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The influence of sweep on the general structure of short separation bubbles in strictly laminar flow fields
on swept infinite geometries is investigated by theoretical analysis and direct numerical simulations
(DNS). In this situation the ‘independence principle’ of the Navier–Stokes equations for incompressible
flow enforces a unique topology for the mean flow, which includes the much better understood unswept
separation bubbles as a special case: swept laminar separation bubbles form leading edge parallel
streamtubes with a spanwise outflow and a helical motion inside directed parallel to the separation
line. If chordwise inflow conditions are kept constant, their cross-sections stay independent of a rising
sweep angle, as the spanwise velocity field is then merely superimposed over the unchanged flow of
the corresponding unswept case. Their mean flow field follows strict scaling rules that may be derived
analytically from the generic 45◦-solution, as confirmed by DNS-results for a series of pressure-induced
separation bubbles subjected to a systematic variation of the sweep angle between 0◦ and 60◦.

© 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Due to strong adverse pressure gradients and moderate
Reynolds numbers, separation bubbles are frequently encountered
with high-lift devices, near the leading edges of thin profiles, on
turbine blades of low-pressure gas turbines, blades of wind tur-
bines or in the midsection of laminar airfoils for gliders. Important
features of this phenomenon are illustrated in Fig. 1(a): A laminar
boundary layer over a solid surface separates from the wall when
subjected to a strong adverse pressure gradient. Below the highly
unstable, separated shear layer a slow backflow, the so-called ‘dead
air region’, is observed giving rise to the characteristic pressure
plateau in the front part of the bubble. Boundary layer distur-
bances are strongly amplified in the shear layer which usually
leads to a rapid laminar–turbulent transition. The more energetic
turbulent boundary layer may then reattach to form a transitional
separation bubble. In this case the steady description of Fig. 1(a)
exists only in a time-averaged sense. Instead, simulations or pho-
tographs from experiments show a shear layer roll-up in the rear
part of the bubble, which leads to periodic vortex shedding.

In very quiet environments laminar reattachment may alterna-
tively occur due to a change in the surface geometry or the pres-
sure gradient giving rise to laminar separation bubbles with peri-
odic vortex shedding. If the general disturbance level of the inflow
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is decreased further, the shedding ceases and the resulting sepa-
ration bubbles become completely steady as in Fig. 1(b) or in the
direct numerical simulation (DNS) of Briley [5]. Experimental real-
isations of steady and unsteady laminar separation bubbles were
obtained by Bao [3] in a water towing tunnel behind a rounded
backward facing step. Note that laminar and transitional separation
bubbles are often not distinguished in the literature and simply re-
ferred to as ‘laminar separation bubbles’ as opposed to ‘turbulent
separation bubbles’, which separate in a turbulent flow field.

Investigations of separation bubbles are rather challenging as
complex, interacting phenomena as flow separation and reattach-
ment, backflow, laminar–turbulent transition and vortex shedding
occur. Therefore, research efforts so far have almost exclusively
addressed the unswept case, which does not exhibit crossflow in-
fluences or the sweep angle as an additional parameter and is
easier to realise in experiments and simulations. The reader may
wish to refer to more recent publications as Spalart and Coleman
[26], Spalart and Strelets [27], Alam and Sandham [1], Marxen,
Lang, Rist and Wagner [21], Herbst and Henningson [10] or Jones,
Sandberg and Sandham [17] and cited literature therein to get an
overview over current research activities in connection with the
DNS of unswept separation bubbles.

However, separation bubbles naturally appear in swept config-
urations for important technical applications, as the transitional
separation bubble detected by Greff [9] on the slat of an Airbus
A310 in landing configuration. Despite this, investigations about
swept separation bubbles are still very rare: An extensive body of
experimental data devoted to swept separation bubbles was pub-
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(a) Mean flow structure of a short, unswept transitional separation bubble after Horton (Fig. 2 in [15]). Separation of the laminar boundary layer at S , turbulent reattachment
at R , idealised point transition in between at T . By courtesy of Dr. Horton.

(b) Sweep angle Ψ∞ = 30◦ at U∞ = 30 m/s, isolines of spanwise vorticity ωz: Cross-section through a swept, stationary laminar separation bubble of the present DNS-base-
flow without disturbance excitation. Visualised: Separated shear layer and dividing streamline. Reδ2 (xsep) = 330, based on the momentum thickness at separation.

