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The effect of sweep on the linear stability of a series of pressure-induced laminar separation bubbles is
investigated for a range of sweep angles Ψ = 0◦, 15◦, 30◦, 45◦ by means of linear stability theory and
solutions of the linear parabolised stability equations. An application of the independence principle for
infinite swept configurations ensures identical chordwise cross sections of the separation bubbles in the
DNS-base flows, which enables direct comparisons. Systematic investigations of the local stability and
the properties of the linearly most amplified disturbances for each sweep angle show that Tollmien–
Schlichting waves, not cross-flow instabilities, dominate even for higher sweep angles. Similar to the
situation in attached boundary layers oblique Tollmien–Schlichting waves, which propagate approximately
in free stream direction, experience the strongest linear growth in the swept cases. Compared to
the strong growth in the separated shear layer, however, their maximum amplification increases only
moderately with the sweep angle. The general influence of cross-flow instabilities is weak in the given
configuration, despite a relevant cross-flow inside the separation bubble. Finally, the investigation yielded
that the comprehensive influence of the independence principle on the base flow is not extendible to the
linear stability equations, so that with respect to disturbance amplification in general each sweep angle
constitutes a unique case.

© 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Due to strong adverse pressure gradients and moderate Reyn-
olds numbers, separation bubbles are frequently encountered with
high lift devices, near the leading edges of thin profiles, on turbine
blades of low pressure gas turbines, blades of wind turbines or
in the midsection of laminar airfoils for gliders. The phenomenon
occurs in adverse pressure gradient regions, where oncoming lam-
inar boundary layers easily separate from the surface of an aero-
dynamic body. The strong amplification of boundary layer dis-
turbances in the separated shear layer usually leads to laminar-
turbulent transition and the more energetic turbulent boundary
layer may then reattach to form a transitional separation bubble,
whose global features were described by Gaster [1] and Horton [2].
Laminar boundary layers as in Fig. 1 are typically clearly struc-
tured in extended, approximately horizontal layers of comparable
velocity and exhibit disturbances which are too small in relation
to the base flow velocity profiles to influence them significantly.
Turbulent boundary layers on the other hand are characterised
by random, three-dimensional, high frequency disturbances with
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a strong influence on the turbulence mean flow, as they reach am-
plitudes in the order of 10% of the mean flow profiles.

In low freestream-turbulence environments in combination
with sufficiently low Reynolds numbers however, laminar reat-
tachment can occur due to a change in the surface geometry or
the pressure gradient, giving rise to unsteady laminar separation
bubbles with periodic vortex shedding. If the Reynolds number is
decreased further, the resulting separation bubbles become com-
pletely steady as the present base flow pictured in Fig. 1. Steady
laminar separation bubbles have been studied numerically as early
as the first conducted direct numerical simulation (DNS) of a sep-
aration bubble by Briley [3], while a recent investigation of the
unsteady case can be found in Castro [4], who investigated the
stability of the unsteady flow behind the blunt leading edge of
a splitter plate. Experimental realisations of steady and unsteady
laminar separation bubbles behind a rounded backward facing step
were obtained by Bao [5] in a water towing tunnel. Note that lami-
nar and transitional separation bubbles are often not distinguished
in the literature and simply referred to as ‘laminar separation bub-
bles’ as opposed to ‘turbulent separation bubbles’, which separate
in turbulent flow.

The prediction of the stability of separation bubbles is a chal-
lenging task, because of their complex structure featuring interact-
ing phenomena as flow unsteadyness, separation, backflow and, in
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Fig. 1. Sweep angle independent, longitudinal cut through the swept, steady laminar separation bubble of the present DNS-base-flow-series. Shown are isolines of the
spanwise vorticity ωz visualising the separated shear layer and additionally the dividing streamline, which forms the outer border of the bubble. The Reynolds number is
Reδ2 (xsep) = 330 based on the momentum thickness at separation.
the case of transitional ones, laminar-turbulent transition. Further-
more, a stability analysis is often hindered by difficulties to define
an appropriate unperturbed base flow and due to insufficiencies
of available stability theories. Typically the latter are based on lin-
earised equations, but especially in transitional separation bubbles
the flow field becomes non-linear when high turbulence levels are
reached in the rear part. Therefore, research has focused on ide-
alised, analytical velocity profiles as in the work of Michalke [6],
Gaster [7], Allen and Riley [8], Hammond and Redekopp [9] and
Alam and Sandham [10]. An important common question in these
papers is whether the flow in the separation bubble is absolutely
or convectively unstable and whether and where a border between
these two regimes can be defined. Interestingly, despite another
apparent insufficiency of these earlier approaches, namely neglect-
ing the non-parallelism of the base flow, they were in favourable
agreement with direct numerical simulations [10,11] and experi-
mental results [12], which both naturally include the entire flow
physics. With the recent emergence of global approaches that solve
the stability equations in a two-dimensional domain (in contrast
to just a one-dimensional local cut) one limitation of the theory
has been overcome and according publications have just appeared,
see [13–17], for example. However, even if these techniques have
identified additional globally unstable modes, the simpler previous
investigations have not been made obsolete so far. The work of
Marquet et al. [16], for instance, nicely illustrates that the “am-
plifier dynamics” (i.e. traditional convective modes) grow much
stronger than the “resonator dynamics” (i.e. the globally unstable
modes). This proves that classical local linear stability theory is an
adequate tool for the small pressure-induced laminar separation
bubbles considered here, even after the emergence of more signif-
icant tools.

Separation bubbles naturally appear in swept configurations
like the transitional bubble detected by Greff [18] on the slat of an
Airbus A310 in landing configuration. Despite their practical impor-
tance research efforts so far have almost exclusively addressed the
unswept case, which does not exhibit cross-flow influences or the
sweep angle as an additional parameter and is easier to realise in
experiments and simulations. Therefore, literature on swept sepa-
ration bubbles is rare, predominantly older and often hard to find
and obtain, see Hetsch and Rist [19] for a short bibliography.

