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Summary. The transition process around a short leading-edge separation bubble
subjected to a sweep angle of 30◦ is studied in detail by means of direct numerical
simulation, spatial linear stability theory and solutions of the parabolised stability
equations. The combined analysis of the averaged flow field, instantaneous flow vi-
sualisations and postprocessing data as amplification curves leads to the distinction
of four succeeding stages qualitatively comparable to the unswept case. It is shown
that the saturation of background disturbances is the key event, after which a rapid
breakdown of transitional structures occurs. The mechanism of the final breakdown
of this swept scenario of fundamental resonance is best described as an “oblique
K-type transition”. Great care is taken to isolate and describe of typical structures
within each stage as a foundation for the analysis of complex transition scenarios.

1 Introduction

Separation bubbles are observed when laminar boundary layers encounter
strong adverse pressure gradients, as on high-lift devices of commercial air-
crafts or turbine blades. For instance, a swept separation bubble was measured
at a Mach number of 0.245 by Greff [3] on the slat of an Airbus A310-300 in
landing configuration. Although most modern passenger airplanes exhibit a
sweep angle, research efforts so far have been focused almost exclusively on the
easier unswept case. The largest body of experimental data devoted to swept
separation bubbles known to the authors was published by Young & Horton
[17] and Horton [8] in the late 1960s. Apart from Horton’s benchmark data,
literature on swept separation bubbles is still extremely rare. Davis, Carter
& Reshotko [2] successfully validated a boundary layer code against Horton’s
data and thus confirmed the experiments. More recently, Kaltenbach & Janke
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[10] published the direct numerical simulation (DNS) of a separation bubble
in the flow behind a swept, rearward-facing step. For the lack of literature
little is known about the structure, behaviour and the transition mechanisms
of swept separation bubbles and especially no systematic picture is estab-
lished how they can be related to their by now well-investigated unswept
counterparts. Note that separation bubbles can be subclassified into laminar
or transitional separation bubbles depending on a laminar or turbulent reat-
tachment. This paper is organised in the following way: After a description of
the investigated series of swept laminar separation bubbles in section 2 one
disturbance scenario is chosen for a detailed analysis in section 3. The aim is
two-fold: Firstly it is determined how typical transitional structures express
themselves in flow visualisations. This enables us to distinguish a succession
of transitional stages in the flow field around a swept laminar separation bub-
ble. Both topics will be addressed in the main subsection 3.4. Before, the
disturbance contents of the flow is analysed in subsection 3.1, properties of
the averaged flow field are studied in 3.2 and the onset of turbulent flow is
discussed in subsection 3.3. Section 4 then describes the DNS-codes and the
necessary computational resources followed by the conclusions in section 5.

2 Description of the Flow Field

The unswept prototype of the present leading edge bubble was extensively
studied by Rist [13] by means of DNS and linear stability theory (LST). Its
extension to swept flows, a verification and validation, as well as the effect
of sweep on the base-flow and a LST analysis were published in Hetsch &
Rist [5]. The reliability and accuracy of LST and the parabolised stability
equations (PSE) in swept laminar separation bubbles were subject of a quan-
titative investigation in Hetsch & Rist [7]. All PSE-results are obtained by
the linear version of the code ‘nolot’ of the DLR-Göttingen. It is described by
Hein [4], who used the unswept version of the present base flow to prove the
applicability of PSE to laminar separation bubbles for the first time. Finally,
first results about the effect of an increasing sweep angle on the disturbance
development in this configuration were reported in Hetsch & Rist [6]. All sim-
ulations are split in a DNS of the steady laminar base flow Q and a succeeding
unsteady DNS of the disturbance propagation q′ within this base flow. So for
any flow quantity q ∈ {u, v, w} the solution takes the form of the decomposi-
tion q(t, x, y, z) = Q(x, y) + q′(t, x, y, z).