Fig. 1. Basic properties of laminar and transitional separation bubbles. Unlike transitional bubbles laminar separation bubbles reattach in a still laminar flow regime, but show
otherwise the same general structure.
lished by Young and Horton [29] and Horton [15] in the late 1960s,
who investigated series of unswept and swept transitional separa-
tion bubbles through hotwire measurements in order to extend his
semi-empirical theory for the prediction of the growth and burst-
ing of bubbles to the swept case. Important flow parameters for
a fixed sweep angle of 26.5◦ coincided with the unswept case
if evaluated normal to the leading edge and not in the direction
of the potential flow. Barkey-Wolfe [6] studied transitional separa-
tion bubbles on a flat plate behind different types of blunt leading
edges for sweep angles between 0◦ and 45◦ experimentally. In par-
ticular he confirmed the independence of the mean reattachment
position from the sweep angle. Selby [25] proved through sys-
tematic experimental investigations of turbulent separation bubbles
behind backward facing steps that the mean reattachment position
is independent up to about 38◦ depending on the step height. On
the numerical side Davis, Carter and Reshotko [8] compared results
from a compressible boundary layer code against one of Horton’s
separation bubbles, finding very good agreement for the pressure
and the wall friction distributions. More recently, Kaltenbach and
Janke [20], Kaltenbach [19] and Jürgens and Kaltenbach [18] stud-
ied sweep angle effects on the flow field behind a rearward-facing
step, a geometry which naturally leads to a separation bubble im-
mediately after the step, by means of large-eddy simulations and
DNS.

As our knowledge about swept separation bubbles is still quite
limited, the question arises how strongly they differ from the much
better understood unswept case and to what degree results for the
latter might be extendable to swept configurations. As far as the
influence of sweep on their mean structure in strictly laminar flow
fields in swept infinite geometries is concerned, a consequent ap-
plication of the so-called independence principle results in a unique
topology which includes unswept bubbles as a special case. The in-
dependence of the streamwise quantities from the spanwise ones
in flows which are homogeneous in span was first noted by Prandtl
in the 1940s for the three-dimensional boundary layer equations
and will be known to the reader in form of the Falkner–Scan
profiles. Even for the swept case these two-dimensional velocity
profiles remain unchanged or “independent” from the spanwise
Cooke profile. Our aim is to demonstrate that the independence
principle constitutes the key for the understanding of the general
structure of laminar separation bubbles on configurations as for
example swept infinite wings.

Thus the paper is organised as follows:

• Section 2 introduces general aspects of the independence prin-
ciple and derives it from the governing equations as a basis for
its subsequent application to laminar separation bubbles.

• Section 3 discusses to the numerical aspects of the study.
The utilised DNS-algorithm is described and validated in Sec-
tions 3.1 and 3.2, respectively.

• Section 4 contains the main results: At first Section 4.1 fo-
cuses on the influence of sweep on the laminar flow quantities
and general scaling laws are obtained. Afterwards a modified
solution strategy for series of DNS-calculations with different
sweep angles based on the independence principle is pro-
posed in Section 4.2. It is transferable to arbitrary laminar flow
fields on swept infinite geometries and results in considerable
run-time savings. Finally, Section 4.3 applies the independence
principle to swept laminar separation bubbles and discusses
the resulting topology in detail.
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Fig. 2. Calculation domain of 30◦-laminar separation bubble (x ∈ [1.75;2.13]) with near-wall streamlines over dividing surface Ψ o = {(x, y) | Ψ (x, y) = 0}. Oncoming flow:
Sweep angle Ψ∞ and inflow velocity Q ∞ with components U∞ and W∞ . Prescribed upper boundary condition ue(x): Velocity distribution of potential flow. The domain
extends from xo = 0.37 to xN = 5.05 in chordwise and from y = 0 to ye = 0.059 = 18 · δ1(xo) in wall-normal direction.
• The paper ends with a summary and the main conclusions in
Section 5.

The presented simulations have been utilised as base flows by the
authors in [11] and [12] for unsteady DNS investigating the inter-
action of oblique Tollmien–Schlichting waves with swept laminar
separation bubbles. Additionally, these base flows were used to
assess the principle applicability and the accuracy of spatial lin-
ear stability theory (LST) and solutions of the parabolised stability
equations (PSE) in swept separation bubbles in [13]. Based on that,
the influence of sweep on the linear stability of the present sepa-
ration bubble series was analysed in Hetsch and Rist [14].