The reader might want to refer to Horton [2] and Young and
Horton [20], who analysed an extensive body of experimental data
devoted to swept transitional separation bubbles and to Kaltenbach
and Janke [21], Kaltenbach [22] and Jürgens and Kaltenbach [23],
who investigated the transitional flow field behind a series of
swept, rearward-facing steps by means of DNS. This geometry en-
forces a transitional separation bubble and the effect of sweep was
investigated and visualised systematically. Spatial growth rates in-
creased with increasing sweep angle, though Kaltenbach and Janke
[21] found only a weak influence. Strong similarities of the lam-
inar shear layer emanating from the step with a free shear layer
made linear stability theory for skewed mixing layers as formu-
lated by Lu and Lele [24] applicable. An observed tilting of the
rollers associated with the most unstable shear-layer instabilities
of Kelvin–Helmholtz type towards smaller angles with respect to
the freestream direction, which was between 0◦–5◦ , 10◦–20◦ and
18◦–28◦ for sweep angles of 15◦ , 30◦ and 40◦ , was in good agree-
ment with the “effective shear direction” predicted by that the-
ory. However, a direct transfer of these results to pressure-induced
bubbles is unlikely to be accurate, because of known differences of
the wall-bounded shear layer of these separation bubbles to free
shear layers as discussed by Dovgal, Kozlov and Michalke [25], Rist
[26] and Rist, Maucher and Wagner [27]. Therefore, only qualitative
guidance can be expected.

As far as separation bubbles on infinite swept configurations
are concerned the so-called independence principle provides the
key to relate their general topology to the much better under-
stood unswept case. The independence principle of incompressible
flow with a homogeneous spanwise direction states that the chord-
wise cross-section and all flow quantities already present in the
unswept case are unaffected by a rising sweep angle, if the chord-
wise inflow conditions are kept constant. Consequently, swept sep-
aration bubbles form leading-edge parallel stream tubes with a
spanwise outflow and a helical motion inside as proposed by Hor-
ton [2] based on hot-wire measurements for a fixed sweep angle of
26.5◦ . Exactly these featured were observed by the authors in [19]
for sweep angles between 0◦–45◦ based on the same base flow in-
vestigated here. Additionally it was shown that the independence
principle applies to arbitrary sweep angles below 90◦ for purely
laminar flow fields.

As our knowledge about swept separation bubbles is still quite
limited, this study focuses on the open question of the influence
of sweep on the linear stability of pressure-induced, swept lam-
inar separation bubbles. The aim is twofold: Firstly, to study the
influence of sweep on the local stability as well as on the charac-
teristics of the most amplified disturbances in the given series of
laminar separation bubbles systematically. Secondly, to contribute
to the investigation of the yet unknown influence of cross-flow in-
stabilities on swept separation bubbles for higher sweep angles. To
this end the paper is organised in the following way: After a brief
review of the geometry and the employed numerics in Section 2,
the properties of the base flow are discussed in Section 3 with
emphasis on cross-flow influences. Section 4 contains the main re-
sults about the impact of sweep on the linear stability equations
and the local flow stability within the separation bubble, as well
as an investigation of the associated cross-flow influences in the
45◦-case. The paper ends with the conclusions in Section 5.

2. Numerical aspects and employed geometry

The chosen DNS-algorithm has evolved over the years and was
successfully applied to various transitional flows as for example
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Fig. 2. Calculation domain of the 30◦-laminar separation bubble (x ∈ [1.75;2.13]) with near-wall streamlines over dividing surface Ψ 0 from (3). Oncoming flow: Sweep angle
Ψ∞ from (1) and inflow velocity Q ∞ with components U∞ and W∞ . Velocity distribution ue(x) of potential flow. The domain starts at xo = 0.37 and extends till xN = 5.05,
while its maximum height is reached at ye = 0.059 = 18 · δ1(xo).
described in Rist and Fasel [28], Bake, Meyer and Rist [29] or
Wassermann and Kloker [30]. Typically it was utilised to provide
a highly accurate, steady, laminar base flow for unsteady DNS-
calculations studying the disturbance propagation within this flow.
The algorithm discretises the three-dimensional, incompressible
Navier–Stokes equations in a velocity–vorticity formulation with
central compact finite differences of fourth order in x and y. An
initial flow field of Falkner–Skan–Cooke profiles is advanced in
pseudo-time until the steady state determined by the boundary
conditions is reached. For the present simulations all residuals
were smaller then 10−10 for the final solution. The laminar DNS-
base flow of the present bubble series was resolved with 1394×97
gridpoints in x and y and good spatial resolution was demon-
strated in the verification reported by the authors in [31] and [19],
which also provide details about the algorithm and the governing
equations.

The presented flow field served the authors as a base flow in
[32] for an investigation of the interaction of oblique Tollmien–
Schlichting waves with swept laminar separation bubbles and in
[33] in order to study the transition process in unsteady laminar
separation bubbles. All PSE-results were obtained by the linear ver-
sion of the code ‘NOLOT’ of the DLR-Göttingen. It is described by
Hein in [34], where he used the unswept version of the current
base flow to prove the applicability of PSE to laminar separation
bubbles.

In general, the swept, infinite flat plate with a favourable pres-
sure gradient region followed by an adverse one is the most im-
portant special case of the ‘swept infinite wing’-geometry. It repre-
sents the direct numerical analogue of the classical experiments of
Gaster [1] and Horton [2], who studied unswept and swept separa-
tion bubbles induced by displacement bodies over a flat plate. Due
to a constant pressure inflow region in the present study, how-
ever, only the decisive adverse pressure gradient region was mod-
elled, which is mandatory to enforce flow separation and allow
for the development of the laminar separation bubble series. Such
pressure distributions are typical for a flat plate with a rounded
backward facing step blending smoothly into another flat plate
comparable to the experimental configuration of Bao [5]. While
streamline curvature and therefore crossflow influences occur in
the vicinity of the separation bubble due to the local pressure
rise, these effects are not present in the upstream flow field. This
is unlike the situation on a swept wing, where the changeover
from a favourable to an adverse pressure gradient leads locally
to S-shaped cross-flow profiles (see e.g. Wassermann and Kloker
[30], Fig. 3b) in a limited transient region around the maximum
thickness of a wing. While the discussed results represent valid
DNS-data of swept laminar separation bubbles, the reader should
keep in mind that they represent only a first step in the direction
of the treatment of swept infinite wings.

The key boundary condition is homogeneity in span, which
leads to a quasi-two-dimensional flow field with w �= 0, but
∂
∂z = 0. Fig. 2 gives an overview over the integration domain. Let x,
y and z denote the axes in the leading-edge normal, wall normal
and spanwise direction and u, v , w and ωx , ωy , ωz the associated
velocity and vorticity components, respectively. The inflow velocity
Q ∞ can be decomposed into a leading-edge normal component
U∞ and a leading-edge parallel component W∞ giving rise to a
sweep angle

Ψ∞ = arctan

(
W̄∞
Ū∞

)
= arctan(W∞) (1)

with a bar used to distinguish dimensional quantities throughout
the text.