Only important parameters of the base flow already described in [5] are
repeated here: All quantities in the paper are non-dimensionalised by the ref-
erence length L = 0.05 m and the chordwise free-stream velocity U∞ = 30 m

s ,
which is held constant for all cases. The x- y- and z-direction are taken nor-
mal to the leading edge, wall-normal, and parallel to the leading edge with the
associated base flow velocity components U , V and W , respectively. Period-
icity is assumed in spanwise direction only, resulting in a quasi-2D base flow
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(a) Computational domain with 30◦-separation bubble and streamlines. Inflow:
Sweep angle Ψ∞ , freestream velocity Q∞ with components U∞ , W∞ . Inside: dis-
turbance strip, dividing streamline Ψ0 of the bubble. Outflow: schematic sketch
of damping zone. Upper boundary condition Ue: potential flow deceleration.
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(b) Comparison of LST-amplification rates for waves with spanwise wave number
γ = 0 of present flow (bottom) with 30◦-‘Blasius’ (top), which results without
potential flow deceleration. Upstream shift of xcrit (point of first disturbance
amplification). A: separation, W : reattachment.

Fig. 1. Overview and properties of the present 30◦-base flow.
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with ( ∂
∂z ≡ 0), but W (x, y) �= 0. The calculation domain shown in figure 1(a)

consists of an infinite flat plate subjected to an adverse pressure gradient. The
latter is introduced by prescribing a deceleration of the chordwise potential
flow velocity Ue(x) at the upper boundary. Different sweep angles Ψ∞ are re-
alised by varying the spanwise free stream velocity W∞ = U∞ tan(Ψ) and set-
ting We(x) ≡ W∞. Angles are taken with respect to the x-axis throughout the
paper. At the inflow located at xo = 0.37 Falkner-Scan-Cooke profiles are pre-
scribed. With a kinematic viscosity of ν = 15 ·10−6 m2

s the flow can be charac-
terised by Reδ1 = U∞ δ1(xo)/ν = 331, based on the displacement thickness at
inflow. The wall-normal coordinate y ranges from 0 to y

M
= 0.238 = 72·δ1(xo).

Thus, a family of swept laminar separation bubbles with arbitrary sweep angle
is obtained. In agreement with the independence principle of incompressible
flow discussed in [5] they exhibit identical separation and reattachment posi-
tions at xsep = 1.75 and xreat = 2.13, respectively. The steady calculation of
the bubbles is justified by its small size and experience with the unswept case
in [13]. It was already shown in [7] that the linear stability theory is very accu-
rate in predicting the streamwise wave number αr. Therefore, the propagation
direction Ψ , wavelength λ or phase speed cr of a disturbance wave

Ψ := arctan(γ/αr), λ := 2 π/
√

α2
r + γ2, cr := ω/(α2

r + γ2) (1)

are based on LST throughout this paper, if not stated otherwise. Figure 1(b)
displays an overview over the linear stability properties of the 30◦-separation
bubble in comparison the same flow field without the adverse pressure gradi-
ent. The presence of the small leading-edge bubble obviously has a remarkable
impact on the flow stability: The amplification rates are up to 16 times higher,
a much broader frequency-spectrum of disturbances is amplified and the el-
liptical upstream influence of the separation bubble may be noticed by a shift
of xcrit, the point where the base flow first becomes unstable.

3 Stages of Transition in a Swept Separation Bubble

For each disturbance scenario a discrete packet of Tollmien-Schlichting (TS)
waves is generated by means of suction and blowing through a disturbance
strip at x ∈ [0.5; 0.64]. One selected “primary disturbance” (PD) is excited
with an initial amplitude 5 orders of magnitude larger than all other modes.
Additionally, 10 low-amplitude “background disturbances” (BD) with system-
atically varying spanwise wave numbers γ ∈ [−50,−40, . . . , 50] are introduced
as partners for non-linear interactions. As we are interested in scenarios of fun-
damental resonance all waves share the (angular) frequency ω = 2 π (L̄/Ū∞) f
of the primary disturbance. After a initial transient phase steady bound-
ary conditions and periodic wave excitation lead to a quasi-periodic state
in time. Together with periodic boundary conditions in the spanwise direc-
tion this allows for a double Fourier analysis in time and span in the post-
processing. It provides a decomposition of any disturbance quantity q′ into
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Fourier modes (ω/γ) with amplitudes Âq
(ω/γ), from which amplification curves

q′(ω,γ)(x) = maxy(Âq
ω,γ(x, y)) can be obtained. As modern passenger planes

typically exhibit sweep angles of about Ψ∞ = 30◦ the disturbance scenario
30◦-(20/20) was selected for a detailed analysis of the stages of transition
in the flow field around a swept laminar separation bubble. Its primary dis-
turbance showed the greatest disturbance amplification for the sweep angle
Ψ∞ = 30◦ according to linear stability theory.