2. The governing equations and the independence principle for
laminar flow

The present study is based on the three-dimensional, incom-
pressible Navier–Stokes equations in a velocity–vorticity formula-
tion. It can be derived from the classical formulation with the
continuity equation and three momentum equations in Cartesian
coordinates through elimination of the pressure p by taking the
curl of the momentum equations and subsequent introduction of
the vorticity vector ω = −rot(u, v, w, )T with its components ωx ,
ωy and ωz . Fig. 2 gives an overview over the rectangular integra-
tion domain: Let x, y and z denote the axes in the leading edge
normal, wall normal and spanwise direction and u, v and w the
associated velocity components, respectively. The inflow velocity
Q ∞ can then be decomposed into a leading edge normal compo-
nent U∞ and a leading edge parallel component W∞ giving rise
to a sweep angle

Ψ∞ = arctan

(
W̄∞
Ū∞

)
= arctan(W∞) (1)

with a bar used to distinguish dimensional quantities through-
out the text. All quantities are calculated in a non-dimensional
form based on the fixed chordwise inflow conditions consisting
of Ū∞ = 30 m/s, a chordwise reference length L̄ = 0.05 m and
the kinematic viscosity ν̄ = 15 · 10−6 m2/s of air, resulting in a
Reynolds number of Re = 100 000. The quantities y, v , ωx , ωz
are subjected to the

√
Re-stretching known from the boundary-

layer equations in the code, but are displayed without it in the
illustrations. The key assumption for infinite swept geometries is
homogeneity ( ∂

∂z ≡ 0) in span for laminar calculations. The result-
ing set of equations consists of three vorticity transport equations

∂ωx

∂t
+ ∂(vωx − uωy)

∂ y
= 1

Re

∂2ωx

∂x2
+ ∂2ωx

∂ y2
(2)

∂ωy

∂t
− ∂(vωx − uωy)

∂x
= 1

Re

∂2ωy

∂x2
+ ∂2ωy

∂ y2
(3)

∂ωz

∂t
+ ∂(uωz)

∂x
+ ∂(vωz)

∂ y
= 1

Re

∂2ωz

∂x2
+ ∂2ωz

∂ y2
(4)

and the three Poisson equations for the velocity components

∂2u

∂x2
= − ∂2 v

∂x∂ y
(5)

1

Re

∂2 v

∂x2
+ ∂2 v

∂ y2
= −∂ωz

∂x
(6)

∂2 w

∂x2
= ∂ωy

∂x
(7)

In this quasi-three-dimensional set of Eqs. (5), (6) and (4) for u,
v and ωz are decoupled from the remaining ones. They remain
unchanged with respect to the unswept case and can be solved a
priory and independently from Eqs. (2), (3) and (7), which are only
necessary to determine ωx , ωy and w in swept configurations. This
decoupling is known as the independence principle of incompress-
ible flow. The more common velocity–pressure formulation shows
the same splitting, as w vanishes from the continuity equation and
the x- and y-momentum equation. As a consequence u, v , p, ωz
and any quantity derived directly from them never depend on the
sweep angle or the spanwise position, if an incompressible laminar
flow is homogeneous in span and exhibits the same chordwise in-
flow conditions as the unswept base case. This implies that while
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U∞ stays constant, W∞ has to be adjusted according to (1), so
that ReQ ∞ based on the inflow velocity becomes a function of the
sweep angle Ψ∞ and the constant Re based on U∞

ReQ ∞ = Q̄ ∞ · L̄

ν̄
=

√
1 + tan2(Ψ∞)Re (8)

3. Numerical considerations

The chosen DNS-algorithm has evolved over the years and was
successfully applied to various transitional flows as for example
described in Rist and Fasel [24], Bake, Meyer and Rist [2] or
Wassermann and Kloker [28]. Typically it was utilised to provide
a highly accurate, steady, laminar base flow for unsteady DNS-
calculations of the disturbance propagation within this flow. For
the scheme Eqs. (2)–(7) are discretized with central compact finite-
differences of fourth order in x and y. The exact initial conditions
within the flow field are not crucial. However, prescribing a solu-
tion with some resemblance to the expected end result will speed
up convergence. For attached flows Falkner–Scan–Cooke-profiles as
derived by Cooke [7] can be prescribed according to the local pres-
sure gradient with matching vorticity profiles. As we are facing
separated regions were no similarity solution exists, this is here
only done at the inflow and the corresponding dimensionless so-
lution is then rescaled within the flowfield to match the local
free-stream velocities in x and z at the upper domain edge. The
resulting flow field can then be interpreted as the disturbed real-
isation of the desired stationary solution. To reach it Eqs. (2)–(7)
are integrated in pseudo-time until these disturbances have been
convected out of the domain or dissipated. For the present cal-
culations tolerances were chosen such that convergence to steady
state was reached when the residual in v , ωz and w between two
pseudo time levels was smaller then 10−10.

