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Summary: This paper details a joint numerical and experimental effort to
investigate a transition process in a laminar separation bubble, with the em-
phasis being put on the numerical contribution. A laminar separation bubble
is formed if a laminar boundary layer separates in a region of adverse pres-
sure gradient on a flat plate and undergoes transition, leading to a reattached
turbulent boundary layer. Development of disturbances during the transition
process in such a separation bubble is studied by means of direct numeri-
cal simulation with controlled disturbance input. Focus is put on the stage
of non-linear development of these perturbations, for which a detailed com-
parison between numerical and experimental results is given. Beside physical
phenomena like shear-layer roll-up and vortex shedding, computational as-
pects such as the performance of the numerical code on supercomputers are
treated.

1 Introduction

Transition to turbulence in a two-dimensional separated boundary layer of-
ten leads to reattachment of the turbulent boundary layer and the formation
of a laminar separation bubble (LSB). In environments with a low level of
disturbances fluctuating in time, the transition process is governed by strong
amplification of these disturbances. Such a scenario is typical for a pressure-
induced LSB, e.g. found on a (glider) wing in free flight, or for an experiment
where the region of pressure rise is preceded by a favorable pressure gradient
that damps out unsteady perturbations (Watmuff, 1999). In the region of an
adverse pressure gradient, disturbance waves are subject to strong amplifica-
tion, and their saturation marks the location of transition to turbulence.

Laminar-turbulent transition in laminar separation bubbles has been the
subject of numerous studies in the past. Only some of the most recent ones
will be mentioned here. Watmuff (1999) carried out an experimental study of
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Fig. 1. Configuration for the experiment by Lang (2005) – sketch (provided by
Matthias Lang) of the test section of the laminar water tunnel at the IAG

a LSB, while Spalart & Strelets (2000), Alam & Sandham (2000), Maucher
et al. (2000), and Wissink & Rodi (2004) tackled the flow by means of direct
numerical simulations (DNS). Most of the cited studies conclude that some
type of linear instability (Tollmien-Schlichting or Kelvin-Helmholtz instabil-
ity) is the cause for transition.

With the rise of computational fluid dynamics during the last decades, and
especially with the availability of large (vector-)supercomputers, there also
came up a cry to verify numerical simulations not only within themselves, e.g.
by means of grid-refinement studies, but also by a comparison with the out-
comes of available experiments. For flows with physical processes as complex
as in a laminar separation bubble, a comparison of only time-averaged and
root-mean-square quantities appears of little value and cannot be considered a
true verification. Rather, a detailed quantitative time-accurate comparison of
numerical results and experimental data obtained in a LSB is required. Both,
experimental and numerical methods have certain, but different, weaknesses
that make a meaningful comparison quite demanding.

This paper shall serve to demonstrate that the numerical method used
within the project LAMTUR is capable to provide realistic space- and time-
accurate simulations even of non-linear stages of the transition process in a
laminar separation bubble. The method was adapted to represent a physical
situation as given in Fig. 1, for which an experimental realization is available.
The experiment was planned in a way as to minimize numerical difficulties as
far as possible. A crucial point thereby is the explicit forcing of disturbances,
so that the flow is not governed by the (hard to determine) background dis-
turbances in the very tunnel that was used for the experiment.

The whole project LAMTUR aims at evaluating transition mechanisms
in wall-bounded flows – in the present ‘subproject’ in a LSB – and is mo-
tivated by several considerations. Identifying the relevant disturbances and
understanding their role in the transition process is a necessary condition for
the prediction of transition in similar flows. In addition, it can be viewed as
a first step towards control of the underlying flow field.

Here, the outcomes of a large-scale computation will be described. Physical
insights gained within the subproject are discussed in more detail in Marxen
et al. (2003, 2004, 2005); Marxen (2005). All calculations rely on a single case
and mainly serve to illustrate transitional processes that can occur in a LSB.
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2 Description of the Flow Field

The present case is defined by an experimental set-up specified in detail in
Lang et al. (2004), Lang (2005). A sketch of the set-up was given in Fig.
1. Only a brief description is given here. The set-up was used during sev-
eral measurement campaigns carried out by Matthias Lang at the Institut
für Aerodynamik und Gasdynamik, Universität Stuttgart. Outcomes of these
campaigns are taken for comparison with computational results throughout
this paper. Specifically, results from measurements by means of Laser-Doppler
Anemometry in 2000, denoted as LDA (2000) in the following, and 2001, LDA
(2001), as well as those obtained from Particle Image Velocimetry in 2001,
PIV (2001), are used.