3.1 Non-Linear Wave Generation in the Disturbance Spectrum

From the initial disturbance spectrum further disturbances will develop by
non-linear mechanisms. Mathematically non-linear wave generation and in-
teraction have their origin in the non-linear convective terms of the Navier-
Stokes equations. By studying the multiplication of two Fourier modes it can
be shown that any non-linear interaction ‘⊕’ results in the generation

(ω1/γ1) ⊕ (ω2/γ2) = (2 ω1/2 γ1) + (2 ω2/2 γ2) + (0/0)︸ ︷︷ ︸+ (ω1 ± ω2/γ1 ± γ2)︸ ︷︷ ︸,
autointeraction: O(amp2) interaction: O(amp1 · amp2)

plus its complex conjugate. Each time step every disturbance mode present
in the spectrum generates its first higher harmonic and a contribution to the
mean flow deformation (0/0). The amplitude of the higher harmonic will be
approximately the square-amplitude of its generator. Furthermore, it interacts
with every other disturbance by generating the new modes (ω1 + ω2/γ1 + γ2)
and (ω1 −ω2/γ1−γ2) with an initial amplitude of approximately the product
of those of its generators. Because of the low amplitudes of the background
disturbances only direct interactions with the primary disturbance will be
large enough to contribute to the overall flow development:

(20/20)︸ ︷︷ ︸⊕ (20/γ)︸ ︷︷ ︸ = (40/40)︸ ︷︷ ︸+(0/0) + (40/20 + γ)︸ ︷︷ ︸ + (0/20− γ)︸ ︷︷ ︸ .

PD BD 1.HH TS CF
(2)

Any background disturbance in the initial spectrum generates therefore a
Tollmien-Schlichting wave and a steady crossflow wave (CF) with the primary
disturbance. With the exception of further higher harmonics of the primary
disturbance itself any subsequent interactions of these new modes will again
be too small to be of importance. All modes predicted in (2) can be detected
in the postprocessing as shown in the amplification curves of figure 2.

3.2 Analysis of the Averaged Flow Field

The direct comparison of the time- and spanwise averaged spanwise vorticity
field [ωz] := Ωz + (0/0)ωz with the undisturbed base flow in figure 2 allows
the immediate distinction of three zones. However, the deceleration of the
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freestream prevents the use of the classical formulas for the boundary layer
parameters, which would become misleading and domain height dependant.
Following Spalart & Strelitz [15] and Marxen, Lang, Rist & Wagner [12] all
boundary layer parameter were determined by the so-called pseudo velocity
[upseu]:

[upseu](x, y) :=
∫ y

o

[ωz](x, ỹ) dỹ =⇒ δ1(x) =
∫ ∞

o

(
1 − [upseu](x, ỹ)

[ue,pseu](x)

)
dỹ.

A preliminary classification of the flow field can now be established as fol-
lows: Until x ≈ 1.90, where the mean flow deformation (0/0)u reaches about
1.5% Ue, no difference to the undisturbed flow appears. As shown in figure 2
the disturbances are still too small to generate a sufficient mean flow defor-
mation to visibly influence the base flow terms of order O(1). The next zone
still resembles the base flow, but distinct differences appear especially in the
near-wall region. There, a noticeable rise in the averaged spanwise vorticity
[ωz] and therefore the wall friction is indicated by an accumulation of isolines
and confirmed by figure 3(a). Under the influence of the disturbances the rear
part of the separation bubble changes towards a roughly triangle-shaped out-
line observable in experiments as shown in picture 1.5 in [13]. It also develops
the typical pressure plateau displayed in figure 3(a). Qualitatively it com-
pares well with a measured pressure distributions of an unswept transitional
separation bubble reported by Lang in figure 3 in [12]. But with the simulta-
neous saturation of all background disturbances at xsat = 2.78 any similarity
with the base flow abruptly ends. The hitherto layered structure of the flow
switches over to a more chaotic development of the isolines. This is accompa-
nied by a steep rise in the wall friction and the boundary layer thickness δ99 .
Other indicators also show a shift towards turbulent flow: In the regions of
constant [ue,pseu] before and after the separation bubble the shape parameter
H12 of figure 3(b) can be compared with classical results from Schlichting’s
book [14] for a two-dimensional flat plate without pressure gradient. It follows
from the independence principle that the sweep angle Ψ∞ will not have a ma-
jor impact on the comparison. At about xsat H12 drops quickly approaching
the typical turbulent value of H12 = 1.29. From the classical theory one can
also expect a ratio of δ99 : δ1 = 2.9 : 1 for a Blasius flow, which is nearly
exactly satisfied in the laminar inflow region yielding 2.86 : 1. The ratio of
8 : 1 for a fully developed turbulent boundary layer is approached, but not
yet reached, towards the end of the domain, where a ratio of 6.8 : 1 is found
at x = 4.0. Finally, the velocity profiles in this region are noticeably fuller as
compared to the laminar profiles in the first region. Thus after the saturation
of the background disturbances a turbulent flow field emerges which quickly
approaches the criteria of a fully developed turbulent boundary layer.
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Fig. 2. 30◦-scenario with primary disturbance (20/20): Comparison of amplification
curves (shown are only the PD, the BD (20/ − 10) and modes directly generated
by them, top) with contour plots of the time- and spanwise averaged total flow
[ω′