3.1. The DNS-algorithm and applied boundary conditions

For each time step the convection terms of Eqs. (2)–(4) are lin-
earised by treating their components as ‘lagging coefficients’. As
we are seeking a stationary solution, accuracy in pseudo-time is
less important then stability and a strongly dissipative behaviour
in t . The decoupled transport equations are therefore integrated by
a semi-implicit variant of the ADI-algorithm of Beam and Warming
[4] in delta-formulation, which utilises the scheme ‘Euler implic-
it’ (also known as ‘backward Euler method’) for the x-derivatives
and ‘Euler explicit’ (also known as ‘forward Euler method’) for
those in y. Afterwards the linear equation system of the discretized
v-Poisson equation (6) is solved iteratively by means of a Gauß–
Seidel-Iteration with successive overrelaxation (LSORV). Finally, by
applying a compact scheme of sixth order and Dirichlet conditions
at both boundaries, the simplified u- and w-‘Poisson’ equations
(5) and (7) can be directly integrated in x with negligible com-
putational effort. Thus, effectively only three transport equations
and one Poisson equation have to be solved just as in the velocity-
pressure formulation.

The dominant elliptical character of the incompressible Navier–
Stokes equations requires Dirichlet or von-Neumann boundary
conditions for all flow quantities q ∈ {u, v, w,ωx,ωy,ωz} at the
boundaries: Falkner–Scan–Cooke profiles without pressure gradi-
ent are prescribed at the inflow boundary located at xo = 0.37. At
the impermeable wall no-slip conditions for the velocity compo-
nents uw , w w as well as v w = 0 and ∂v w

∂ y = 0 are employed, while
special equations

∂ωx,w

∂x
= −∂ωy,w

∂ y
, ωy,w = 0,

∂ωz,w

∂x
= −∂2 v w

∂ y2

were derived for the vorticity components. At the outflow xN =
5.05, approximately eight separation bubble lengths downstream
of the reattachment line at xsep = 2.13, an attached boundary layer
flow has redeveloped. For these flows second x-derivatives are
small in accordance with the boundary layer theory, so that these
terms can be neglected locally for qN ∈ {v N ,ωx,N ,ωy,N ,ωz,N } at
the outflow boundary. However, as (5) and (7) rely on exactly these
terms, the relations

∂2uN

∂ y2
= ∂ωz,N

∂ y
,

∂2 w N

∂ y2
= 1

Re

∂ωy,N

∂x
− ∂ωx,N

∂ y

are applied for the calculation of u and w . In potential flow the
vorticity vanishes, so ωx,e = ωy,e = ωz,e = 0 are prescribed at
the upper edge of the integration domain at ye = 0.059, which
amounts to 18 displacement thicknesses at the inflow. A direct
application of the continuity equation yields ∂ve

∂ y = − ∂ue
∂x . The up-

per boundary conditions for the free-stream velocity components
ue and we are decisive, because they determine all the proper-
ties of the resulting separation bubble: With the choice of the
ue(x)-distribution the local pressure gradient is implicitly pre-
scribed via the Bernoulli equation. Here the distribution displayed
in Fig. 2 remains on the inflow level until x1 = 0.706. To enforce
the boundary layer separation at xsep = 1.75 this part is followed
by a smooth decrease of 8.95% until x2 = 2.42, whereupon it stays
constant again to allow for laminar reattachment. Different sweep
angles may be realised by varying W∞ = tan(Ψ∞), which globally
determines the spanwise free-stream velocity we = W∞ .

3.2. Validation of the DNS-algorithm

Oswatitsch [22] has given an analytical solution of the incom-
pressible Navier–Stokes equations in the neighbourhood of a sep-
aration point for a two-dimensional, laminar boundary layer. It
allows a calculation of the separation angle

tan(ϕsep) = −3

( ∂τx
∂x
∂ p
∂x

)∣∣∣∣
x=xsep, y=0

(9)

from the wall shear stress component τx in x-direction and the
wall pressure, both evaluated at the point of separation. Van Ingen
convincingly confirmed the validity of this formula experimentally
in [16]. The comparison in Fig. 3(a) of ϕsep = 1.39◦ calculated from
(9) to the dividing streamline Ψ o of the separation bubble shows
excellent agreement in the neighbourhood of the separation posi-
tion xsep = 1.75.

