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ABSTRACT 

This paper presents detailed investigations related 
to active transition control in laminar separation 
bubbles.  The investigations rely on direct numeri-
cal simulations based on the complete Navier-
Stokes equations for a flat-plate boundary layer, 
such that the wall boundary layer is fully resolved.  
A laminar separation bubble is created by imposing 
a streamwise adverse pressure gradient at the free-
stream boundary of the integration domain.  Differ-
ent steady and unsteady boundary layer distur-
bances are then introduced at a disturbance strip 
upstream of separation and their effects on the sepa-
ration bubble are studied.  It is shown that the size 
of the separated region can be controlled most effi-
ciently by very small periodic oscillations, which 
lead to travelling instability waves that grow to 
large levels by the hydrodynamic instability of the 
flow.  Indications for the preferred frequency of 
these waves can be obtained from linear stability 
theory, but since the problem is non-linear, only 
direct numerical simulations can really qualify or 
disqualify the predictions.  Over all, it turns out that 
unsteady two- or three-dimensional disturbances 
have a stronger impact on the size of the bubble 
than steady disturbances, because they directly 
provide initial amplitudes for the laminar-turbulent 
transition mechanism. 

NOMENCLATURE 

Symbols 

δ* [m] displacement thickness 
Θ [m] momentum thickness 
H = δ*/Θ [–] shape parameter 
f [Hz] disturbance frequency 
L [m] reference length 
U∞ [m/s] free-stream velocity 
v’ [m/s] wall-normal disturbance 

amplitude at the wall 
x [m] streamwise coordinate 
y [m] wall-normal coordinate 
z [m] spanwise coordinate 
Re* = U∞⋅δ*/υ  [–] displacement-thickness 

Reynolds number 
ReΘ = U∞⋅Θ/υ  [–] momentum-thickness 

Reynolds number 

α [–] streamwise wave number 
αT [o] spreading angle of turbu-

lence (conceptual) 
β = 2πfL/ U∞ [–] disturbance frequency 
ϖz [–] time-averaged vorticity 

Abbreviations 

DNS direct numerical simulation 
(h/k) mode of the frequency (index h) 

spanwise wavenumber spectrum 
(index k) 

LSB laminar separation bubble  
LST linear stability theory  
R re-attachment point 
S separation point 
T laminar-turbulent transition 
2-d two-dimensional 
3-d three-dimensional 

INTRODUCTION 

The occurrence of laminar separation and turbulent 
reattachment in a so-called laminar or transitional 
separation bubble is a typical problem for low to 
medium Reynolds-number aerodynamics, e.g. on 
aircraft wings or blades of turbo machines, where 
they lead to unwanted performance penalties.  
Laminar separation bubbles should hence be 
avoided using some means of control.  So far, this 
has been achieved primarily by a ‘cautious’ design 
or by placing some kind of turbulence trips or vor-
tex generators upstream of separation.  However, 
these approaches cannot adapt themselves to chang-
ing operation conditions such that performance 
penalties may occur under off-design conditions.  
On the other hand, avoiding laminar separation 
bubbles by design sacrifices the maximal possible 
efficiency or adds extra weight and costs to a tur-
bine because of extra blades which are needed to 
make the passage narrower in order to keep the 
flow attached. 

Therefore, some active separation control 
methods have been proposed recently.  Mostly, they 
consist of using vortex generator jets (e.g. [1]) 
which enforce an earlier transition of the flow to 
turbulence and hence an earlier re-attachment or no 
laminar separation at all using brute force.  More 
recently periodically pulsed jets have been found to 
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increase the efficiency of such devices [2].  On the 
other hand, detailed low-pressure turbine cascade 
measurements have shown that laminar separation 
bubbles which periodically disappear and reappear 
under the influence of periodically passing wakes 
exert less dissipation loss on the cascade compared 
to the fully turbulent case.  According to [3], this is 
due to periodically appearing “calmed regions” 
after destruction of the LSB by the passage of a 
turbulent wake, before the LSB reappears.  Such 
findings confirm that active separation control has 
the potential to reduce dissipation losses in a LP 
turbine environment. 