z] = Ωz + (0/0)ωz , [ω′
z] ∈ [−16.9; 277.5]: 23 iso-levels [−45;−35; . . . ; 175], middle)

and the undisturbed base flow (Ωz ∈ [−5.4; 172.6]: 23 iso-levels [−45;−35; . . . ; 175],
bottom). Additionally: The boundary layer thicknesses δ99 calculated from [u′

pseu]
and Upseu respectively and the momentum thickness δ1 , as well as the saturation
position of the background disturbances xsat = 2.78, the dividing streamline Ψ 0 of
the separation bubble and the disturbance strip at x ∈ {0.50; 0.63}.
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Fig. 3. Properties of the total flow [q′] = Q + (0/0)q averaged in time and span.
The shape parameters were evaluated using upseu. Vertical lines: A=xsep, W=xreat,
and position of the saturation of background disturbances xsat.

3.3 On the Onset of Turbulence

Although laminar-turbulent transition is a process developing over a certain
downstream region in stages, it is sometimes necessary – like in RANS calcu-
lations – to decide after which point the flow should be regarded as turbulent.
According to subsection 3.2 clearly the position of the saturation of the back-
ground disturbances xsat should be considered for the present flow. To derive a
criterion which yields an exact x-position without interpretation and can thus
be programmed for automatic detection, the intersection of the amplification
curves of the mean flow deformation (0/0)u and the primary disturbance was
chosen. Physically, this marks the point where the background disturbances
have reached a sufficiently high amplitude, such that their combined contribu-
tion to the mean flow deformation makes it surpass the primary disturbance
as the dominating mode. Just as in figure 2 this point agrees remarkably well
with the xsat-position which one would choose on an intuitive level in all in-
vestigated scenarios. Furthermore, in disturbance scenarios without transition
no such intersection occurs. But it should be noted that this intersection is not
necessarily unique as also observable in figure 2. In further investigations not
presented here the most effective primary disturbance for a given sweep angle
was determined by comparison of the ‘earliness’ of the onset of turbulent flow.
To this end the above mentioned criterion was deployed. The criterion also
seems to work in totally different scenarios like a crossflow-vortex-induced
transition published by Wassermann & Kloker, see figure 15 in [16]. Addi-
tionally, in the right picture of figure 14 of that publication the background
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disturbances where switched off. Consequently no transition occurred and the
mean flow distortion mainly generated by the dominating vortex could never
surpass its generator.

