) information may be
missing in clusters (or black zones). Kriging can be used to
estimate these black zones when the data are well correlated.

We have demonstrated that a meaningful and unambigu-
ous selection of variogram model and related correlation pa-
rameter is possible. Both are crucial for estimation: When the
values of the designed (available) data set are not exact, i.e.,
the source points have some uncertainty or contain back-
ground noise as in experimental data, smoothing variogram
models such as Gaussian, cubic, and spline that show para-
bolic behavior near the origin shall be used. On the other
hand, linear variogram models (exponential and spherical)
can be used for interpolation of “exact” data sets such as
those obtained from numerical data.

An important aspect of PIV data smoothing/interpolation
is that the resulting velocity fields should obey the funda-
mental laws that govern the fluid dynamics. At present, work
is underway to incorporate the incompressibility/divergence-
free constraint as part of our kriging implementation.
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f) Reconstruction of MR-III

FIG. 16. Reconstruction of MRs (black zones) using kriging interpolation.
Left column: f,(y,z)=sin(y)cos(z), middle column: f,(y,z)=cos(y)sin(2z),
and right column: f5(y,z)=cos(y)In(z).

APPENDIX A: RECONSTRUCTION OF PERIODIC
FUNCTIONS

In this appendix, we investigate the kriging interpolation
in detail for selected analytical functions in order to acquaint
the reader further with the procedure. We consider both pe-
riodic and nonperiodic known functions to create certain data
sets and study the performance of kriging to predict the func-
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TABLE IV. The rms errors of reconstruction of the MRs for selected test
functions (see Fig. 16).

rms error MR-I MR-IT MR-IIT

fi(y.2) 8.64% 1077 2.50% 107 1.84X 107!
f(y.2) 223X 107 1431074 1.53% 1072
f(0.2) 5.86X 1070 465X 1075 1.73% 107!

tion values at unknown design points. Since these data sets
are created by known functions, these functions are indepen-
dently evaluated at unknown design points in order to com-
pare with kriging interpolation. In addition, kriging interpo-
lation is compared with linear interpolation.

The specific periodic functions we consider are as
follows:

fi1(y,2) =sin(y)cos(z), (A1)
f2(y,2) = cos(y)sin(2z), (A2)
f3(y,2) = cos(y)In(z). (A3)

First of all, we generate measurement data using Egs.
(A1)-(A3) on a domain y=[0,10] and z=[0,10] using an
equally distributed grid of (40X 40) points (dy=dz=0.25).
Next, in order to create a “gappy data set” we discard the
values of constant y-lines so that we obtain a much coarser
but still equally distributed grid of (10X 40) points (with

2 4 76 g 10
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dy=1, and dz=0.25). Figure 13 shows the reconstruction of
coarser gappy data by kriging interpolation. Actual contours
of functions obtained by Egs. (A1)—-(A3) on a (40 X 40) grid
points are also shown for comparison. Table III shows the
root mean square (rms) error of the reconstruction for the
three functions. We note that using a relative error is not
particularly suitable here because at some (but only few)
points the field values are so small that small deviations give
very large relative errors, which make a reasonable compari-
son impossible. In order to normalize with respect to the
“variance” of the field, we evaluate the variance as

N
~S 0.9 -, (Ad)
i=1

where fk is the average field and k=1, 2, and 3, respectively.
Using the variance, the normalized rms error can be
evaluated as follows:

1
\/;]221 [fk,c(y,z) _fk(y,z)]2

1 -
\/]TIEZI [fi(y.2) _fk]2

rms(f;) = ; (A5)

where f} ¢ is the reconstructed field using kriging or linear
interpolation.
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FIG. 17. The comparison of reconstructed data from MR-II and MR-III with that of the actual data at line y=6 [for left column see Fig. 16(c) and right column

see Fig. 16(e)].

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



104109-17  On the use of kriging for enhanced data reconstruction

0.75

025

Phys. Fluids 20, 104109 (2008)

075

025}

05

b) rms error = 2.0x10™

1 \ \\ 1 =
0.75} & oy ors) LN
¢ E 1
N 05} ¢ — N osf !
: :': : I
025} i i~ 025} ; ;
[ \,‘ 1
05 1 15 2 05 1 15 2
Y 3 Y
¢) rms error = 1.3x10"
1 1
075} 0.75}
N 05} 05}
025} 025}

d) rms error = 4.0x10

FIG. 18. Various MRs and their reconstruction by kriging interpolation. Left column: analytical solution with MR (Poisson equation). Right column:

reconstructed MR by kriging interpolation.