Additionally, the step-size dependence of the numerical so-
lution was investigated by grid refinement studies for the case
Ψ∞ = 45◦ . The standard resolution of 1394 × 97 grid points in x-
and y-direction with 	x = 3.36 · 10−3 and 	y = 6.2 · 10−4 was
independently halved and doubled. The maximum relative error

errorrelmax := maxx,y |qfine(x, y) − qcoarse(x, y)|
maxx,y |qfine(x, y)|

was then determined for all flow quantities q ∈ {u, v, w,ωx,ωy,ωz}
separately. As the maximum deviation of the coarse solution to the
fine one was only 0.017% for a variation of the stepsize in x, the
standard x-resolution was found to be finer than necessary. The
maximum global error for a variation of the stepsize in y occurred
in v and is shown in Fig. 3(b). Clearly, the coarse resolution of
only 49 grid points in y would have been insufficient. But the
maximum deviation of the standard resolution compared to the
fine one is still 0.07% and only visible in an enlarged cutout of
Fig. 3(b). Simple profiles like Fig. 4 are based on the standard,
more sophisticated visualisations as Fig. 3(a) or 5 on the fine grid
in y both with the standard resolution in x. It follows that the
spatial resolution of the DNS is good.

Note that transitional flows are much more demanding in terms
of spatial resolution. Therefore, to accurately calculate the dis-
turbance propagation in the unsteady laminar separation bubbles
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(a) Windward side, dashed: Separation angle ϕsep = 1.39◦ from Os-
watitsch’s analytical solution (9) at separation position xsep = 1.75.

(b) DNS-solutions on coarse (line),
standard (dash–dot) and fine grid
(dashed) for 45◦-separation bub-
ble.

Fig. 3. Code validation. Left: Separation angle compared to sweep angle independent cross-section of present 45◦-bubble with coloured v-iso-levels, internal and external
u–v-streamlines and dividing streamline Ψ o . Centre of circulation inside: Intersection of isolines u = 0 and v = 0. Ratio of height H = 0.0031 to length L = 0.38 as 1 : 120.
Right: Test for y-step size independence of presented separation bubble series. Solution on standard grid (97 y-points, dash–dot) compared to coarse (line, 49 points) and
fine grid (dashed, 201 points), all with 1394 points in x. Displayed is the v-profile at x = 2.21 where maximum global error occurs. The standard and the fine solution are
nearly indistinguishable.

(a) w-profiles for all sweep angles show the global upper
boundary condition we = tan(Ψ∞).

(b) All w-profiles for Ψ∞ > 0 coincide with the generic
45◦-profile, if normalised by tan(Ψ∞).

(c) Corresponding crossflow profiles ws at the separation
position xsep = 1.75.

(d) Scaled locally with 1/(maxy ws(x, y)) the ws-profiles
collapse by virtue of (18).

Fig. 4. Spanwise velocity profiles w(y) and crossflow profiles ws(y) at the separation position xsep = 1.75 for the sweep angles of Ψ∞ = 0◦,15◦,30◦,45◦ and 60◦ . For a
given configuration the shape of the w-profiles is sweep angle independent. Every new sweep angle globally scales this generic 45◦-solution by the spanwise free-stream
velocity we = tan(Ψ∞). The derivation of the sweep angle independence of the shape of the crossflow profiles on the other hand requires local scaling.
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published in Hetsch and Rist [11,12] the underlying base flows had
to be resolved with twice to four times the standard resolution in
x and y utilised here.

4. The influence of sweep on the general structure of swept
laminar separation bubbles

4.1. The influence of sweep on the laminar flow quantities and resulting
scaling laws

We are interested in the question how a given unswept laminar
solution changes when a sweep angle Ψ∞ is introduced. Clearly
the flow quantities u, v , p and ωz remain unchanged by virtue
of the independence principle. Once the spanwise velocity compo-
nent w is determined with an appropriate method, the vorticities

ωx = −∂ w

∂ y
, ωy = ∂ w

∂x
(10)

can readily be obtained as derivatives of w , as the definition of the
vorticity vector is simplified by the homogeneity in span.

Therefore, only the influence of the sweep angle on the key
quantity w has to be analysed: As the velocities u and v are
known a priori from the unswept solution, the z-momentum equa-
tion

∂ w

∂t
+ u

∂ w

∂x
+ v

∂ w

∂ y
= 1

Re

∂2 w

∂x2
+ ∂2 w

∂ y2
(11)

becomes linear in w and allows for linear superposition of solu-
tions, if this is compatible with the boundary conditions. Let a
subscript ‘e’ denote any quantity at the upper boundary of the
computational domain in the potential free-stream. The no-slip
condition w(0) = 0 at the wall is homogeneous and the upper
boundary condition a global constant, as the vorticities ωy,e = ∂ we