3.4 Characterisation and Properties of the Transition Stages

Figure 4 gives a complete overview over the transition scenario 30◦-(20/20)
at the end of the 60th disturbance period: Shown are alternating iso-surfaces
of the disturbance-component of the spanwise vorticity ω′

z = ±0.0001 up to
x = 1.45 followed by iso-surfaces λ2 = −1 and λ2 = −200 of the λ2-criterion of
Jeong & Hussain [9]. Additionally, the boundary layer thickness δ99 and the
two-dimensional dividing streamline Ψ

0
of the bubble were calculated from

data averaged in time and span. The latter is used to visualise the extent of
the separation bubble with Ψ

0
defined as the iso-surface Ψ = 0 of the stream

function Ψ (x, y) :=
∫ ymax

0 [u](x, ỹ) dỹ. Note that the figure shows twice the
spanwise extent, but only the lower half of the actual calculation domain
which was moreover cut at the beginning of the damping zone at x = 4.0. In
order to decompose the overall picture into the different stages of transition,
the top view is directly compared with postprocessing data in figure 5:

Stage (I): Linear Disturbance Amplification

One wavelength after the disturbance strip at the latest the boundary layer has
filtered out additional disturbance waves of neighbouring wave length which
are necessarily co-excited in the process of disturbance generation. Therefore
x = 0.8 marks the beginning of the linear domain, where the growth of any
mode can be very accurately described by LST and PSE as demonstrated in
figure 5. At xLinEnd ≈ 1.91 the primary disturbances reach an amplitude of
3% [ue,pseu] and the amplification curves depart from the PSE-solution. Note
that the LST-solutions depart earlier at 1.85, so that an investigation with
LST only would yield a slightly inaccurate smaller linear domain ending with
a primary disturbance of 1 − 2% [ue,pseu]. As separation occurs at x = 1.75,
the flow in the front part of the separation bubble can still be predicted by
linear theories. Throughout stage (I) the primary disturbance dominates other
disturbances by 2− 5 orders of magnitude. Visualisations therefore show this
TS-wave in its pure form: Its oscillations periodically accelerate and decelerate
the base flow profiles creating alternating shear stress at the wall, which in
terms is visualised by the ω′

z iso-surfaces. The inclination of their wave fronts of
26◦ and wavelengths between 0.141 and 0.136 taken from the visualisation 4(b)
agree well with its propagation angle Ψ(20/20) in figure 5(b) and its wavelength
λ(20/20) = 0.137 (λ̄ = 6.9 mm) calculated from linear stability theory. As soon
as the primary disturbance reaches an amplitude of about 0.1% [ue,pseu] at
x = 1.6 the fist emergence of vortices can be detected by the λ2-criterion.
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(a) Three-dimensional view: As below twice the spanwise extent is displayed.

(b) Top view: The x- and z-axis are to scale.

Fig. 4. 3D-visualisation of instantaneous data of the swept transition scenario 30◦-
(20/20) at the end of the 60th disturbance period: Restricted to x ∈ [0.37; 1.45]:
ω′

z-iso-surfaces with ω′
z ≡ −0.0001 (red) and ω′

z ≡ 0.0001 (orange). Afterwards:
λ2 -iso-surfaces with λ2 ≡ −1 (blue), λ2 ≡ −200 (vortex axes, green). From the
averaged total flow solution: The dividing streamline Ψ0 of the separation bubble
and the boundary layer thickness δ99 (dark green stripe in x, y-plane).
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(a) Direct comparison with selected amplification curves from figure 2.

(b) Direct comparison with phase speed cr and propagation direction Ψ .

Fig. 5. Comparison of the visualisation 4(b) with the most important amplification
curves from figure 2 (top) and parameters of the primary disturbance (20/20) (bot-
tom). Bottom: Circle: LST, squares: DNS (large: close to wall, small: freestream),
diamonds: Ψe. Line without symbol: δ1 .
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Fig. 6. Close-up on the vortex axes of picture 4(b): Snapshots of λ2 -iso-surfaces
for λ2 ≡ −200 at two different instants of time after 59.5 (red) and 60 disturbance
periods (green). Arrows: direction of potential flow Ψe(x = 2.5) = 32.4◦.

Stage (II): Secondary Instability

The primary disturbance continues to grow according to linear stability
theory up to the point of its non-linear saturation. Likewise the dominant
structures of the visualisation – vortices with a clockwise sense of rota-
tion – show a smooth changeover from stage (I ) to (II ). As confirmed by
the same angle of inclination as the ω′

z iso-surfaces before and by the ab-
sence of other relevant disturbances, they are induced by the high-amplitude
primary disturbance only. Higher harmonics play no major part in their
emergence: Since their generation the higher harmonics of the primary dis-
turbance share the latter’s phase speed cr,(20/20). Thus it follows from (1)
that αr,(40/40) =