2.1 General Parameters

A flat plate is mounted in the free stream (Ŭ∞=0.125m/s) of the test section
of a laminar water tunnel (ν̆=10−6m2/s). A streamwise pressure gradient
is imposed locally on the flat-plate boundary layer by a displacement body
(length of the body L̆Exp

DB =0.69m), inducing a region of favorable pressure
gradient followed by a pressure rise. The origin of the coordinate system cor-
responds to the narrowest cross section beneath the displacement body.

In the region of adverse pressure gradient (starting at x̆ ≈ 0m), a lami-
nar separation bubble develops. The transition experiment is performed with
controlled disturbance input. A 2-d time-harmonic perturbation is introduced
upstream of the displacement body (at x̆=−0.23m) by an oscillating wire

(fundamental frequency f̆0=1.1 s−1). Additionally, 3-d disturbances are im-
posed by placing thin (height: 10−3m) metal plates, so-called spacers, regu-

larly underneath the wire (fundamental spanwise wavelength λ̆z=0.058m).
All quantities are non-dimensionalized. The global reference length is cho-

sen to be L̆ref=2/3m ≈ L̆Exp
DB . The reference velocity is evaluated at a stream-

wise position where the flow field is still not strongly affected by the down-
stream presence of the separation bubble, yet already influenced by the dis-
placement body. It was found that x=−0.15 is a convenient location for that
purpose, since at that position only small wall-normal changes of the stream-
wise velocity are observable outside the boundary layer. Thus, the reference
velocity amounts to Ŭref=0.15m/s ≈ 1.2 · Ŭ∞, resulting in a global Reynolds
number Reglobal = 105 in water. For DNS calculations, general physical pa-
rameters of the flow (see Table 1) are chosen to match the experimental set-up
as closely as possible.

At the streamwise position of the inflow boundary xifl=−0.6, the mea-
sured boundary-layer profile can be approximated by a Falkner-Skan similarity
solution with Reδ1,ifl=900 and βH,ifl=0.13. The outflow boundary is located
at xofl=1.16 with a preceeding damping region starting at xst,oBZ=0.9911.
The useful region of the integration domain extends up to x≈0.95.
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Fig. 2. Contours of the time- and spanwise-averaged spanwise vorticity ω̄z from
DNS together with mean dividing streamline ψ̄ = 0. In the insert, the wall-normal
direction is enlarged by a factor of 4 and an instantaneous view of ωz is given

The pressure gradient is prescribed via streamwise and wall-normal velocity
distributions ue(x), ve(x) at a height ymax=0.1207. These distributions are
chosen guided by potential(slip)-flow distributions uslip, vslip, but slightly
adapted to compensate for errors introduced through the assumptions in
deriving the potential-flow solution and to obtain the best possible over-
all matching of the DNS results with the experiment. The slip flow was
estimated from experimental mean values ūexp, v̄exp at constant y=0.06.
The procedure used to derive slip velocities from measured data is given in
Marxen (2005). A rough estimate of the pressure-gradient parameter gives

P=δ̆2/ν̆ · ∂ŭslip/∂x̆|Separation ≈ −0.32.
It was not possible to obtain a steady-state solution to the Navier-Stokes

equations with the chosen distribution ue(x), ve(x), i.e. the actual flow field
observable downstream of transition is highly unsteady from x=0.48 onwards.
For that reason, the subsequent discussion of the mean flow field is restricted
to the laminar part of the LSB (x≤0.45).

2.2 Mean Flow and Boundary-Layer Properties

Contours of the spanwise vorticity ωz are shown in Fig. 2, together with the
mean dividing streamline ψ̄=0. A fairly large but shallow separation region
has developed. Its start is marked by the point of separation S (xS ≈ 0.225).
To provide an impression of the size of the LSB, the whole bubble is included
in the insert of Fig. 2, and the mean reattachment point is marked by R.