It is seen that for all functions kriging interpolation is
much more accurate than the linear interpolation, almost two
orders of magnitude for periodic functions with smaller
wavelength, like the function f, in our example. In order to
see deviations from the original functions, we compare krig-
ing and linear interpolation for selected periodic functions at
the “missing line” y=2 (see Fig. 14). While kriging interpo-
lation is virtually indistinguishable from the true data, for the
linear interpolation considerable deviations from the actual
data are observable especially for the maximum/minimum

values of the functions. The prediction of kriging interpola-
tion at other missing lines (shown in Fig. 15) has been ex-
tremely good. Note that at the bottom of Fig. 15, the missing
line y=10 corresponds to the right domain boundary. Since
the y=10 plane is outside of the data set on which the kriging
model is constructed, we see some deviations from the actual
functions. This and other numerical investigations we have
performed show that the kriging method is not to be used for
extrapolation since our numerical experiments show that the
accuracy sharply deteriorates outside the design data set.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



104109-18  H. Gunes and U. Rist

0.75

0.25

05 7 15 2

Phys. Fluids 20, 104109 (2008)

0.75

051

0.25}F

a) rms error = 0.22

1 ; S

0.75

025}

1

0.75F

051

0.25}F

b) rms error = 0.95

FIG. 19. Various MRs (shown as dotted rectangle) and their reconstruction by kriging interpolation. Left column: analytical solution (Poisson’s equation).

Right column: reconstructed MR by kriging interpolation.

APPENDIX B: RECONSTRUCTION OF LARGE
MISSING DATA CLUSTERS (BLACK ZONES)
BY KRIGING INTERPOLATION

In this appendix we simulate the case when large miss-
ing data clusters or black zones occur. For this, we created
three missing regions (MR-I-MR-III) with varying rectangu-
lar black zone locations and sizes, as shown in Fig. 16 for all
the three functions. The kriging model is constructed based
on the known data set around the missing regions (MRs).
Then, kriging interpolation is used to “fill” the MRs. Figure
16 compares the original data and results of kriging interpo-
lation for the three different functions and black zones. The
reconstruction (rms) errors [similarly defined based on the
variance as in Eq. (A5)] of the MRs for all the three periodic
functions are given in Table IV. For both MRs, MR-I and
MR-II, we see that the reconstruction error is extremely
small and all the functions are recovered very accurately as
shown in Figs. 16(b) and 16(d). Figure 17 shows the com-
parison of reconstructed data from MR-II and MR-III with
that of the actual data at line y=6. Note that line y=6 crosses
the middle of the MR so that most of the deviations from the
actual solution are expected along this line [see Figs. 16(c)
and 16(e)]. We see that, while variations along this line are
practically zero for MR-II, there are very large deviations for
MR-I for functions f; and f5. We should also note here that
considering MR-III, it is crucial to keep a small portion of
the data [on the right boundary of the domain as in Fig.
17(e)] so that MR-IIT constitutes an interpolation problem
rather than an extrapolation one. In fact, by removing the

“strip” of the data on the right boundary, we completely fail
to reconstruct the MR-III by kriging.

APPENDIX C: RECONSTRUCTION OF NONPERIODIC
FUNCTIONS

In this appendix we use kriging interpolation for a non-
periodic function. We consider the following elliptic partial
differential equation:

Fu P
—’;+—Z=(y2+z2)eyz, 0<y<2, 0<z<l (Cl)
ady”  0dz
subject to the boundary conditions,
u(0,2)=1, u2,z)=e%, 0=z=<I,
u(y,0)=1, u(y,l)=¢’, 0=y=2.

The analytical solution for the given problem is u(y,z)
=¢”%. Figure 18 shows several MRs (black zones) and their
reconstruction using kriging interpolation. Wee see that re-
sults obtained from kriging interpolation are in good agree-
ment with the analytical solution for MRs shown in Fig. 18.
Note that in Figs. 18(a)—18(c), the domains include an infor-
mative strip of data (whether vertically or horizontally). We
have experimented with varying size and locations of the
MR and we conclude that at least a strip of data with sharp
gradients should be kept in the “left-over” data in order to
reconstruct it correctly. Figure 19 shows two cases where
kriging interpolation cannot reconstruct the analytical solu-
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tion because the above stated condition is not fulfilled. Note
that for these cases, the reconstruction (rms) error is several
orders of magnitude higher than for the MRs shown in Fig.
18. For example, in Fig. 19(b) the gradient at z=1 is not
captured by kriging interpolation since the most crucial in-
formation is removed by the MR for this case.
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