√
2 ω(20/20)/cr,(20/20) − 4 γ(20/20) ≈ 2 αr,20/20) and there-

fore Ψ(40/40) ≈ Ψ(20/20), but λ(40/40) ≈ 1
2 λ(20/20). If the higher harmonics

were part of the vortices, a noticeable shortening of the intervals between two
vortices in the visualisation would have occurred. Stage (II) naturally ends
at xPDsat = 2.08 with the simultaneous saturation of the primary disturbance
and its higher harmonics at amplitude levels of 22% [ue,pseu] (PD), 5% [ue,pseu]
((40/40)) and 2% [ue,pseu] ((60/60)). For the respective unswept case Rist [13]
has shown that this phase is governed by secondary instability theory. Both
cases show a sudden increase of the amplification rates of the background
disturbances as a result of their resonance with the primary disturbance.

Stage (III): Coherent Structure of Saturated TS-Waves

Sharing a common speed and direction the higher harmonics of the primary
disturbance travel together with their generator, which remains unchanged af-
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ter their simultaneous saturation. These saturated TS-waves form now a new
entity – a coherent structure – which massively influences the background
disturbances. A description of this coherent structure for unswept separation
bubbles can be found in Rist [13]. The presence of the strong vortices formed
by the coherent structure forces all background disturbances into a common
dependency indicated by an identical growth rate in figure 2, which is slightly
damped compared to the steep rise in stage (II). The primary vortices in stage
(III) are accompanied by weak secondary vortices at their rearward side close
to the wall. Such secondary vortices are frequently observed whenever a strong
vortex interacts with a wall, reported e.g. at the updraft side of a crossflow
vortex in [16]. Particular to the present swept case is a sudden rise in the
propagation direction Ψ(20/20) until it exactly matches the local freestream di-
rection Ψe. Once Ψe is reached, Ψ(20/20) stays constant in figure 5(b) up to the
final breakup of the coherent structure. According to (1) this rise must corre-
spond to a drop in the streamwise wave number αr which in term leads to an
increased wavelength λ̄(x = 2.5) = 8.4mm and a sudden increase of the phase
speed cr by 20%. Both events are visible in the flow visualisations in forms of
a larger spacing of the vortices in stage (III) and a slight bend in their axes
at x = 2.15. The presence of the laminar separation bubble complicates this
process by stretching the coherent structure: The phase speed development
cr(PD) in figure 5(b) after the separation indicates that the near-wall parts
of the vortices are retarded by the presence of back flow while parts above
the bubble are locally accelerated due to its displacement. After leaving the
bubble both parts share a common rise in cr and Ψ again. The readjustment
of the vortex axes until they are normal to the free stream is therefore an in-
herent property of the structure, independent of the separation bubble. Stage
(III) ends abruptly after the saturation of the background disturbances at
xsat = 2.78 with the breakdown of the coherent structure. The mechanisms of
the breakdown can be clarified by the vortex core lines in figure 6: Viewed in
the potential flow direction they display a striking similarity to the classical K-
type breakdown of a flat plate boundary layer as described by Bake et al. [1].
‘Spanwise’ modulations along the vortex axes increase downstream until they
break the wave fronts apart. The pieces form Λ-vortices which propagate in
an aligned fashion exactly in freestream direction. First modulations are ob-
servable around x = 2.6 where the background disturbances reach amplitudes
of 1%. Most likely, this rich spectrum of background disturbances provides
the missing ‘oblique’ partners for an oblique K-type transition. Moreover, in
the present disturbance scenario based on so-called “fundamental resonance”
such a transition process can be expected.

Stage (IV): Turbulent Flow

After the breakdown of the coherent structures turbulent flow develops as
described in subsection 3.2. Figure 5(a) demonstrates again how well the sat-
uration of the background disturbances coincides with the onset of turbulence.
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4 Computational Aspects

4.1 The Algorithms for the Direct Numerical Simulations

Our DNS-code solves the three-dimensional Navier-Stokes equations for un-
steady, incompressible flow in vorticity-velocity formulation. The quasi-two-
dimensional base flow equations are discretised with central finite differences
of 4th order accuracy. The steady state is reached by the help of a dissipa-
tive, semi-implicit, pseudo-temporal ADI approach for the vorticity transport
equations. A vectorisable stripe-pattern LSOR technique is employed to solve
the Poisson equations for the velocity components. For the disturbance simu-
lations a complex Fourier spectral ansatz is used to decompose the flow field in
z. Compact finite differences of mostly 6th order accuracy guarantee a highly
accurate spatial wave transport and a 4th-order Runge-Kutta scheme is used
for the time-stepping. For an in-depth description of the DNS algorithms see
Wassermann & Kloker [16], from which the present code version differs only
in minor details.