Table 1. Simulation parameters for DNS

Ŭref 0.15m/s ν̆ 10−6 m2/s Reglobal 105 Reδ1,ifl
900

ymax 0.1207 β0 30.7 γ0 72 βH,ifl 0.13
xifl −0.6 xofl 1.16 xst,oBZ 0.9911 xen,oBZ 1.1586
NMAX 2690 MMAX 241 KMAX 63 LPER 1200
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Fig. 3. Time- and spanwise-averaged streamwise (solid lines/filled symbols) and
wall-normal (dashed lines/open symbols) velocity profiles at several streamwise po-
sitions in the laminar part of the LSB. Comparison of DNS (lines), LDA (2001)
(deltas), and LDA (2000) (gradients). Inserts show u in the reverse-flow region en-
larged by a factor of 4
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Fig. 4. Same as Fig. 3, except that streamwise positions x=0.39, 0.405, and 0.42 are
shown. Comparison of DNS (lines), LDA (2001) (deltas), LDA (2000) (gradients),
and PIV (2001) (diamonds)

Figs. 3 and 4 compare time- and spanwise-averaged velocity profiles at sep-
aration and in the reverse-flow region. Satisfactory agreement between DNS
results and measurements for all streamwise positions even for the small wall-
normal velocity component (note the different scaling for u and v in the fig-
ures) reveals that a separation bubble of approximately the same height is
formed. The inserts showing the reverse-flow region of the LSB confirm that a
comparable amount of reverse flow exists in the DNS and in the experiment.
The last x-position shown is close to the transition location.

Boundary-layer quantities from DNS are computed using a pseudo velocity
that is obtained by integrating the spanwise vorticity in wall-normal direction
(see Spalart & Strelets, 2000). Figs. 5 and 6 show the streamwise development
of important boundary-layer parameters. A strong increase in the quantities
related to the displacement of the boundary layer (such as the displacement
thickness δ1 or Reδ1

) is visible in the separated region.
In Fig. 5, the pressure coefficient at the wall in case of slip flow cp,slip serves

to illustrate the development of a pressure plateau due to the LSB. Compar-
ing cp obtained from potential-flow theory and from DNS, one can see that
deviation of the pressure distribution is not restricted to the region around
separation, but already visible far upstream from it. This can be attributed
to the presence of the separation bubble (Marxen, 2005).
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Fig. 5. Coefficients for surface pressure cp, skin friction cf (left), and boundary-layer
thicknesses δ1, δ99 (right). Comparison of DNS (solid lines), slip-flow (potential-flow
theory) results cp,slip (dashed line), LDA (2001) (deltas), LDA (2000) (gradients),
and PIV (2001) (diamonds)
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2.3 Post-Processing of Time-Dependent Results

A double Fourier transform in time and spanwise direction of data sets from
measurements or simulations yields disturbance amplitudes and phases. Be-
low, the notation (h, k) will be used to specify the modes, with h and k denoting
wave-number coefficients in time and spanwise direction, respectively.

In the simulations, the separation bubble showed low-frequency oscillations
(so-called flapping) so that the Fourier analysis had to be carried out using
a Hanning-window function to suppress aliasing effects. The amplitude of
the subharmonic after using a Hanning-window was considerably lower than
before and this was taken as proof that frequencies of the flapping and of the
vortex shedding (see below) were indeed well separated. Four periods of the
fundamental frequency where used in the analysis. The flow field is advanced
in time until a quasi-periodic state is reached.

2.4 Linear Disturbance Evolution

Linear disturbance evolution in the considered flow shall only briefly be sum-
marized – a detailed treatment can be found in Marxen et al. (2004, 2005);
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Fig. 7. Amplification curves for the maximum (in y) velocity fluctuations |û′(h,k)
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(h,k)
max|. Left: 2-d mode (1, 0) from DNS (solid line); LST (dash-dotted lines): first

(thick), second (thin) mode; measurements LDA (2001) (filled symbols), LDA (2000)
(open symbols). Right: steady 3-d mode (0, 2) from DNS (lines) together with mea-
surements LDA (2001) (filled symbols), LDA (2000) (open symbols)

Marxen (2005). All the results presented in this subsection have been obtained
by means of a disturbance-flow computation (see Sect. 4), making use of the
flow described in the last subsection as a base flow.