In the present work we investigate the possibil-
ity of using small-amplitude, local wall vibrations 
or suction and blowing to excite low-amplitude 
Tollmien-Schlichting-wave-like periodic boundary-
layer disturbances which are amplified by the hy-
drodynamic instability of the laminar boundary 
layer such that they control transition in a typical 
laminar separation bubble.  Originally intended for 
laminar separation bubbles in aerodynamic bound-
ary layers (i.e. along external surfaces, like a wing), 
our simulation results should be equally valid for 
boundary layers in turbo machines because of very 
similar boundary layer thicknesses and shape pa-
rameters. 

PHYSICAL MECHANISMS OF A TRANSI-
TIONAL LAMINAR SEPARATION BUBBLE 

Laminar boundary layers are preferable for applica-
tions where a low skin friction is desired.  How-
ever, they are very sensitive to adverse pressure 
gradients, and they tend to separate much earlier 
than a turbulent boundary layer.  Thus, in a typical 
aerodynamic context with a changeover from fa-
vourable to adverse pressure gradient, a region of 
laminar flow typically ends with a transitional LSB 
soon after the flow encounters the adverse pressure 
gradient.  The separated flow leads to uncontrolled 
unsteadiness and an additional pressure drag pen-
alty.  Both are difficult to predict because of the 
sensitivity of the flow to small back-ground distur-
bances, which are usually unknown because they 
cannot be measured. 

 
Fig. 1: Sketch of a transitional laminar separation 
bubble, S, T, and R: separation, transition, and re-
attachment, resp. 

The basic setup of a LSB is sketched in Fig. 1.  
The laminar boundary layer separates from the wall 
at a point ‘S’, transition to turbulence takes place at 
‘T’, and the turbulent flow re-attaches at ‘R’.  The 
latter occurs because of an increased momentum 
exchange normal to the wall under the action of the 
larger turbulence eddies.  With some oversimplifi-
cation the re-attachment process can be thought to 
be due to a turbulent wedge that spreads at an angle 

αT from a point in the detached shear layer.  The 
actual transition process starts by amplification of 
small-amplitude disturbances, which are already 
present in the upstream laminar flow or which are 
ingested from the free-stream via a process called 
‘receptivity‘.  Once large enough, higher 
frequencies occur and the shear layer disintegrates 
into structures of different size.  For a more 
complete discussion of the laminar-turbulent 
transition process in LSBs see [4][5][6][7], for 
instance.  Here, it is important to note that the 
position of ‘T’ within the bubble strongly depends 
on the initial disturbances. Since ‘R’ is related to 
the position of ‘T’ and the spreading angle αT, the 
bubble length (R – S) can be controlled by 
controlling the laminar-turbulent transition process, 
and it is the purpose of the present paper to present 
a detailed investigation of the underlying 
mechanisms.  Therefore, the basic idea is to control 
laminar-turbulent transition by introducing small-
amplitude disturbance waves upstream of the LSB.  
If these are in the unstable frequency range they 
will then grow to large amplitudes.  The earlier they 
reach a certain level, the earlier laminar-turbulent 
transition and the earlier turbulent re-attachment of 
the flow that closes the bubble. 

The paper is organized as follows.  First the 
used numerical method is presented.  Then a base 
flow is selected out of those studied in [8].  The 
linear instability of this is shown next using linear 
stability theory (LST) and comparisons with direct 
numerical simulations (DNS), followed by a dem-
onstration of the influence of different forcing fre-
quencies and disturbance amplitudes on the size of 
the LSB.  A section based on 3-d simulations shows 
that obliquely travelling waves are an equally effi-
cient means for control as 2-d waves and that un-
steady forcing is much more efficient than steady 3-
d forcing, e.g. via roughness elements.  The paper 
ends with a summary and an outlook. 

NUMERICAL METHOD 
To study laminar separation bubbles multiple direct 
numerical simulations (DNS) of a flat-plate 
boundary layer have been performed.  An adverse 
pressure gradient is applied locally at a given 
distance from the inflow at the free-stream 
boundary to force separation.  The code used for the 
present DNS has been developed, verified and 
validated for the investigation of transitional 
boundary layers without and with separation, cf. 
[9]-[13]. 