4.2 Performance and Computational Resources

For each sweep angle the base flow had only to be calculated once for a highly
resolved case with 2786 ×1537 grid points in x and y to serve for an arbitrary
number of disturbance simulations. This can not be parallelised and took
37h user time on a single CPU on the NEC SX-5. The present disturbance
scenario – the middle one in table 1 – was a medium sized example of an
extensive series with different disturbance contents and sweep angles. As the
code was designed for the NEC SX-4/SX-5/SX-6, only one node per run would
be requested on the NEC SX-8 with its 8 CPUs calculating different Fourier
modes in parallel as micro-tasks with an excellent degree of vectorisation of
99%. In a single run as many disturbance periods in time would be completed
as possible within the run-time limit. Afterwards the jobs were restarted until
the quasi periodic state was reached. The main advantages of the NEC SX-8
were its speed, the generous amount of main memory and the possibility to
work with 3− 4 different scenarios simultaneously by allocating a node each.

Table 1. Performance data of a small, medium & large run with ‘Perio’ disturbance
periods per single run out of final number, ‘time/run’ user time per single run, so
whole scenario finished after ‘CPU’ CPU-hours. Further: Grid points in x & y,
number of Fourier modes in z, giga-flops/CPU, main memory, vectorisation rate.

Name X × Y Kmax Gflops GByte Vect Perio time/run CPU

30◦-sweep 2402 × 273 15 4.85 9 99.0% 24/48 110h 220h

30◦-visu 2402 × 273 31 4.89 18 99.1% 4/60 38h 570h

CF-TS-int. 3730 × 545 31 4.95 55 99.3% 2/48 145h 2610h
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5 Conclusions

The stages of laminar-turbulent transition in the flow field around a swept
laminar separation bubble have been analysed and visualised in detail. The
development of a discrete spectrum of oblique Tollmien-Schlichting waves
dominated by a “primary disturbance” of higher amplitude was qualitatively
similar to the unswept case: (I) Linear disturbance amplification until the pri-
mary disturbance reaches a sufficient amplitude of 3% of the local free-stream
velocity. Towards the end of this phase vortices induced by the primary distur-
bance emerge, after its amplitude surpasses 0.1%. (II) A stage of secondary
flow instability with strong resonance of the background disturbances with
the high-amplitude vortices of the primary disturbance, which still grows ac-
cording to LST until saturation at an amplitude level of 22%. Because of
the strong amplification rates inside the bubble this phase is quite short,
so that secondary instability represents a comparatively unimportant mecha-
nism in separation bubbles in general. (III) A coherent structure is formed by
the simultaneously saturating primary disturbance and its higher harmonics,
which forces any background disturbance into a common dependency indi-
cated by identical amplification rates. The vortices change their orientation
until everything evolves exactly in freestream direction. The stage ends with
a rapid breakdown immediately after the saturation of the background distur-
bances. The event is triggered by the breakup of the vortex cores into aligned
Λ-vortices, which resemble an oblique K-type transition. (IV) Emergence of
turbulent flow which quickly approaches criteria of a fully turbulent boundary
layer. Within all scenarios of fundamental resonance for a sweep angle of 30◦

the chosen case exhibits the greatest linear amplification of the primary dis-
turbance. Furthermore, it could be shown that the intersection point between
the amplification curves of the mean flow deformation and the dominant dis-
turbance marks the saturation of the background disturbances. It is therefore
a good indicator for the onset of turbulent flow in different transition scenarios
with one dominating disturbance. The interpretation of flow visualisation by
direct comparison with postprocessing data within the same figure has been
highly fruitful. The knowledge, how typical flow structures express themselves
in the visualisations and how such structures develop and interact, provide
the “building blocks” for the analysis of more complex disturbance scenarios.
To utilise them, a computer aided decomposition of a complex flow field into
its elements will be necessary as proposed by Linnick & Rist in [11].
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