For the independence principle to hold, the Reynolds number
based on U∞ must be kept constant at the value of the unswept
case. Thus, all quantities are calculated in a non-dimensional form
based on Ū∞ = 30 m/s, a reference length L̄ = 0.05 m and the
kinematic viscosity ν̄ = 15 × 10−6 m2/s of air resulting in a global
Reynolds number of Re = 100 000. As a consequence, the Reynolds
number

ReQ ∞ = √
1 + tan(Ψ∞) Re (2)

based on the magnitude of the incoming freestream becomes a
function of the sweep angle. Keeping ReQ ∞ fixed by varying U∞
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(a) Up: Upper boundary condition consisting of a smooth ue(x)-
deceleration of 8.95% U∞ implemented by a 5th-order polynomial
between x1 = 0.71 and x2 = 2.42. The associated pressure rise results
in the laminar separation bubble indicated by the spanwise vorticity
distribution shown below.

(b) Cross section of 45◦-bubble in front of six w-isolines with ascend-
ing values between w = 0.04 and 0.24. Dividing streamline Ψ 0 (3),
projection of internal circulation on x–y-plane (closed u–v-streamlines),
isoline u = 0 and analytical solution of separation angle ϕsep after Os-
watitsch [39].

(c) Distribution of the shape factor H12. Horizontal dashed line: typi-
cal Blasius value of H12 = 2.59.

(d) Characterisation of present separation bubble series by comparison
to classical experimental results taken from Fig. 1 in Oswatitsch [39].
Axes: Gaster’s P -parameter P = δ2

2(xsep)/ν · �u/�x (evaluating the av-
erage velocity gradient through the bubble at boundary layer edge) over
Reδ2 .

Fig. 3. Sweep angle independent base flow parameter of laminar separation bubble series. Their chordwise extent is indicated by vertical, dash-dotted lines at the separation
xsep = 1.75 and reattachment position xreat = 2.13.
would result in increasingly different separation bubbles for higher
sweep angles, making a direct comparison less meaningful. The
same decision was reached by Kaltenbach and Janke [21].

3. Properties of the separation bubble series and the influence of
sweep

The employed separation bubble series is best characterised
by the Reynolds numbers Reδ1 = Ū∞δ̄1(xsep)/ν̄ = 1271 and Reδ2 =
Ū∞δ̄2(xsep)/ν̄ = 330, based on the displacement thickness δ1 and
the momentum thickness δ2 at separation. This lies well inside the
range of Reδ2 within O(102) to O(103), which is typical for applied
configurations like leading edge separation bubbles on thin wings
or transitional separation bubbles on high-lift devices as discussed
by Alam and Sandham [10]. Likewise, in Table II of [2] Horton cal-
culated values between Reδ2 ∈ [230;360] for his measured swept
separation bubble series.

3.1. Characterisation of the separation bubble series through sweep
angle independent parameters

The following properties are shared by each of the investigated
separation bubbles, as they are sweep angle independent by virtue
of the independence principle. Under the influence of the decel-
erating chordwise potential velocity distribution ue(x) depicted in
Fig. 3(a) the flow separates at xsep = 1.75 and reattaches in a lam-
inar flow regime at xreat = 2.13 as visualised in Fig. 1. In between
a laminar separation bubble is formed, as indicated in Fig. 3(a)
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(a) Topview on dividing streamsurface Ψ 0 of 30◦-bubble: Bending of po-
tential streamline (“Pot”) caused by ue-deceleration between x1 = 0.71 and
x2 = 2.42, in comparison to skewed near-wall streamline, sweep angle Ψ∞ =
30◦ (dash-dotted) and straight potential streamline (dashed) obtained for
Ψ∞ = 0◦ . Helical streamline inside bubble indicates noticeable spanwise ve-
locity there.

(b) Strength of maximal cross-flow component ws,max(x) = maxy(ws(x, y))

along chord with respect to U∞ for Ψ∞ = 45◦ (line), 30◦ (dash-dotted), 15◦
(dashed). No cross-flow in unswept Ψ∞ = 0◦ case.

Fig. 4. Influence of rising sweep angle on present laminar separation bubble series.
by the spanwise wall vorticity distribution ωz,w , which is directly
proportional to the wall shear stress τ̄x = μ̄( ∂ ū

∂ ȳ )|w = μ̄ω̄z|w and
thus shows the characteristic negative wall shear stress due to the
backflow inside. As shown in Fig. 3(b) its outer shape is best visu-
alised by means of the separated wall-streamline calculated from
the two-dimensional streamfunction

Ψ 0 := {
(x, y) | Ψ (x, y) = 0

}
, with Ψ (x, y) :=

ye∫
0

u(x, y)dy. (3)

Exploiting the homogeneity of the base flow in span, this defines
a “dividing surface” of constant cross section. The inflow located
at xo = 0.37 is governed by zero pressure gradient Falkner–Skan–
Cooke profiles and Reδ1 (xo) = 331. The domain extends 12 bubble
lengths in chordwise direction to xN = 5.05, while the wall nor-
mal coordinate ye = 0.06 at the upper domain edge corresponds
to 19 separation bubble heights. The ratio of the separation bubble
length LLSB = 0.38 to the boundary layer thickness at separation
δ99(xsep) = 0.027 is 14 : 1.

The presence of a separation bubble deforms the local displace-
ment and momentum thicknesses leading to the steep rise and
fall of the shape factor H12 = δ1/δ2, as demonstrated in Fig. 3(c).
Due to the free-stream velocity distribution from Fig. 3(a) it in-
creases from a characteristic Blasius value of H12 = 2.59 to a
maximum of H12 = 4.32 in the middle of the separation bubble.
Separation here occurs at H12 = 3.85 slightly below the theoretical
value of H12 ≈ 4 which is obtained for a self-similar Falkner–Skan
boundary layer. Note the persistent downstream influence of the
separation bubble as H12 approaches 2.59 asymptotically in the
zero-pressure-gradient region of the domain outflow region with-
out reaching it.