Fig. 2 displays a sketch of the used integration 
domain together with a definition of the coordinates 
and the respective velocity components.  All 
variables are non-dimensionalized with respect to 
the free-stream velocity U∞ and a reference length L 
which leads to a reference Reynolds number Re 
given further down together with the results.  The 
complete Navier-Stokes equations for incom-
pressible flows are solved in a vorticity-velocity 
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formulation [9].  A fourth-order accurate numerical 
method is applied in time and space by finite 
differences in streamwise and wall-normal direction 
and by a four step explicit Runge-Kutta scheme in 
time [11].  For the spanwise direction a Fourier 
series implying periodic boundary conditions in that 
direction is used.  Due to this the Poisson equations 
for the streamwise and spanwise velocity reduce to 
ordinary differential equations.  The remaining 2-d 
Poisson equation for the wall-normal velocity is 
solved by a line relaxation method accelerated by a 
non-linear multi-grid algorithm, once the vorticity-
transport equations have been advanced to the next 
Runge-Kutta step.  All equations can be solved 
separately for each spanwise spectral mode k 
allowing effective parallelization. 

 
Fig. 2:  Integration domain 

At the inflow boundary a Blasius boundary 
layer solution with a momentum thickness 
Reynolds number Re* = U∞⋅δ*/υ = 1722 is 
prescribed.  At the surface of the plate the no-slip 
boundary condition is applied except for a 
disturbance strip upstream of the LSB where 
periodic 2-d and 3-d boundary layer disturbances 
are introduced into the flow by suction and 
blowing.  The streamwise length of the disturbance 
strip has been set to one wavelength of the most 
amplified disturbance mode according to linear 
stability theory (LST) and the beginning is located 
approximately two wavelengths downstream of the 
inflow boundary.  For the total streamwise length of 
the integration domain 18.41 wavelengths have 
been used, and the height of the domain 
corresponds to 16 boundary-layer displacement 
thicknesses at the inflow.  To avoid non-physical 
reflections at the outflow boundary the disturbance 
amplitudes are artificially damped in a buffer 
domain by several orders of magnitude, using the 
method described in [10]. 

The laminar separation bubble is induced by a 
local deceleration of the ‘potential’ free-stream 
velocity imposed via the u-component at the upper 
boundary.  Because of Bernoulli’s equation this 
corresponds to imposing an adverse pressure 
gradient.  The displacement effects of the LSB on 
the potential flow are captured by a viscous-
inviscid boundary layer interaction model at every 
time step of the calculation (cf. [14] and [15]).  
Thus, the characteristic “pressure plateau” in the u-
velocity distribution with a constant velocity in the 

upstream part of the separation bubble and a sharp 
velocity drop in the region of transition and re-
attachment develops during the calculation (see 
next section). 

NUMERICAL RESULTS 

Three different streamwise velocity drops have 
been investigated in [8]: one with 10%, one with 
20%, and one with 25% reduction of free-stream 
velocity, where 10% means a reduction from 
U/U∞ = 1 to U/U∞ = 0.9, for instance.  A compari-
son of the three is performed in Fig. 3 in terms of 
the “potential velocity” UP, the resulting velocity 
UM at the free-stream boundary, and in terms of the 
separation streamline Ψ = 0.  Clearly, a larger ve-
locity drop leads to a larger adverse pressure gradi-
ent and hence earlier separation at the wall.  Also, 
the height of the bubble increases with rising pres-
sure gradient.  In all cases the typical “pressure 
plateau” develops in the velocity UM (thick lines) as 
a result of the implemented viscous-inviscid inter-
action [14].  Here and in the following, dimensions 
are normalized with respect to a reference length L 
and the free-stream velocity U∞ which yields 
ReL = L U∞  /υ = 105. 

