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Summary

A family of short leading-edge separation bubbles on a swept flat plate are inves-
tigated by means of direct numerical simulation (DNS) and spatial linear stability
theory. An infinite swept plate with appropriate pressure distribution is a simple but
suitable model for the mid-chord section of a swept wing or high lift device. A sim-
ilar setup had therefore been chosen by Horton for his extensive experiments in this
field in 1968. The main goal of the present study is to identify the influence of the
sweep angle on the structure and stability of the flow through its systematic varia-
tion from �� up to ���. Due to the independence principle this influence on the base
flow characteristics is only moderate. However, it does have a noticeable impact on
stability. In contrast to the unswept two-dimensional (2D) case, oblique disturbance
waves experience the highest amplification in swept cases.

1 Introduction

Due to strong adverse pressure gradients and low Reynolds numbers, separation
bubbles are often encounteredwith high lift devices or on laminar airfoils of gliders.
For instance, a transitional separation bubble was observed at the slat of an Airbus
A310 [1]. Although the sweep angle of a modern passenger plane is of the order of
���, so far numerical and experimental studies of separation bubbles have almost
exclusively addressed the two-dimensional case.

The largest body of experimental data devoted to three-dimensional separa-
tion bubbles known to the authors was published by Horton in the late 1960s [2,
3]. Apart from Horton’s benchmark data, literature on three-dimensional transi-
tional separation bubbles is still rare. Davis and his coworkers successfully validated
their boundary layer code with an inviscid-viscid interaction technique against Hor-
ton’s data and thus confirmed his experiments [4]. More recently, Kaltenbach and
Janke published a DNS of a transitional separation bubble in the flow behind a
swept, rearward-facing step, with emphasis on its turbulent properties and sweep ef-
fects [5]. Up to an angle of ��� the mean flow followed the independence principle.
The transition was reported to be triggered by a Kelvin-Helmholtz type instability
of the shear-layer. Generally spatial growth rates increased with increasing sweep
angle, though Kaltenbach and Janke found only a weak influence in their case.



Little is known about the transition mechanisms inside a 3D separation bubble,
which are the key for understanding the global phenomena like control strategies
or even the location of transition. There is the open question to which degree our
knowledge of 2D separation bubbles is extensible to a 3D configuration. The present
study represents a first step in this direction. We investigate the effect of sweep
on the structure and stability of a steady, laminar separation bubble. The resulting
“stream pipe” can serve as a base flow for disturbance calculations in the future.

2 Numerical Method and Case Description

For the calculation of leading-edge separation bubbles on an infinite swept plate
a body fitted coordinate system is most suitable. The z- and x-direction are the
parallel and normal to the leading-edge, respectively. All quantities in the paper
are nondimensionalised by the reference length L � ����m and the chordwise
free-stream velocity U� � �� m

s
, which was held constant for all cases. Different

sweep angles � were realized by varying the spanwise free-stream velocityW� �
U� tan���. The calculations were performed with a global Reynolds number of
Re � U� L�� � ������, although for physical interpretation the flow is better
characterised byRe�� � U� ���xo��� � ���, based on the displacement thickness
at the inflow. The rectangular integration domain is shown in Figure 2(a). As the
leading-edge is itself not included in the calculation domain, a Falkner-Scan-Cooke
(FSC) profile without pressure gradient is prescribed at the inflow boundary xo �
���	. The wall-normal coordinate y ranges from � to y � ����
 � �� � ���xo�.

The calculation of the base flow is based on the three-dimensional, incompress-
ible Navier-Stokes equations in a velocity-vorticity formulation for an infinite swept
plate:
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The key assumption for an infinite swept wing is uniformity � �
�z

� �� in spanwise
direction for laminar calculations. This leads to a decoupling of the 2D-quantities
u, v and �z, appearing in unswept calculations, from the new 3D-quantities �x, �y
and w in the equation system above, which is known as the independence principle.

As a consequence, u, v, �z and any quantity derived directly from them do not
depend on the sweep angle. The equations are discretised with fourth order cen-
tral finite differences and integrated in a semi-implicit manner until steady state is
reached. The steady calculation of the separation bubble is justified by its small size
(e.g. the maximum backflow is ���
U�) and extensive computational experience
from [6].