Finally, a direct comparison of the present separation bubble
series with classical experimental results in Fig. 3(d) shows that
we are dealing with “short” separation bubbles far from any dis-
position to bursting. Test-simulations with unsteady disturbance
generation in front of the separation bubble in connection with
[32] confirmed the convectively unstable character of this configu-
ration.
3.2. Effects of a rising sweep angle: Streamline bending, spanwise
velocity and cross-flow influences

The introduction of a sweep angle causes a streamline-bending,
which is not present in the unswept case, as Fig. 4(a) illustrates for
the 30◦-bubble. From the definition of the direction of the poten-
tial streamline

Ψe(x) = arctan
(
W∞/ue(x)

)
(4)

and the monotony of the arctan-function it is clear that the
straight streamlines of the zero-pressure gradient inflow zone must
bend to the right in Fig. 4(a) under the influence of the freestream
deceleration of Fig. 3(a). Following a qualitative argument from
Horton [2] we can expect a crosswise pressure gradient

∂ p

∂n
= −ρu2

e

R

to act on the curved external streamlines, if R denotes the ra-
dius of curvature and n the direction normal to the streamline and
outwards from the centre of curvature. As the static pressure is
constant throughout the boundary layer within the accuracy of the
boundary layer equations, while the flow increasingly decelerates
towards the wall due to friction, the local radius of curvature must
decrease fast in order to keep the balance of forces. Thus, near-wall
streamlines must turn inwards towards the centre of curvature of
the potential streamline, as can be observed from Fig. 4(a). This
gives rise to a so-called “secondary flow”, which expresses itself in
a crossflow component ws at right angle to the streamwise veloc-
ity component us in the local direction of the potential flow

us = cos(Ψe) · u + sin(Ψe) · w,

ws = − sin(Ψe) · u + cos(Ψe) · w, (5)

which are the natural velocity components along the local xs and
zs-directions of a streamline-oriented coordinate system. Quanti-
ties in this system are here denoted with a subscript “s”. For
disturbance waves the same transformation can be applied to the
wave numbers αr = ᾱr L̄ and γ = γ̄ L̄ in x and z in order to obtain
the corresponding wave numbers in xs and zs
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Fig. 5. Streamwise and cross-flow velocity profiles from (5) for 30◦-base flow at significant x-positions: Inflow (xo = 0.37), separation (xsep = 1.75), middle of separation bub-
ble (x = 1.96), reattachment (xreat = 2.13) and six bubble length downstream of reattachment (x = 4.4). Symbols: us(y) (diamond), ws(y) (triangle). Dash-dotted, horizontal
line: δ99,s based on us .
αr,s = cos(Ψe) · αr + sin(Ψe) · γ ,

γs = − sin(Ψe) · αr + cos(Ψe) · γ , (6)

which was utilised to transform the linear stability results of the
swept base flows into the streamline-oriented, physically relevant
αr,s–γs-system in Section 4.

As an overview, Fig. 5 shows the downstream development of
us and ws for Ψ = 30◦: While no crossflow is present at the
inflow due to the missing curvature of the local potential stream-
line, a strong crossflow-component ws is induced by the local
ue-deceleration within the bubble. In the out-flow region the flow
is asymptotically approaching Falkner–Skan–Cooke-characteristics
again, but a weak crossflow is still persistent. The presence of in-
flection points in the cross-flow profiles displayed in Fig. 5 gives
rise to an inviscid cross-flow instability, whose strength is investi-
gated by means of linear stability theory and PSE in Section 4.

The cross-flow levels of the present flow documented in
Fig. 4(b) are comparable to values reported for swept boundary
layers in the literature: Relative to the inflow velocity U∞ the
maximum cross-flow velocity ws,max(x) = maxy(ws(x, y)) rises
to a maximum of 12% for the 45◦-case and decreases to 3% to-
wards the outflow. For a sweep angle of Ψ∞ = 30◦ one observes
about 9% and 2%, respectively. Chernoray et al. [35] measured a
monotonously decreasing cross-flow component between 10% at
the beginning of the pressure drop and 3% at 80% chord of a model
of a C-16 wing for Ψ∞ = 30◦ and Ū∞ = 12.8 m/s. With respect to
the local streamwise freestream component us,e the shape of the
distribution in Fig. 4(b) stays the same, but the maximal value de-
creases to 9% for Ψ∞ = 45◦ , to 8% for 30◦ and to 5% for 15◦ .

Fig. 4(a) shows a helical motion of the streamlines within the
separation bubble, which indicates the presence of a significant
spanwise velocity component w . Indeed, contours of w exhibit a
local maximum in the vicinity of the separation bubble as demon-
strated in Fig. 3(b), where w reaches a maximum of 11% U∞ inside
at the tip of the 45◦-bubble. For smaller sweep angles the strength
of this spanwise flow decreases with the tangent of Ψ∞ , as the
entire laminar flow field may be obtained analytically by scaling

u = u45◦ , v = v45◦ , ωz = ωz,45◦ ; w = tan(Ψ∞)w45◦ ,

ωx = tan(Ψ∞)ωx,45◦ , ωy = tan(Ψ∞)ωy,45◦ (7)

of the generic 45◦-case due to the infinite swept geometry as de-
rived in Hetsch and Rist [19] or [31].
4. The influence of sweep on the linear stability of the laminar
separation bubble series

In order to provide a first overview about spatial linear stability
properties of swept laminar separation bubbles, the neutral stabil-
ity surface of the 30◦-case is shown in Fig. 6(a) as a function of
the three-dimensional parameter space (x,ω,γs), where ω = 2π f
denotes the angular frequency of the analysed disturbance wave.
As with all data throughout the study, frequencies f = f̄ L̄/Ū∞
are non-dimensionalised with the reference quantities given at the
end of Section 2. The presence of the laminar separation bubble in
combination with the generating adverse pressure gradient has a
noticeable impact on the local flow stability: Fig. 6(b) compares the
stability of this flow with the stability of the flow field under the
same inflow conditions, but with zero pressure gradient. For the
comparison Tollmien–Schlichting-waves (TS) with a spanwise wave
number of γ = 0 and thus leading-edge parallel wave fronts have
been chosen due to their importance to the unswept reference
case and because they are the only one whose amplification is
sweep-angle independent, so that this particular stability diagram
is characteristic for all four considered base flows. Their maximal
amplification rate increases 16 times from αi = −0.74 to −11.99
inside the bubble, a much broader frequency spectrum of distur-
bances is amplified and xcrit, the point where the unswept base
flow first becomes unstable in accordance with the Squire theorem,
is shifted upstream from 0.95 to 0.81. Note that the Squire theo-
rem, predicting earliest amplification for γ = 0, is only concerned
with unswept base flows. For the 30◦-base flow in Fig. 8(a) for
example earliest amplification occurs around γs = 0 and thus for
disturbance waves which are “two-dimensional” within the local
streamline-oriented coordinate system and propagate in the direc-
tion of the oblique inflow. The comparison in Fig. 6(b) also shows
that the flow reapproaches the characteristics of a zero-pressure
gradient boundary layer flow downstream of a transient region of
about two to three bubble lengths after reattachment.