Linear stability theory (LST) based on the Orr-Sommerfeld equation
(Schlichting, 1979) predicts that a discrete spectrum of eigensolutions exists
for a certain velocity profile. For transition in low disturbance-level environ-
ments, out of these only the least damped, or most amplified, disturbance
eigenmodes are relevant. An analysis of the stability characteristics for this
flow field (Marxen, 2005) revealed that solely a single 2-d mode, here denoted
as first mode, becomes amplified in the region of adverse pressure gradient,
while at the same time precisely this mode is stronger damped in the acceler-
ation region than another one, the second mode, existing in the flow.

In a numerical simulation or in the experiment, all eigenmodes with the
respective frequency will inevitably be excited, though with different initial
amplitude. For the present position of the oscillating wire in the experiment
(x=−0.345), the second mode is initially visible, while further downstream the
first one becomes dominant (Fig. 7, left). Therefore, it is sufficient to excite
this first mode only in the DNS, e.g. with a disturbance strip placed in the
location of pressure minimum (x=0) as it will be described below.

The evolution of a different class of linear disturbances – steady, three-
dimensional ones – is shown in Fig. 7, right. A detailed discussion of this type
of disturbance can be found in Marxen et al. (2004); Marxen (2005); Marxen
et al. (2005). The initial behavior of mode (0, 2) in the region of favorable
pressure gradient is associated with optimal transient growth, while further
downstream a generic growth that is independent on initial condition can
be observed. Again, good agreement of numerical and experimental results
is visible. The two perturbations just discussed, the 2-d Tollmien-Schlichting
wave and the 3-d steady streak, are the dominating disturbances up to the
onset of non-linear stages of the transition process.
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3 Non-linear Disturbance Evolution

Emphasis will be put now on the early non-linear stages for unsteady pertur-
bations, i.e. stages where saturation and mutual interaction of disturbances
occur for the first time. This restriction justifies to consider only spanwise
symmetric perturbations.

Saturation of the disturbance waves leads to shear-layer roll-up and vor-
tex shedding as it will be illustrated in the following. This vortex shedding
is often essentially a two-dimensional phenomenon (i.e. strong spanwise co-
herence of the vortex structure), caused by either spanwise constant (2-d)
small-amplitude waves, as it is the case here, or by spanwise-harmonic (3-d)
waves with small obliqueness angles in an otherwise undisturbed flow.

Disturbances are forced via blowing and suction at the wall through a
disturbance strip. The position and amplitude of the disturbance input for
the simulation is given in Table 2. The fundamental frequency is β0=30.7 and
the fundamental spanwise wavenumber γ0=72.0. Note that the disturbance
strip is placed further downstream, i.e. not at the location of the oscillating
wire in the experiment, due to the reasoning given in the last section.

Growth of a strongly oblique wave (mode (1, 2)) – despite its approximately
neutral linear stability (Marxen et al., 2004; Marxen, 2005) – is treated in Sect.
3.1. With the saturation of the fundamental, primarily amplified disturbances,
non-linearly generated higher harmonics fill-up the disturbance spectrum in
time (higher h) and span (higher k). This effect is discussed in Sect. 3.2 ex-
emplarily for the two-dimensional perturbations.

3.1 Growth of Oblique Disturbances

Strong growth of mode (1, 2) inside the LSB is a result of non-linear gen-
eration, i.e. interaction of modes (1, 0) × (0, 2) and not due to a secondary
instability, as proven by a variation in excitation amplitude of modes (0, 2)
and (1, 2) in Marxen et al. (2004). Such a non-linear generation is seen to
provide the experimentally observed growth rate (Fig. 8, left). Final growth
and saturation of mode (1, 2) has to be attributed to an independent evolution
of this mode. Equal behavior of the most relevant modes for the linear (thin
lines) and non-linear (thick lines) computations verifies the applicability of
the disturbance formulation discussed in Sect. 2.4.

Table 2. Forcing amplitudes Av and location of the disturbance strip

(1, 0) (1, 1)

Av 1.15 · 10−5 0.026
disturbance strip: x ∈ [−0.0352, 0.0486] [−0.4702,−0.3833]
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3.2 Non-linear Generation, Shear-layer Roll-up, and

Vortex-shedding

A comparison of the evolution of mode (1, 0) in the linear and non-linear
simulations (Fig. 8) reveals that instead of exciting both least-damped linear
eigenmodes as discussed before, one can as well make sure that only the am-
plified first mode is visible by relocating the disturbance strip in the region
around the pressure minimum (x=0). This does not alter the evolution of
perturbation (1, 0) deeper inside the LSB for x>0.36.