∂x

and ωx,e = − ∂ we
∂ y must vanish in potential flow and the geome-

try implies ∂ w
∂z = 0. This constant can be determined at the inflow,

where we = W∞ = tan Ψ∞ by definition of the sweep angle (1).
Therefore, spanwise velocity profiles for an arbitrary sweep angle
0 < Ψ∞ < 90◦ must coincide after normalisation with the global
scaling factor 1/ tan(Ψ∞) as demonstrated by Figs. 4(a) and 4(b).
This scaling property of w is automatically transfered to ωx and
ωy , because differentiation is a linear operation. Thus, after the
normalisation of w , ωx and ωy the profiles of all flow quanti-
ties coincide with the generic 45◦-case, which is the only one to
remain unchanged as tan(45◦) = 1. This leads to the important
scaling property that the exact laminar flow field for any desired
sweep angle 0 � Ψ∞ < 90◦ may be analytically obtained from any
given swept solution for a sweep angle 0 < Ψ̃∞ < 90◦ by scaling
via

u = uΨ̃∞ , v = vΨ̃∞ , ωz = ωz,Ψ̃∞

w = tan(Ψ∞)

tan(Ψ̃∞)
wΨ̃∞ , ωx = tan(Ψ∞)

tan(Ψ̃∞)
ωx,Ψ̃∞

ωy = tan(Ψ∞)

tan(Ψ̃∞)
ωy,Ψ̃∞ (12)

It follows that a known swept laminar solution from the literature
can be used to reconstruct the corresponding flow for any other
sweep angle a posteriori in swept infinite configurations.

In swept configurations a transformation of the flow field into a
streamline-oriented coordinate system is often of particular inter-
est. By definition the streamwise velocity component us and the
crossflow ws

us := cos(Ψe) · u + sin(Ψe) · w (13)

ws := − sin(Ψe) · u + cos(Ψe) · w (14)
are tangential and normal to the local direction

Ψe(x) = arctan
(
W∞/ue(x)

)
of the potential streamline. In order to investigate how sweep ef-
fects them, let a double-bar superscript denote any sweep angle
independent quantity:

u = ¯̄u, w = tan(Ψ∞) ¯̄w45◦ , Ψe = arctan
(
tan(Ψ∞)/ ¯̄ue

)
(15)

It follows from (1) and the discussion above that Eqs. (13) and (14)
become:

us = cos

[
arctan

(
tan(Ψ∞)

¯̄ue

)]
¯̄u

+ sin

[
arctan

(
tan(Ψ∞)

¯̄ue

)]
tan(Ψ∞) ¯̄w45◦

ws = − sin

[
arctan

(
tan(Ψ∞)

¯̄ue

)]
¯̄u

+ cos

[
arctan

(
tan(Ψ∞)

¯̄ue

)]
tan(Ψ∞) ¯̄w45◦

Therefore, in general no global scaling results in collapsing us or
ws-profiles for different sweep angles. For the special case of ¯̄ue ≡
1 however the equations simplify to

¯̄ue ≡ 1 �⇒ us = cos(Ψ∞) · { ¯̄u + tan2(Ψ∞) ¯̄w45◦
}

(16)

ws = sin(Ψ∞) · { ¯̄w45◦ − ¯̄u} (17)

As the free-stream pressure distribution expresses itself in the ue-
distribution via the Bernoulli equation, this means that the cross-
flow velocity ws can be normalised globally with the scaling factor
1/ sin(Ψ∞) for swept, zero-pressure gradient flows. Pressure gra-
dients imply curved potential streamlines, so that in general (16)
and (17) may be used as an approximation in regions with rel-
atively straight potential streamlines, where the local free-stream
direction Ψe remains close to Ψ∞ .

By considering local scaling laws1 on the other hand, at least
the shape of the crossflow profile ws can be shown to be sweep
angle independent in general. This is achievable with the help of
the local free-stream velocity us,e:

ws

us,e
= sin(Ψe) cos(Ψe)

(
w

W∞
−

¯̄u
¯̄ue

)
(18)

The sweep angle independence follows immediately from
w/W∞ = ¯̄w45◦ and can be exploited for example in the form
ws/(maxy ws(x, y)), as demonstrated by Figs. 4(c) and 4(d). As
¯̄ue ≈ 1 throughout the given base flow, a global scaling with
1/ sin(Ψ∞) produces basically the same collapse by virtue of (17).

4.2. An improved solution strategy on the basis of the independence
principle

Especially for a series of flow calculations with a common
pressure distribution yet different sweep angles, the scaling laws
of Section 4.1 allow for a considerable simplification. This gen-
eral strategy is not restricted to separation bubbles, the vorticity–
velocity formulation or a particular DNS-algorithm, but applicable
to any stationary incompressible flow where the independence
principle holds:

(i) Solve the unswept case for u, v and ωz (or p, depending on
the formulation).