 
Fig. 3:  Comparison of prescribed potential flow 
(thin lines) with resulting free-stream velocity 
(thick lines) and separation streamlines for the three 
base flows with 10% (A, ———), 20% (B, 
− ⋅ − ⋅ −) and 25% velocity drop (C, −   −   −) 

In the following, “case A” will be considered 
only, because LSB control works in a similar man-
ner in all three cases [8], as well as in those studied 
already earlier [16], [17]. 

Linear Instability of the Flow 
Using velocity profiles U(y) extracted at x = const 
from the base flow obtained via DNS a linear sta-
bility analysis can be performed based on the Orr-
Sommerfeld equation (cf. [18]).  This analysis 
yields for a given x, Re, and frequency β  complex 
streamwise wave numbers α. whose imaginary part 
αi is called the amplification rate.  Integrating αi 
versus x for fixed β  leads to the disturbance ampli-
fication ratio A/A0= e-∫α

i
dx, where A0 is the initial 

amplitude.  Fig. 4 presents results of such an analy-
sis for base flow A and A0 = 10-6.  The region of 
amplified disturbance frequencies is marked by 
increasingly dark shading.  If the frequency is cho-
sen correctly, e.g. between β = 2.5 and β = 5 a 
dramatic amplitude increase by 104 is observed for 
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the region shown.  In contrast to what one might 
presume, the strong amplification starts well up-
stream of laminar separation (S) and is not just an 
indication of an inviscid “Kelvin-Helmholtz” insta-
bility.  To make full use of these facts, the optimal 
disturbance generator placement should not be at 
the separation point but well upstream of this, i.e. in 
the region x < 12 for the present case. 

 
Fig. 4: Stability diagram for base-flow A according 
to linear stability theory 

Verification in 2-d Simulations 
The findings of the previous paragraph will now be 
checked using two-dimensional DNS.  Primary 
parameters for the specification of 2-d disturbances 
at the upstream disturbance strip are the wall-
normal suction and blowing amplitude v’ (non-
dimensionalized w.r.t. U∞) and the forcing fre-
quency ß = 2πfL/U∞, where f  is the frequency in 
Hertz.  The range of amplified frequencies observed 
in Fig. 4 is rather narrow and should be obeyed for 
an efficient bubble control strategy, as already men-
tioned above.  For the following simulations the 
frequency β = 5, indicated by the dashed line in 
Fig. 4, is chosen.  A comparison of the obtained 
amplitude amplification with according LST results 
is shown in Fig. 5.  The lines depict the maxima of 
the wall-parallel velocity disturbance component u’ 
for the fundamental mode (1/0) and its higher har-
monic (2/0), where (h/k) designates modes in the 
frequency (index h) spanwise wave number (index 
k) spectrum.  The dash-dotted lines are results of 
LST for β = 5 and β = 10 (with symbols) shown for 
comparisons with and validation of the DNS. 

Upstream of the disturbance strip (at x ≈ 11) 
the fundamental disturbance amplitude decays to 
zero while the downstream growth corresponds 
over a large extent to the one predicted by LST.  
Since the higher harmonic is generated as a product 
of the fundamental with itself, it amplifies faster 
than its according LST results (lines with squares).  
Overall, both disturbances grow over several orders 
of magnitude until non-linear saturation which 
correlates with the formation of vortices in Fig. 6 
further down.  At vortex shedding the fundamental 
amplitude and its higher harmonic remain quasi 
constant.  The point of non-linear amplitude satura-
tion corresponds to point ‘T’ in the idealized sketch 
of Fig. 1. 

 
Fig. 5:  Comparison of the growth of the fundamen-
tal disturbance (1/0) and its first harmonic (2/0) 
(marked with ■) with LST (dash-dotted lines) 

Here, the reader should remind that laminar-
turbulent transition and its influence on the laminar 
separation bubble are both non-linear phenomena 
and that their prediction needs a full (non-linear) 
simulation, i.e. linear theory can only give a some-
what limited insight into the useful parameter 
range.  It cannot predict laminar-turbulent transition 
and its impact on the bubble size.  This is why the 
higher harmonic doesn’t behave according to LST.  
In addition, once the bubble has become smaller the 
linear instability of the flow is somewhat reduced.  
Nevertheless, most of the disturbance growth fol-
lows linear instability closely and LST can be used 
to estimate the effect of choosing different forcing 
frequencies.  In addition, LST helps to explain the 
initial mechanisms.  Thus, the investigation of the 
non-linear effects of unsteady forcing on the lami-
nar separation bubble can so far only be investi-
gated by full DNS. 