Note that due to the total absence of disturbances the base flow is purely laminar.
The flow separates and re-attaches following the adverse pressure gradient which is
implicitly introduced by the deceleration of the chordwise potential velocity ue�x�
shown in Figure 3(c). There are two constant ue plateaus at the beginning and at
the end of the domain,respectively, which are connected smoothly by an analyti-
cal function. The whole setup represents the 3D extension of the two-dimensional
leading-edge bubble investigated in [6], only with a slightly less ue deceleration of
��
�
U�. More details concerning the general numerical method can be found in
[7].

3 Flow Topology and Validation

The flow topology of the three-dimensional separation bubble shown in Figure 2(c)
is exactly the same as the one sketched by Horton (Figure 2(b)). Just like in the
experiments, the independence principle enforces leading-edge-parallel separation
and re-attachment lines, here at the 2D-positions xS � ��	� and xR � ���� for all
sweep angles. The internal flow follows helical paths, resulting from the superposi-
tion of aw-component and the closed streamline loops known from 2D calculations.
The symmetrical cross-section in the x-y plane of the separation bubble is simply a
result of the laminar scenario. As demonstrated in [6] for the 2D case, the typical
triangle-shaped outline develops under the presence of unsteady disturbances which
trigger transition.

For the special case of vanishing z derivativesMoore has proven, that the general
form of a “displacement surface” in 3D flows simplifies to the 2D definition of the
displacement thickness ���x� at any given z position [8]. Therefore it is correct to
calculate ��, the momentum thickness �� and the boundary layer thickness �����
from u only, as in the unswept case. Figure 3(a) demonstrates that our code respects
the independence principle, for the results are independent of � . At the same time
one can see that ����� reaches only ��
 of the height of the integration domain, so
it is well justified to assume potential flow at the upper boundary.

The step size independence of the numerical solution was investigated by grid
refinement studies for the case � � ���. The standard resolution of ��
� and 
	
grid points in x- and y-direction was independently halved and doubled. The maxi-
mum relative error with respect to the fine solution was then determined for all flow
quantities q � fu� v� w� �x� �y� �zg separately. The variation of the x-resolution
yielded that the standard resolution was finer than necessary. The maximum devia-
tion of the coarse solution to the fine one was �����	
, so �
� grid points would
have been sufficient. The maximum error in y occurring in v is shown in Figure 3(b).
Clearly, the coarse resolution of only �
 grid points in y is insufficient. But the max-
imum error of the standard resolution compared to the fine one is still ���	
 and
only visible in an enlarged cutout of Figure 3(b). It follows that the resolution of the
calculation is good.



4 Base Flow: 3D Structure and Influence of Sweep

From the independence principle it is clear that u, v, �z, separation and reattach-
ment positions as well as boundary layer thickness are identical to the 2D case for
any sweep angle. This 2D flow is merely superimposed with a w-velocity compo-
nent which grows in strength with increasing sweep angle. The separation bubble
has only an indirect influence on w through the displacement thickness shown in
Figure 3(a). This is indicated by the w-isolines displayed in Figure 3(c) which show
no special behaviour inside the bubble, but generally follow the trend of ��. The w
profiles increase linearly from the wall, and in close-ups near the wall no influence
of the bubble is visible. This was to be expected from the continuity equation which
simplifies to its 2D form because ��� z � �. For the same reason the general defi-
nitions of �x and �y simplify to �x � �� w

�y
� �y �

� w
�x
, so that these quantities are

bound to show the same behaviour as w. Note that the w profiles exhibit an inflex-
ion point which is more easy to spot in the crossflow profiles ws. As an overview,
Figure 1 shows the downstream development of the streamline-oriented velocity
components us and ws for � � ���: due to constant ue at the upper boundary there
is no crossflow present at the inflow. Within the bubble, a strong ws-component is
induced by the local ue deceleration. Finally, near the outflow the flow is asymptot-
ically approaching FSC-characteristics, but a weak crossflow is still existent.

The effect of sweep on the base flow can exemplarily be seen in the crossflow
profile ws at the separation line in Figure 3(d). Increasing sweep increases the ab-
solute value of a 3D quantity without changing its form. From looking at the locally
normalised version of the same profiles, shown in Figure 3(e), it is obvious that the
sweep angle simply scales a sweep-independent prototype profile. This is also true
for w profiles at any position, as demonstrated in Figure 3(e) far downstream, and
therefore also holds for �x and �y. Because of we � W��U� the nondimension-
alised profiles of w� �x� �y scale with the global factor tan��� like their values at
the upper boundary. After normalisation all swept profiles coincide with the one
at � � ���, which can be seen as the generic solution. The streamline-oriented
ws-profiles on the other hand can only be normalised locally for their indirect de-
pendency on ue�x�:

ws�x� y� �� �u�x� y� � sin��pot� � w�x� y� � cos��pot��

with �pot � arctan�W��ue�x��.