1 The authors are indebted to the referee, who kindly provided scaling law (18).
To the best of his knowledge it has not been published before.
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(ii) Solve the z-momentum equation (11) for w for the generic
45◦-case.

(iii) Calculate ωx and ωy for Ψ∞ = 45◦ from (10) as derivatives
of w .

(iv) Obtain flow field for any desired sweep angle by global scaling
of w,ωx,ωy with tan(Ψ∞).

For the present study the z-momentum equation (11) has been
recast in the form

∂ w

∂t
= −R w , R w = ∂(uw)

∂x
+ ∂(v w)

∂ y
− 1

Re

∂2 w

∂x2
− ∂2 w

∂ y2
(19)

with a space operator R w , which was discretized as in Section 3.1.
The time integration of (19) was performed with a predictor–
corrector approach utilising a third-order Adam–Bashforth scheme
corrected by the trapezoid rule. As expected from the indepen-
dence principle, independent calculations according to the original
algorithm from Section 3.1 were identical to scaled base flows of
the 45◦-solution of the explicit scheme within the computational
accuracy of O(10−10). All visualisations shown in the paper are
based on previous calculations which still utilised the original al-
gorithm of Section 3.1.

For a demanding 45◦-baseflow (four times the domain height of
the current study, 2786 × 1537 grid points in x and y) the original
algorithm needed 53 h user-time on a single CPU of a NEC-SX5
for a residual of 10−10 in all six flow quantities. With the new
approach 24 h had to be spent for a converged solution of the
unswept problem. With u and v already converged the solution
of (11) converges faster and was obtained in 13 h. Thus, the new
approach took 37 h for the three-dimensional flow field and was
30% faster. But most importantly an arbitrary number of flow fields
with different sweep angles could be immediately obtained after-
wards simply by scaling.

4.3. The general structure of swept laminar separation bubbles

The independence principle and the resulting scaling laws of
Section 4.1 allow us to link the main topological features of
laminar separation bubbles in swept infinite geometries to their
unswept counterparts.

4.3.1. Similarities to unswept laminar separation bubbles
With u, v , p and ωz the entire cross-section of a swept separa-

tion bubble remains unaffected by a rising sweep angle. Therefore,
the cross-section of the present 45◦-separation bubble in Fig. 3(a)
is identical to the one of the corresponding unswept case, which
immediately determines the sense of rotation for arbitrary sweep
angles. The slow backflow observed in the lower two-thirds of the
bubble must be balanced by a slightly stronger movement in the
direction of the outer flow above the isoline u = 0. This is required
by mass conservation, because in the unswept case the spanwise
velocity w vanishes and no fluid can pass the dividing streamline

Ψ o = {
(x, y) | Ψ (x, y) = 0

}
, with Ψ (x, y) =

y∫
0

u(x, ỹ)d ỹ (20)

Likewise, no fluid can pass the corresponding separation stream
surface visualised in Fig. 5 in the swept case. Fluid inside the sep-
aration bubble is therefore ‘trapped’ and simply circulates in the
case of vanishing sweep.

Furthermore, the homogeneity in span enforces leading edge-
parallel separation and reattachment lines, so that separation re-
mains a two-dimensional phenomenon in the x–y-plane for ar-
bitrary sweep angles Ψ∞ < 90◦ . The sweep angle independence
of the leading edge normal component of the wall shear stress
Fig. 5. Internal and external streamlines of the 30◦-laminar separation bubble. Due
to homogeneity in span its surface can be obtained from the dividing streamline Ψ o
from (20) for arbitrary cross-sections. Helical, anti-clockwise motion inside (viewed
in direction of spanwise flow). External streamlines displace faster fluid layers up-
wards while gliding over the bubble.

τx = μ( ∂u
∂ y )|w implies the occurrence of separation and reattach-

ment at the same x-position as in the unswept case, marked by
a sign change in τx . Note that the symmetrical, elliptical shape
of the separation bubble in Fig. 3(a) is a consequence of the as-
sumed quiet inflow conditions modelled by an absence of any
disturbances. As demonstrated by Rist [23] for the mean flow of
the unswept and by Hetsch and Rist [12] for the swept case, the
typical asymmetrical outline with a hump at its rearward end,
known from visualisations of transitional separation bubbles, de-
velops under the presence of unsteady disturbances which trigger
vortex shedding.