Hein [34] performed a PSE-calculation of the analogue to the
lower stability diagram in Fig. 6(b) based on data of the corre-
sponding unswept case by Rist and Maucher [36]. A comparison
of Fig. 2 in [34] indicates that there is no noticeable difference
between a PSE-based stability diagram and the present LST-based
stability diagram, such that stability diagrams, which usually pro-
vide a visual, qualitative overview, may be based on LST through-
out the text.
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(a) Isosurface of neutral stability αi = 0 of chordwise amplification αi . Disturbance amplification
for combinations of chordwise position x, angular frequency ω, spanwise wave number γs inside.

(b) Comparison of stability diagram of bubble (below) with swept zero pressure-gradient flow
(above) developing under identical inflow conditions, but without the free-stream deceleration
from Fig. 3(a) for γ = 0. Note upstream shift of point xcrit of earliest disturbance amplification
in unswept base flow. S: Separation position xsep = 1.75, R: Reattachment position xreat = 2.13.

Fig. 6. Linear stability diagrams of separation bubble for sweep angle Ψ∞ = 30◦ based on LST.
4.1. The impact of sweep on the linear stability equations

As the independence principle provides a complete analysis of
the effect of sweep on the base flow structure by virtue of (7), one
has to check whether these scaling rules may be extended to the
linear stability theory analysis of incompressible flow with a ho-
mogeneous spanwise direction, at least for special cases. Inserting
(7) in the Orr–Sommerfeld equation and the Squire equation as im-
plemented in the utilised linear stability solver demonstrates that
this is not the case in general: a rising sweep angle Ψ∞ just in-
creases the influence of the w45◦ -profile relative to the u-profile,
which are both sweep angle independent.

∂4 v̂ ′

∂ y4
− 2

(
α2 + γ 2)∂2 v̂ ′

∂ y2
+ (

α2 + γ 2)v̂ ′

− iRe
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)

×
(
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)
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α

∂2u

∂ y2
+ γ tan(Ψ∞)
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)
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}
= 0, (8)
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− ((
α2 + γ 2) + iRe

(
αu + γ tan(Ψ∞)w45◦ − ω

))

×
(

i
(
α2 + γ 2)û′ + α

∂ v̂ ′

∂ y

)

− iRe

(
γ 2 ∂u

∂ y
− αγ tan(Ψ∞)

∂ w45◦

∂ y

)
v̂ ′ = 0. (9)

Here v̂ ′(y) denotes the eigenfunction of the wall normal distur-
bance velocity distribution of a plane travelling disturbance wave
and û′(y) the correspondent chordwise disturbance velocity pro-
file, while i refers to the imaginary unit. However, as the span-
wise velocity w always appears with a factor γ in (8) and (9) at
least for leading-edge parallel disturbances with γ = 0 the stability
analysis becomes sweep angle independent. Thus a stability dia-
gram analogue to Fig. 6(b) of the unswept case readily provided
starting points for the swept cases, when a shooting method was
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(a) Ψ∞ = 45◦: Isolines of propagation direction Ψs in front of contours of
amplification rate αi . Circles: location of globally most amplified TS-wave
(ω/γ ) = (24/30) and CF-vortex (0/50).

(b) Ψ∞ = 45◦: Streamwise wave numbers αr,s from LST (dash-dot), σi,s

from PSE (line) in 45◦-separation bubble for disturbance waves (ω/γ )

with different propagation directions.

(c) Stability diagram for unswept case Ψ∞ = 0◦ . “X” marks shift in loca-
tion of local amplification maximum for Ψ∞ = 0◦,15◦,30◦,45◦ (r. to l.).

(d) Stability diagram for Ψ∞ = 15◦ . Amplification of steady cross-flow
vortices with ω = 0 for separation bubbles with a sweep angle Ψ∞ > 0.

(e) Stability diagram for Ψ∞ = 30◦ . (f) Stability diagram for Ψ∞ = 45◦ .

Fig. 7. Linear stability results. Fig. 7(b) compares the chordwise wave number in the vicinity of the separation bubble as determined by LST and PSE. All other figures show
the effect of an increasing sweep angle Ψ∞ on the local LST-amplification rate αi at the separation position xsep = 1.75. The outer contour represents the isoline of neutral
stability αi = 0.
employed to obtain the LST-results for the presented separation
bubble series.

4.2. The effect of sweep on the local stability within the separation
bubble

The stability diagrams of Fig. 7 exemplify the situation at
the separation point, but qualitatively comparable visualisations
may be obtained at any chordwise position within the separa-
tion bubble. We are interested in the effect of sweep on the lo-
cal stability of the flow with respect to Tollmien–Schlichting (TS)
and crossflow-instabilities (CF). Fig. 7(a) provides a first, rough
overview over their relative strengths and positions in the 45◦-
base flow. In contrast to TS-waves, which typically propagate ap-
proximately in the direction of the outer streamline, CF-modes
exhibit by definition wave vectors which are oriented nearly per-
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Table 1
Local parameters of most amplified disturbances (ω/γ ) at xsep = 1.75 for all sweep
angles Ψ∞ obtained by LST: maximal spatial amplification rate −αimax , frequency
ω, spanwise wavenumber γ , wavenumbers αr,s and γs (6), propagation direction
Ψ = Ψe + Ψs with respect to x-axis, free-stream direction Ψe (4) and propagation
direction Ψs (10). Reynolds number ReQ ∞ based on total velocity Q ∞ of oncoming
flow: effect of increase in Q ∞ via (2), while Re = ReU∞ = 100,000 is constant.