Comparing the DNS data with measurements (Fig. 8, right) it can be seen
that in case of the experiment, mode (2, 0) is not non-linearly generated by
the fundamental disturbance in the interval x ∈ [0, 0.375], but either possesses
its own evolution or can be attributed to the accuracy-limit of the LDA.
Outside this interval, and in particular deeper inside the LSB, mode (2, 0) is
indeed a true higher harmonic of the fundamental perturbation. The DNS is
able to predict roughly the same location and amplitude level of disturbance
saturation as observed experimentally for the unsteady disturbances (Fig. 8).

To illustrate the physical meaning of the saturation of the most relevant
modes and the corresponding gain in amplitude of higher harmonics, we switch
to the viewpoint in physical space, since the stage following disturbance sat-
uration is associated with the development of coherent structures. In this
stage, the phases and amplitudes of perturbations relative to each other are
important, therefore it is convenient to look at them in physical space.

Reduction of information to a manageable level comes from looking at
a single spanwise position only. Fig. 9 reveals that the non-linear processes
given in Fourier space in Fig. 8 are associated with a roll-up of the separated
shear-layer, i.e. the modes synchronize in a way as to form a spanwise vortex.
The resulting vortex pumps outer, high-speed fluid towards the wall until
it detaches from the shear layer and is shed downstream with fundamental
frequency. This process is responsible for the reattachment of the flow in the
mean.
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However, the shear-layer roll-up is modulated in spanwise direction (Fig. 10).
Even though we do not have an exact modulation of boundary-layer thickness
caused by mode (0, 2), still for x < 0.45 at some spanwise positions the top
of the shear layer is closer to the wall (z=0.25λz,0), while at others it is
further away (z=0). For that reason, Lang et al. (2001) denote this as a
peak and valley structure similar to e.g. K-type breakdown. The fact that
mode (1, 0) is seen to possess the largest amplitude around and even after
saturation (Fig. 8) – compared to 3-d modes – suggests that the 2-d structure
mainly corresponding to this mode, i.e. the formation of the spanwise vortex,
is dominant in the flow. This is confirmed by looking at Fig. 10, where it
can be seen that the spanwise local evolution at peak and valley positions
resembles each other as well as the spanwise average.

4 Computational Aspects

Simulation cases are set-up in a way as to economically apply available com-
putational resources, relying on supercomputers only when it is essential. To
maximize the physical outcomes with a minimum in computational effort, the
following strategy was pursued: one large-scale computation was followed by
several smaller ones and by theoretical investigations. The large-scale com-
putation was carried out in total-flow formulation (the standard formulation
typically used in CFD) to reproduce the experiment as closely as possible, and
results of that computation have been presented in detail in Sect. 3 (denoted
before as non-linear simulation). Based on the resulting flow field (after time
averaging, i.e. the one described in Sect. 2.2), several smaller computations
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Table 3. Performance of n3d in the present case for a typical run

Machine CPU×Nodes GFLOPS/CPU Memory CPU Time/Period

NEC SX-6 8 × 1 3.06 5.68 GB 30.79 h
NEC SX-8 8 × 1 5.38 6.19 GB 16.78 h
NEC SX-8, MPI 8 × 2 4.29 8.96 GB 21.17 h

could be run in disturbance formulation (before denoted as linear computa-
tions, see Sect. 2.4) with varying disturbance input. In addition, theoretical
investigations were carried out.

For the present case, the total-flow formulation requires very long calcu-
lation times due to a slow convergence from the initially (arbitrarily chosen)
attached boundary layer towards an almost time-periodic state of the flow
field with a stable laminar separation bubble. Furthermore, such a simula-
tion demands for a very high resolution due to the turbulent rear part of the
separation bubble and requires a proper boundary-layer interaction model to
capture the upstream influence of the entire LSB in the mean. Such a com-
putation requires a supercomputer and will be discussed now.