5 The Influence of Sweep on the Flow Stability

Despite the only moderate influence of sweep on the laminar flow it has a noticeable
influence on its stability. The inflection point in the swept crossflow profiles gives
rise to a inviscid instability which is not present in the unswept case. For example,
steady crossflow vortices with a frequency of �Hz become weakly amplified. Fig-
ure 6 summarises the results from three-dimensional spatial linear stability theory.
Figure 4(e) gives an overview over the whole integration domain. The separation



and re-attachment locations are marked with S and R, respectively. The graph shows
the spatial amplification rate �	i as a function of x and the frequency 
 of the dis-
turbance. It is valid for all sweep angles as a vanishing spanwise wavenumber � � �
cancels the influence of w in the Orr-Sommerfeld and the Squire equation. At the
separation point xs � ��	� the spatial amplification is displayed in cross sections
for � � ��, ���, ��� and ��� in Figures 4(a) through 4(d). The initially symmetrical
distribution in the planar case is more and more distorted and the amplification max-
imummoves to oblique waves with positive �. In accordance with the findings in [5]
increasing growth rates are observed for increasing sweep angles. In Figure 4(f) the
position of the amplification maxima are marked relative to the 2D maximum. All
relevant data of these maxima are summarised in table 1. According to the evaluated
sweep angles the propagation direction of the most amplified wave seems to be in
the order of ��� less than the considered sweep angle. A comparison yields that the
maximum amplification in the � � ��� case is 	
 higher than in the 2D case.

6 Conclusions

A family of three-dimensional laminar separation bubbles on an infinite swept plate
has been successfully calculated and validated. An investigation of the effect of
sweep on the flow yielded the following results:

� Due to the independence principle the separation bubble is only moderately in-
fluenced by the sweep angle: The 3D quantitiesw, �x and �y are superimposed
on the 2D quantities u, v and �z without changing the general flow topology.
The sweep angle merely scales the “generic” solution � � ��� in w, �x and
�y with a global factor of tan���. These features make the calculated flow an
ideal candidate for disturbance investigations: All properties of the flow are now
known. As no new features of the flow appear for higher sweep angles, the ef-
fects of sweep are isolated and the sweep angle is the only possible cause of any
interesting phenomenon to be observed.

� Despite of the simple structure and although two-dimensional disturbances
are amplified earlier according to Squire’s theorem, the amplification rates of
oblique waves are up to 	
 stronger in the case � � ���. For 3D flows it is
therefore generally not sufficient to restrict oneself to the investigation of 2D
waves when determining basic properties like N-factors.
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Table 1 Parameters of the most amplified disturbance for various sweep angles � : spatial
amplification rate ��i, chordwise wavenumber �r , spanwise wavenumber �, frequency �,
the local propagation direction � � arctan����r� and the difference�� � � � �.

� ��i
Max

�r � � � ��

�� 10.89 47.32 0.00 17.17 ���� ����

��� 10.95 46.54 5.76 17.53 ���� �����

��� 11.17 42.73 14.43 18.99 ���	� ������


�� 11.65 36.20 25.01 23.90 �
�	� ����
�
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Figure 1 Streamline-oriented velocity profiles us (square), ws (triangle) at the inflow, at
separation, at the middle of the bubble, at reattachment, far downstream at x � 
�
.
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(a) � � ���: the entire integration domain.

(b) Horton’s model of a leading-edge bubble taken from [3].
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Figure 2 Global flow topology of a separation bubble on a infinite swept plate.
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Figure 3 Laminar flow properties and influence of sweep



(a) Stability diagram for � � ��. (b) Stability diagram for � � ���.

(c) Stability diagram for � � ���. (d) Stability diagram for � � 
��.

(e) Stability diagram �i�x� �� with
fixed � � � (for all � ).

(f) Position of �i-Minimum for all � ’s:
plotted into the � � �� case.

Figure 4 Linear stability theory results at x � ���� (separation line) versus frequency �
and spanwise wavenumber �. The white curve corresponds to neutral stability. The innermost
contour level is kept constant at the minimal spatial growth rate �i � ������ of the case
with sweep angle � � ��.