Ψ∞ −αimax ω γ αr,s γs Ψ Ψe Ψs ReQ ∞

0◦ 10.89 17.17 0.00 47.32 0.00 0.0◦ 0.0◦ 0.0◦ 100,000
15◦ 10.95 17.53 5.76 46.34 −7.21 7.1◦ 15.9◦ −8.8◦ 103,533
30◦ 11.17 18.99 14.43 43.96 −10.10 18.7◦ 31.6◦ −12.9◦ 115,467
45◦ 11.68 23.12 22.50 42.00 −11.86 31.0◦ 46.8◦ −15.8◦ 141,433

pendicular to the potential flow. As the relevant reference direc-
tion in a three-dimensional boundary layer is given by the local
free stream angle Ψe , it is beneficial to switch to the streamline-
oriented coordinate system. This allows to distinguish left and
right running modes with respect to Ψe by means of the propa-
gation direction

Ψs = arctan(γs/αr,s). (10)

Nevertheless, as the spanwise wave number γ and the frequency
ω of a disturbance wave in a homogeneous medium stay globally
constant in a swept infinite geometry while γs is a function of x,
the pair (ω/γ ) is used to identify a particular disturbance from
now on.

Systematic evaluations of disturbance waves as in Fig. 7(b)
showed consistently that the spatial linear stability theory is very
accurate in predicting the chordwise wave number αr and thus
its streamwise counterpart αr,s even for very oblique waves and
large sweep angles. Thus, parameters of disturbance waves which
are based on wave numbers, such as their propagation direction,
but also the wavelength λ = λ̄/L̄ and phase speed cr = c̄r/Ū∞ in
propagation direction

λ = 2π/

√
α2

r,s + γ 2
s , cr = ω/

√
α2

r,s + γ 2
s , (11)

were determined by means of LST throughout the study.
With a rising sweep angle Ψ∞ the initially symmetrical stabil-

ity diagram becomes increasingly distorted and the amplification
maximum moves to oblique waves with negative γs and higher
frequencies as marked in Fig. 7(c). Table 1 shows that left-running
Tollmien–Schlichting waves with a propagation direction of ap-
proximately Ψs = −10◦ experience the strongest local amplification
even for the higher sweep angles. At the separation point the max-
imal amplification for Ψ = 45◦ is 7% higher than in the unswept
0◦-case. This trend increases further, but moderately inside the
bubble. In the front part at x = 1.85, for example, the maximal
local amplification of the 45◦-case is 8.5% stronger. At the same
time, however, the Reynolds number ReQ ∞ based on total velocity
Q ∞ of the oncoming flow has increased from 100,000 for Ψ∞ = 0◦
to 141,433 for Ψ∞ = 45◦ , so that in addition to changed stabil-
ity characteristics due to the swept inflow a more unstable flow
is to be expected as a result of our chosen model and Eq. (2).
Two-dimensional cuts such as Fig. 7(e) through different planes
of the three-dimensional x-omega-gammas-space as e.g. visualized
in Fig. 6(a) confirm the existence of a unique global maximum
for each sweep angle. From there the amplification rates decrease
monotonously in all directions towards the surface of neutral sta-
bility. As gradients are small the dependency on the frequency
ω and on the spanwise wave number γ is weak and moderate
changes in either of them have only slight effects on the global
amplification of the corresponding modes.
4.3. Identification and properties of the most amplified TS-wave for
each sweep angle

From the viewpoint of laminar-turbulent transition the global
linear amplification of disturbance waves in the separation bubbles
are of interest, as indicated by the amplification curves AneN(x) .
Here An denotes the initial amplitude of the disturbance wave at
the neutral point xn and N the so-called N-factor of the integrated
local amplification rates αi or the local PSE-amplification rate σr as
defined in Section III.A in [40] based on the u-disturbance velocity:

LST: N(x) =
x∫

xn

−αi(x̃)dx̃,

PSE: N(x) =
x∫

xn

−σr(x̃)dx̃. (12)

The linearly most amplified TS-waves are probable candidates to
trigger transition in a scenario with a broad spectrum of distur-
bance modes of small and comparable initial amplitudes. Naturally,
the identified modes may depend to some degree on the x-position
at which the comparison is made. The location of the maximum N-
factor within the flow field varies from mode to mode and occurs
about one bubble length downstream of the region of interest, the
separation bubble. Neither is the reattachment point a good choice,
as the local flow will typically be in the late non-linear stages of
transition already under the influence of small boundary layer dis-
turbances, leading to an unsteady, swept laminar separation bubble
with vortex shedding, as studied in Hetsch and Rist [33]. Even for
a fixed configuration the end of the linear domain still depends
on the initial disturbance spectrum beyond the scope of the lin-
ear theories employed here. But investigations by Marxen, Lang,
Rist and Wagner [12] demonstrate a good agreement of u- and
v-velocity profiles obtained experimentally, by linear stability the-
ory, and from a DNS up to the middle of an unswept transitional
separation bubble for realistic initial amplitudes despite strong am-
plification in the separated shear layer. Therefore, the middle of
the separation bubbles at x = 1.94 was chosen. Other positions in
the front part of the separation bubble would lead to modes with
identical or nearly the same frequency ω and spanwise wave num-
ber γ , which would not effect the conclusions due to the weak
dependence of the linear amplification on ω and γ found in Sub-
section 4.2.

We note in passing that the time mean of the DNS-results,
which naturally includes the mean-flow distortion of the distur-
bance background, was utilised as a base flow for the successful
comparison in [12]. This is of cause only possible in an a posteri-
ori-analysis as in [12], to aid the interpretation of the DNS-results.
Otherwise, any linear analysis in transitional separation bubbles
should be conducted with caution due to the unknown non-linear
upstream effect of the mean-flow disturbance generated by the
high disturbance levels in the transitional rear part, that could not
been calculated even by non-linear PSE due to its parabolic charac-
ter.

Due to the monotonous decline of the local amplification rate
from a unique maximum for each x it was sufficient to consider
the parameter subspace x ∈ [0.9;1.94], ω ∈ [15;30] and γ ∈ [0;30]
around curves of maximal local amplification as the one displayed
in Fig. 8(a). The results based on systematic comparisons of LST-
amplification curves within the search region are compiled in Ta-
ble 2 and visualised in Fig. 8(b). Typical values of local wave
properties could be based on the streamwise wave number αr,s

at the separation point, as checks like Fig. 7(b) demonstrate that
αr,s changes only slowly with x in the present flow.
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(a) Top-view on the LST-stability diagram of the 30◦-separation bubble in Fig. 6(a),
but in body-oriented x–γ -coordinate system: isosurface of neutral stability αi = 0
with line of maximal local amplification inside. Insert: close-up of surface mesh of
region around neutral point in the streamline-oriented x–γs-coordinate system.