4.3.2. Differences to unswept laminar separation bubbles
Differences to the unswept case become manifest in the span-

wise velocity component w in accordance with the analysis of
Section 4.1. The three-dimensional velocity field of a swept bub-
ble consists of a sweep angle independent two-dimensional u–v-
cross-section which is merely superimposed with w . With increas-
ing sweep angle this spanwise component grows in magnitude
like tan(Ψ∞), but its shape, the normalised x–y-distribution of w ,
is again sweep angle independent and fixed by the generic 45◦-
solution. Inside a swept separation bubble w forces the closed
streamlines of the unswept case into the helical motion displayed
in Fig. 5. Its existence gives rise to a spanwise wall shear stress
τz := μ(∂ w

∂ y )|w . In accordance with Davis, Carter and Reshotko [8]
τz was found to be positive throughout the flow field, as there
is no flow reversal in the spanwise direction. Thus, the total wall
shear stress τw = τx + τz is non-zero at separation and addition-
ally does not show its minimum there, but inside the bubble,
which makes it hard to determine the exact separation position of
swept separation bubbles experimentally by measuring wall shear
stresses.

5. Summary and conclusions

The general structure of separation bubbles in strictly laminar
flow fields on swept infinite geometries has been investigated by
means of an analysis of the incompressible Navier–Stokes equa-
tions and direct numerical simulations of short laminar separation
bubbles. The applicability of the independence principle for incom-
pressible laminar flow enforces an unique topology which includes
unswept configurations as a special case: Laminar separation bub-
bles form leading edge parallel stream tubes with a spanwise out-
flow and a helical motion inside as depictured in Fig. 5. As long
as the chordwise inflow conditions are kept constant, the cross-
section of the bubble is sweep angle independent, so that in par-
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ticular the separation and reattachment position coincide with the
corresponding unswept case.

Interestingly, exactly the same topological features as in Fig. 5
have been observed experimentally by Horton [15] for series of
transitional separation bubbles on a flat plate with displacement
body, an experimental approximation of a swept infinite wing, for
a fixed sweep angle of 26.5◦ . The independence principle could
potentially provide a link between both observations and thus ex-
plain the obvious qualitative agreement of the investigated sepa-
ration bubbles in different flow regimes: Based on an evaluation
of the rare literature on swept separation bubbles known to us,
we strongly suspect that the independence principle is extendable
in good approximation to the mean flow of transitional separation
bubbles up to sweep angles that are significant for practical appli-
cations. Within the scope of the literature cited in the introduction,
the authors of the corresponding articles independently report the
independence of chordwise flow properties up to sweep angle of
about 40◦ and repeatedly affirmed the applicability of the inde-
pendence principle in their particular configuration. If this could
be proven in general, the topology first described by Horton and
analysed here in detail on the basis of the independence prin-
ciple would be the only possible structure of the mean flow of
separation bubbles in swept infinite geometries, as long as the in-
dependence principle holds. It should be noticed though, that due
to the lack of literature our survey had to rely strongly on results
of backward-facing-step flows, which do not include curvature ef-
fects and exhibit a fixation of the separation position as opposed
to the situation on swept infinite wings.

An analysis of the incompressible Navier–Stokes equations also
yielded general scaling laws for laminar flows with a homoge-
neous spanwise direction such as the flow over a swept infinite
flat plate subjected to a pressure gradient. If the leading edge-
normal inflow conditions are held constant, flow quantities already
present in the unswept case are sweep angle independent. So is
the shape of any quantity which additionally appears in swept
flows, because their distributions in the x–y-plane are fixed by the
generic 45◦-solution, for which the general scaling law (12) takes
its simplest form. A rising sweep angle Ψ∞ merely scales their
amplitudes with the global factor tan(Ψ∞). As the tan-function is
strictly monotonous, it follows that the locations of local or global
extrema of the basic flow quantities within the flow field are also
sweep angle independent. Furthermore, in zero-pressure-gradient
flows the crossflow ws scales with a global factor of sin(Ψ∞). This
remains approximately true in regions where the potential stream-
lines are essentially straight and remain close to the direction of
the sweep angle.

The scaling law (12) allows an exact reconstruction of the lam-
inar flow field for arbitrary sweep angles 0◦ � Ψ∞ < 90◦ from any
known swept solution of the same configuration. A general strat-
egy for efficient DNS-calculations of series of swept cases based
on them is outlined in Section 4.2. As a direct consequence of the
independence principle of the incompressible Navier–Stokes equa-
tions these results do not depend on the presence of separation
bubbles in the flow field. They may be useful for the analysis of
newly obtained results, for code validation purposes or for the
extrapolation of results available from the literature to different
sweep angles.
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