As an illustration, results of one such simula-
tion (frequency β =5 and amplitude v’=10-6) are 
shown in Fig. 6 in terms of the instantaneous vortic-
ity ωz and the time-averaged separation streamline.  
The location and extend of the disturbance strip is 
again marked by a box at x ≈ 11.0.  The shear layer 
detaches from the surface at ‘S’ and reattaches at 
‘R’ in the time mean.  Downstream of the LSB a 
very high wall shear develops which resembles the 
high wall shear of a turbulent boundary layer de-
spite the fact that only two-dimensional simulations 
have been performed here, and that a rather regular 
vortex shedding occurs in Fig. 6 due to the periodic 
forcing with a single frequency.  It turned out that 
the wall-normal momentum transfer induced by 
these vortices mimics the turbulent transport to a 
large extend.  For instance, the shape parameter of 
the present boundary layer after re-attachment is 
close to H = 2.0 while the one for a turbulent 
boundary layer is H = 1.4 – 1.5.  Inside the present 
bubble the shape factor rises to H ≈ 7.  Upstream of 
x ≈ 13 the disturbances are too weak to be seen in 
Fig. 6.  This is why a logarithmic scale has been 
used in Fig. 5. 
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Fig. 6: Comparison of instantaneous vorticity with time averaged separation streamline and placement of distur-
bance strip 

Effect of Disturbance Frequency 
Results of LST in Fig. 4 have indicated the fre-
quency band necessary for an efficient control.  
Two possible discrete frequencies have been indi-
cated by horizontal lines there.  Fig. 7 presents 
results for the lower disturbance frequency β = 2.5 
in comparison with according LST results and the 
fundamental β = 5 from the previous case (dash-
dotted line).  A striking difference to Fig. 5 is that 
the higher harmonic (β = 5) lies also within the 
unstable region such that its growth agrees to an 
equally large extend with LST as the growth of the 
fundamental. 

However, compared to the earlier case the fun-
damental of the present case (solid lines) grows 
somewhat slower after x = 13 such that non-linear 
saturation of the disturbances (T*) occurs farther 
downstream than in the first case (T).  Since the 
position of re-attachment is related to T, there is 
later re-attachment (large arrow at x ≈ 15) com-
pared to the first case (small arrow), such that the 
laminar separation bubble becomes larger.  Interest-
ingly, the point of laminar separation moves up-
stream at the same time (large vs. small arrow), an 
effect already observed earlier [5]. 

 

Fig. 7:  Fundamental and higher harmonic distur-
bance growth for forcing with β = 2.5 compared to 
β = 5 (dash-dotted line) and LST 

Thus, despite the same forcing amplitude and 
identical initial growth of the disturbances in the 

two cases, bubbles of different size develop.  This 
is emphasized by means of the two separation 
streamlines in Fig. 8.  It turns out that the larger of 
the two disturbance frequencies is more efficient for 
LSB control, because it produces earlier laminar-
turbulent transition and a smaller bubble. 

 
Fig. 8:  Comparison of separation streamlines for 
forcing with v’ = 10-6 and two different frequencies 

Effect of Increasing Disturbance Amplitudes 
The disturbance amplitudes v’ of the fundamental 
mode (1/0) β = 5 have been successively increased 
to find the relation between bubble size and forcing 
amplitude and to see whether the bubble can be 
made to completely disappear in the limit.  The 
according bubbles are compared in Fig. 9.  Indeed, 
there is a continuous reduction in bubble height, a 
downstream shift of ‘S’, and an upstream shift of 
‘R’ as the forcing amplitude is increased from 10-6 
to 2⋅10-4. 