4.1 Numerical Method for Direct Numerical Simulations

Spatial direct numerical simulation of the three-dimensional unsteady incom-
pressible Navier-Stokes equations served to compute the flow field described
above. The method uses finite differences of fourth/sixth-order accuracy on a
Cartesian grid for downstream (NMAX) and wall-normal (MMAX) discretiza-
tion (Kloker, 1998). Grid stretching in wall-normal direction allows to cluster
grid points near the wall. In spanwise direction, a spectral ansatz is applied
(KMAX + 1 modes). An explicit fourth-order Runge-Kutta scheme is used
for time integration (LPER time steps per period of the fundamental dis-
turbance). Upstream of the outflow boundary a buffer zone in the intervall
[xst,oBZ , xen,oBZ ] smoothly returns the flow to a steady laminar state. Further
details of the code n3d, i.e. the numerical method and the implementation,
can be found in Meyer et al. (2003). Only a few adaptations compared to there
have been made, namely the alteration of boundary conditions to allow for a
total-flow formulation together with a boundary-layer interaction model.

4.2 Performance and Required Computational Resources

For the present resolution (see Table 1), the memory consumption and the
performance observed is given in Table 3. A converged solution was achieved
after 150 calculation periods, when mode (0.5, 0) – which can be viewed as
a rough measure of low-frequency content in the flow – could be reduced to
10−3 in the first part of the LSB. This results in a computational time of
4619h on the NEC SX-6 and of 2517h(3175h) on the NEC SX-8 (MPI). The
actual degree of vectorization was ≈ 95% for 15 periods.
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5 Conclusions

The present DNS method has proven capable of providing quantitatively
space- and time-accurate simulations of (early) non-linear stages of a tran-
sition process in a LSB. This has been shown by means of a comparison with
experimentally determined data. The non-linear transitional stages featured
the formation of coherent structures, namely shear-layer roll-up and vortex
shedding as shown by a visualization based on the spanwise vorticity. Correctly
capturing these stages of transition is believed to be an essential condition for
a simulation of (very) late stages with their complex interactions of distur-
bances. However, concerning the very late stages, additional calculations are
necessary in the future to improve CFD results.

The high computational cost associated with the usage of supercomput-
ers required for a DNS does not justify to apply these computers to merely
demonstrate the capabilities and accuracy of a numerical method. Instead, by
a mutual comparison of results from numerical (DNS), experimental, and the-
oretical methods, more profound insights into the flow physics can be gained
for a certain flow situation then it would be possible if only one of these meth-
ods were applied. This aspect is one of the main benefits of such an approach,
reaching beyond a mere verification of either the numerical, experimental, or
theoretical method: it exploits the fact that all these methods do not only
have different weaknesses, but of course also have different advantages.

The performance of the code for the present case was found satisfactory,
with a maximum performance of 5.38 GLFOPS/CPU on the NEC SX-8 for
a typical run. For the computations in disturbance formulation a suitable
production server is somewhat lacking. These runs cannot make use of a
large number of processors, so that PC-Clusters are not favorably applica-
ble. Rather, serial runs (or runs with less than 6 CPUs) on a fast machine
would be preferable, yet in that case often the sum of queue and production
time almost exceeds the wall-clock time for the large-scale computation.

Acknowledgments

Financial support of this research by the Deutsche Forschungsgemeinschaft
DFG under grant Wa 424/19–1 and Ri 680/10–1 is gratefully acknowledged.
We thank Matthias Lang for providing detailed experimental results and
Fredrik Svensson, NEC HPC Europe GmbH, for (past and ongoing) perfor-
mance tuning on the DNS code n3d applied within the project LAMTUR.

References

Alam, M. & Sandham, N. D. 2000 Direct Numerical Simulation of ’Short’
Laminar Separation Bubbles with Turbulent Reattachment. J. Fluid Mech.
410, 1–28.



DNS of Non-Linear Transitional Stages in a Laminar Separation Bubble 15

Kloker, M. 1998 A Robust High-Resolution Split-Type Compact FD
Scheme for Spatial Direct Numerical Simulation of Boundary-Layer Tran-
sition. Appl. Sci. Res. 59, 353–377.

Lang, M. 2005 Experimentelle Untersuchungen zur Transition in einer lam-
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