(b) Growth of most amplified TS-waves 45◦–(24/30) (line),
30◦–(20/20) (long dashed), 15◦–(18/10) (dash-dotted),
0◦–(18/0) (dashed), CF-vortex 45◦–(0/50) from neutral
point to the middle of the bubble. TS-wave growth from LST,
CF-vortex from PSE. Insert: amplification rates αi of same
TS-waves from LST.

Fig. 8. Identification of linearly most amplified modes (ω/γ ) for each sweep angle.
Table 2
Parameters of globally most amplified TS-waves from neutral point xn to middle
of separation bubble xm = 1.94 for all sweep angles Ψ∞ obtained by LST: angular
frequency ω, spanwise wavenumber γ , amplitude gain amp with respect to initial
amplitude amp(xn) = 1, N-factor. Typical local parameter at separation point xsep =
1.75: free-stream direction Ψe (4), propagation direction Ψ = Ψe +Ψs in body-fitted
coordinate system and Ψs (10), phase speed cr and wave length λ from (11).

Ψ∞ (ω/γ ) Ψe Ψ Ψs cr λ xn amp(xm) N(xm)

0◦ (18/0) 0◦ 0◦ 0◦ 0.37 0.128 0.91 605 6.4
15◦ (18/10) 15.9◦ 12.1◦ −3.8◦ 0.38 0.133 0.91 640 6.5
30◦ (20/20) 31.6◦ 25.9◦ −5.7◦ 0.44 0.137 0.86 780 6.7
45◦ (24/30) 46.8◦ 44.6◦ −2.2◦ 0.56 0.147 0.75 1340 7.2

Table 2 shows that oblique, left-running TS-waves close to the
local freestream direction are the linearly most amplified distur-
bance modes. The deviation Ψs from the freestream direction in-
creases from 0◦ in the unswept separation bubble to a maximum
of about −6◦ in the 30◦-case. Due to a monotonous decline of αr,s
as opposed to the frequency a significant rise in the phase speed
with the sweep angle is observed, accompanied by a rising wave
length. For all four sweep angles Fig. 8(b) shows that TS-waves
experience a maximal linear growth of roughly three orders of
magnitudes from the neutral point to the middle of the separation
bubble. There, the most amplified mode within the 45◦-separation
bubble reaches about twice the amplitude of the corresponding
TS-wave of the unswept case. This raises the question whether the
increase is mainly due to an upstream movement of the neutral
point from xn = 0.91 (for Ψ∞ = 0◦) to xn = 0.75 (for Ψ∞ = 45◦), a
shift of 18% of the former value. The insert in Fig. 8(b) displaying
the distribution of the local amplification rates confirms that the
TS-waves exhibit not only earlier, but additionally almost every-
where stronger amplification with rising sweep angle. Both effects
are due to three interconnected reasons: the increasing influence
of the spanwise velocity w on the linear stability equations as dis-
cussed in Subsection 4.1, the simultaneous increase in ReQ ∞ due
to (2) as discussed in Subsection 4.2 and due to the comparison of
different modes in base flows with different sweep angles.

4.4. Cross-flow influences on the investigated separation bubble series

A major difference of swept laminar separation bubbles in com-
parison to the unswept case is the occurrence of cross-flow dis-
turbances with an unknown influence on the transition process.
Thus, the aim is to determine the relative importance of cross-
flow (CF) modes compared to the most amplified TS-waves in
Table 3
Maximal local amplification rates αi,max[(0/γ )] of steady cross-flow vortices with
corresponding spanwise wave number γ at several chordwise positions around the
45◦-bubble between xsep = 1.75 and xreat = 2.13 according to LST. Contrasted with
amplification rates αi,max[TS] of local most amplified TS-wave. Last row: percentage
of CF- to TS-amplification.

45◦-bubble x = 1.0 x = 1.4 x = 1.75 x = 1.85 x = 2.13 x = 2.36 x = 4.5

αi,max[(0/γ )] > 1 −0.10 −3.16 −3.69 −4.08 −3.00 −0.38
±γ (αi,max) – 55 46 45 40 46 39
αi,max[TS] −2.33 −6.38 −11.68 −12.84 −9.85 −6.14 −1.23
CF: % of TS – 1.6% 27% 29% 41% 49% 31%

the present configuration and to identify the CF-vortex with the
strongest linear amplification. The investigation of the flow field
in Fig. 4(b) yielded a well developed cross-flow component for
higher sweep angles, which manifests itself in the increasing am-
plification of steady and unsteady cross-flow modes visible in the
stability diagrams of Fig. 7. Despite the slightly weaker primary
amplification rates observable in Fig. 7 the focus is here on steady
CF-vortices, as they are well known to dominate unsteady CF-
waves in low-turbulence environments like free flight as discussed
by Deyhle and Bippes [37] or Wassermann and Kloker [38]. As the
CF-amplification for the smaller sweep angles is too weak com-
pared to the TS-waves to make them a relevant partner in mixed
transition scenarios, we can constrain ourself to the 45◦-separation
bubble.

Local LST-investigations of the 45◦-case compiled in Table 3
show that CF-vortices are first amplified at about x = 1.4 and thus
later than TS-waves, but that they afterwards experience a rapid
increase in their amplification rates to values of 30% to 40% of the
most amplified TS-wave within the separation bubble. An evalua-
tion of CF-vortices with PSE, which was found to be significantly
more accurate for CF-vortices than LST in comparisons to DNS-
results in by the authors [40], yielded the strongest overall amplifi-
cation for the CF-vortex (0/50). Up to the middle of the separation
bubble its initial amplitude approximately triples as demonstrated
in Fig. 8(b) in comparison with the most amplified 45◦-TS-wave,
which grows three orders of magnitude.