Fig. 9:  Separation streamlines for increasing forc-
ing amplitudes 

Since the instability of the base flow decreases, 
once the size of the LSB gets smaller, the additional 
energy input to influence the LSB increases in a 
non-linear manner.  Initially, the relation between 
bubble size and forcing amplitude is exponential as 
can be seen from an evaluation of the separation- 
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and re-attachment-point positions versus forcing 
amplitude v’, as well as the bubble length in 
Fig. 10. 

 

 
Fig. 10:  Evolution of separation position (■)and re-
attachment position (▲) with disturbance amplitude 
v’ (top); evolution of bubble length (bottom) 

The differences between the various cases are 
quite dramatic as illustrated in Fig. 11 by a com-
parison of the streamwise velocity profiles near the 
re-attachment position of the smallest bubble. The 
profile of the unforced case is shown as a solid line. 

 

Fig. 11: Mean-flow velocity profiles at x = 13.85 
for the cases with different forcing amplitudes 

Integral boundary-layer parameters of the cases 
with smallest and largest forcing, i.e. largest bubble 
and no bubble, are compared in Fig. 12.  There is a 
three-fold increase of displacement thickness over 
the bubble and a two-fold increase of momentum 
thickness.  When the bubble is suppressed both 

parameters increase to a lesser extend.  Since a 
larger momentum thickness is indicative of more 
drag according to v. Karman’s integral momentum 
equation, it turns out that reducing the LSB must 
lead to a drag reduction. 

 
Fig. 12: Influence of forcing amplitudes (v’ = 10-6 
and v’ = 2⋅10-4, no symbols and symbols, resp.) on 
displacement and momentum thickness Reynolds 
numbers (solid and dash-dotted lines, resp.) 

Effects of Three-Dimensional Forcing 

Since 3-d disturbances can be generated much eas-
ier in practice than perfect 2-d ones, one has to 
consider the efficiency of using 3-d disturbances for 
laminar separation bubble control, as well.  This is 
done now by adding a 3-d forcing to the fundamen-
tal 2-d case from the previous figures.  The forcing 
of the 2-d fundamental is now denoted by (1/0) in 
the frequency spanwise wavenumber spectrum 
(h/k).  Its amplitude v’ is kept at its previous level 
of 10-6, while the 3-d mode (1/1) is initially forced 
at a 10-times larger level v’ = 10-5.  Here, the fun-
damental spanwise wavenumber k is set to 5.4596 
which corresponds to a spanwise wavelength of 
λz = 1.15 and an angle of obliqueness of φ = 20o 
relative to the free-stream direction.  Adding this 
disturbance is equivalent to adding a pair of oblique 
waves (1/±1) because of spanwise symmetry im-
posed by the Fourier ansatz in z. 

The disturbance amplification in Fig. 13 indi-
cates now that mode (1/1) dominates the whole 
process with the consequence that 3-d higher har-
monics grow to large levels, i.e. turbulence sets in 
much earlier now with according consequences on 
the separation bubble and its boundary layer pa-
rameters.  These latter are illustrated in Fig. 14 by 
comparing the case with increased 3-d forcing 
(1/1), identified with symbols, with the reference 
case from above. 

The reaction of the flow to the oblique waves is 
comparable to a 10-fold increase of the 2-d forcing:  
The length of the laminar separation bubble de-
creases, and so does its height.  Shape parameters 
and Reynolds numbers show an according differ-
ence.  Because of a nearly identical growth of the 3-
d disturbance (1/1) in comparison with the 2-d (1/0) 
the laminar separation bubble can be controlled by 
either of the two at practically the same efficiency.  
However, downstream of the bubble the full 3-d 
case delivers a flow that resembles a fully turbulent 
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boundary layer better than in the reference case, 
because of a lower shape factor. 

 
Fig. 13:  Disturbance amplification for increased 3-
d forcing at v' = 10-5 

 
Fig. 14:  Comparison of boundary layer parameters 
for increased 3-d forcing (1/1) with 2-d forcing 
(Ref) 

Steady vs. Unsteady Three-Dimensional Forcing 

The next investigation will now show the effect of 
using a steady 3-d forcing to control the bubble.  
Such an approach is closer to “more traditional” 
techniques, like applying a row of small bumps 
upstream of separation that cause turbulence in 
order to prevent laminar separation.  For this inves-
tigation the spanwise wavenumber has been in-
creased to 15 which corresponds to a spanwise 
wave length of 0.4189 in the present scaling.  To 
simulate such a steady 3-d ‘roughness’, mode (0/1) 
has been forced with v’ = 10-3 in addition to the 
other modes in the reference case from above. 

The resulting disturbance growth of individual 
modes is shown in Fig. 15.  Initially, the spectrum 
is dominated by the steady 3-d mode and its higher 
harmonics (0/k), but in contrast to the travelling 
ones, these are only moderately amplified.  More on 
the amplification of steady modes in a flow with 
LSB can be found in [19]. 

Apparently, the laminar-turbulent transition 
process is not much affected by the additional 
steady disturbance, despite its large initial ampli-
tude.  This can be explained by the fact, that adding 
a steady roughness doesn’t directly produce turbu-
lence (which is inherently unsteady).  The latter can 
only occur when wall-roughness interacts with 
fluctuations of the free stream.  Hence, in practice, 
large roughness is needed to cause laminar-
turbulent transition via some bypass-mechanism, 
i.e. one without linear amplification of disturbances 

(in contrast to the driving mechanism in the present 
investigations). 

 
Fig. 15:  Disturbance amplification under the influ-
ence of a steady 3-d disturbance (0/1) 

In accordance with the above discussion the 
boundary layer parameters in Fig. 16 show that the 
effect of the steady 3-d forcing is decent, despite 
the 1000-fold larger amplitude compared to the 2-d 
unsteady forcing above!  The bubble shapes and the 
evolution of Reynolds numbers and shape factors 
remain practically unaltered. 

 
Fig. 16:  Comparison of boundary layer parameters 
for large-amplitude steady 3-d forcing (0/1) with 
the reference case (Ref) 

A visualisation of the 3-d separation surface 
(i.e. an approximation of the surface that separates 
the time-averaged recirculating flow inside the 
bubble from the external stream) shows that the 
steady 3-d disturbance amplitude was indeed con-
siderably large such that it causes longitudinal 
grooves in the bubble (Fig. 17).  Its inefficiency is 
hence not caused by a too small amplitude! 

 
Fig. 17:  Separation stream surface in case of large-
amplitude steady 3-d forcing 
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CONCLUSIONS AND OUTLOOK 

The above results show the advantages of the exci-
tation of unsteady 2-d or 3-d disturbances with 
respect to “more traditional” approaches which rely 
on steady forcing.  In order to provide the necessary 
unsteady disturbance amplitude, a possible control 
system for LSBs would consist of a frequency gen-
erator, an amplifier and an actuator, as already 
discussed in [16], mainly because it suffices to 
provoke laminar-turbulent transition by some ap-
propriate means without an urgent need for some 
highly sophisticated controller.  In fact, a simple 
switch that turns LSB control on or off when ap-
propriate could be sufficient, once the different 
flow situations are understood well enough.  As 
also shown in [16], the frequency generator could 
be replaced by a feed-back of instantaneous skin 
friction signals obtained from a position down-
stream of the separation bubble.  The broad band of 
frequencies in the most unstable frequency range 
due to hydrodynamic instability then provides a 
robust signal source for the actuator, after an appro-
priate reduction to lower amplitudes.  In a further 
step, distributed skin-friction sensors could be de-
vised to detect the separation length via time-
averaged skin-friction signals, which in turn could 
be used to control the feed-back amplitude gain, 
and hence the bubble. 

In summary, it has been shown that separation 
bubbles can be significantly reduced in size and 
finally removed very economically by low-
amplitude boundary layer disturbances, at least for 
the aerodynamic configurations investigated so far.  
Because of a good agreement of boundary-layer 
parameters with those found in LP turbines, and 
because of the excellent reproduction of such flows 
in a flat-plate boundary layer (see [3], for instance) 
it is expected that the present concept is equally 
valid in a turbo machine environment as in the 
laminar-flow airfoil context, where it was initially 
intended for. 
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