5. Discussion and conclusions

The effect of sweep on the linear stability of a series of small,
pressure-induced laminar separation bubbles on a swept infinite
flat plate has been investigated systematically. To this end, the
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DNS-base flow was evaluated for a range of sweep angles Ψ∞ =
0◦,15◦,30◦,45◦ by means of linear stability theory (LST) and so-
lutions of the linear parabolised stability equations (PSE). The as-
sumed homogeneity in span in combination with simplifications
arising from studying steady laminar separation bubbles allowed
for a comprehensive analysis of the influence of sweep on the
structure and stability of such bubbles that would be hard to
achieve for the complicated unsteady motion in the vicinity of an
unsteady transitional separation bubble on finite wings.

Due to the independence principle of incompressible flow the
laminar flow field may be obtained for arbitrary sweep angles Ψ∞
by scaling the three-dimensional part of the generic 45◦-solution
with tan(Ψ∞), while leaving flow quantities already present in the
unswept case unchanged. Therefore, the separation bubble series
exhibits identical chordwise cross-sections, which enabled direct
comparisons that yielded the following:

• Despite the simple dependency of the base flow on the sweep
angle, the linear disturbance amplification in such a flow can-
not be deduced from a stability analysis of the 45◦-case. Only
disturbances with leading-edge parallel wave fronts, for which
the three-dimensional linear stability equations simplify to the
unswept case again, grow sweep angle independent. Thus,
each sweep angle constitutes a unique case in general.
However, this does not imply that the differences in the
growth rates of a particular mode in base flows with different
sweep angles or of modes with similar frequencies and span-
wise wavenumbers in the same base flow are large. Therefore,
these findings do not constitute a contradiction to the ap-
proximate sweep angle independence of the time mean of the
transitional separation bubbles of Kaltenbach and Janke [21],
who observed a similar disturbance growth for the most am-
plified shear layer mode for sweep angles between 0◦ and 40◦
(see Fig. 17 there), qualitatively comparable to Fig. 8(b) in the
present study. Consequently, the 40◦-bubble in [21] shortens,
but its length, which shows the integrated effect of all local
differences, differs from the unswept case only moderately by
4% to 16%, depending on the initial disturbance spectrum.

• Investigations concerning the influence of sweep on the local
stability of the separation bubble series showed that maximal
linear amplification shifts monotonously towards disturbances
(ω/γ ) with higher frequencies ω and larger spanwise wave
numbers γ with increasing sweep angle. Simultaneously, the
spanwise wavenumbers γs in the streamline-oriented coordi-
nate system are negative and monotonously decreasing. These
modes exhibit propagation directions of roughly −10◦ with
respect to the local free-stream direction. Thus, oblique, left-
running TS-waves, not CF-vortices, experience the strongest
amplification even for high sweep angles. Compared to the
unswept case, maximal amplification rates in the front part
of the bubble increase in the order of 8% for Ψ∞ = 45◦ .

• The influence of sweep on the amplitude of the most am-
plified TS-wave is moderate compared to the strong general
amplification of three orders of magnitude in the separated
shear layer: growth from the neutral point to the middle of
the present separation bubble is about twice as strong for the
45◦-case compared to the unswept case, a difference of less
than one N-factor unit. Much as in attached swept bound-
ary layers strongest linear growth for each sweep angle occurs
for oblique TS-waves close to the free-stream direction Ψe .
The typical deviation of the left-running waves to Ψe was
about −5◦ .
The same qualitative trend of higher linear amplification for
higher sweep angles for oblique TS-waves with propagation an-
gles smaller than the free stream direction was observed by
Kaltenbach and Janke [21] in their study of transitional sep-
aration bubbles behind a backward facing step, though the
influence was only weak in their case. No indication of max-
imal amplification in another direction then Ψe was found in
the present base flow series though, as opposed to the “effec-
tive shear direction” of [21] with a substantial and increasing
discrepancy to Ψe for a rising sweep angle. This emphasises
again the differences between free shear layers and the wall
bounded separated shear layers of pressure induced separation
bubbles.

• Despite relevant cross-flow (CF) levels of up to about 9% of the
local streamline free-stream velocity us,e in the front part of
the 45◦-separation bubble, CF-influences on the present sepa-
ration bubble series are weak, so that only the highest sweep
angle of Ψ∞ = 45◦ was studied. There, steady cross-flow vor-
tices reached local growth rates in the order of 30% of the
most amplified TS-waves. The most amplified CF-vortex triples
its amplitude from the neutral point to the middle of the sep-
aration bubble, while the corresponding TS-waves grows three
orders of magnitude. Therefore, steady CF-vortices can only be
relevant for the transition process in the given configuration,
if they reach the non-linear regime or if their amplitudes are
significantly higher than that of the TS-waves in the initial dis-
turbance spectrum.
For the interpretation of these results, however, the reader
should keep in mind that the favourable pressure gradient
region encountered in front of midchord bubbles on swept in-
finite wings was not modelled here as discussed in Section 2
and that thus the results are not directly transferable to the
situation on swept infinite wings. Furthermore, the subject
of receptivity is beyond linear analysis and wall roughness is
known to be very efficient in exciting steady cross flow vor-
tices in low-turbulence level-environments as under free flight
conditions, so that high amplitudes levels of CF-vortices are
likely to be encountered on wings. Following a similar discus-
sion of Wassermann and Kloker [38] for attached boundary
layer flow, one could argue this is indeed the main feature of
the most likely transition scenario in connection with TS-CF-
interactions in midchord bubbles on swept wings. If transition
did not already occur in the favourable pressure gradient (FPG)
region, steady CF-vortices of considerable amplitudes, but be-
low the critical threshold for secondary flow instability, can be
expected to be convected into the adverse pressure gradient
region of the separation bubble.

Regarding the base flow structure, the independence principle
leads to a quasi-two-dimensional flow field, where the spanwise
flow is superimposed over the unchanging chordwise cross-section
of the separation bubble. The investigation showed that this re-
sults in a relevant spanwise velocity component inside. It reaches
up to about 10% of the chordwise inflow velocity U∞ in the mid-
dle of the present 45◦-separation bubble, a value that scales with
tan(Ψ∞) for smaller sweep angles Ψ∞ due to (7). Therefore, the
term “dead-air region”, coined for the often very weak backflow
under the separated shear layer in the front part of unswept sepa-
ration bubbles, becomes less accurate with increasing sweep angle.
For the same reason the total wall shear stress along the separation
line becomes positive throughout, while it vanishes in the unswept
case. This is consistent with findings of Horton [2] for swept tran-
sitional bubbles, who concluded that “cordwise velocities are neg-
ligibly small, whilst small spanwise velocities are apparent” in this
region.
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