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Summary 

Control of a transitional laminar separation bubble using steady and unsteady 2D 
and 3D Tollmien-Schlichting (TS) like boundary-layer disturbances is investigated 
by means of direct numerical simulations.  The specific influence of different 
disturbance modes which allow an effective reduction of the reverse-flow region 
is illustrated.  It is shown that unsteady 2D or 3D control is more efficient than 
steady 3d control. 

Introduction 

Adverse pressure gradient (APG) boundary layers at low to medium Reynolds 
numbers are strongly susceptible to laminar separation.  Due to the deceleration of 
the flow the laminar boundary layer separates from the surface, laminar-turbulent 
transition occurs at a certain distance from the separation line and the now 
turbulent flow reattaches subsequently.  The area of reverse flow and therefore 
negative skin friction between separation and reattachment is called a “laminar 
separation bubble” (LSB) or alternatively a “transitional separation bubble”, 
because of laminar-turbulent transition.  Despite the effect of lowering the skin 
friction within the bubble, the LSB has an undesired influence on the global 
pressure distribution of the airfoil and causes an undesired drag rise. 

Numerical Method and Reference Case 

To investigate laminar separation bubbles spatial direct numerical simulations 
(DNS) of a flat plate boundary layer with a 2D base flow and an applied APG at 
the free-stream boundary are performed.  The DNS code has been used in different 
research programs for the investigation of transitional boundary layers without and 
with laminar separation  The complete Navier-Stokes equations for 
incompressible flow are solved in a vorticity-velocity formulation based on three 
vorticity-transport equations and three Poisson equations (for the three vorticity 
and velocity components, respectively).  Non-dimensionalisation is done with 
respect to (w.r.t.) the free-stream velocity U∞ = 30 m/s, a characteristic length 
L = 0.05 m and the kinematic viscosity υ = 15⋅10-6 m2/s.  The equations are 
discretised using fourth-order-accurate finite differences in streamwise and wall-
normal directions and a spectral representation in spanwise direction.  A fourth-
order-accurate Runge-Kutta scheme is used for integration in time. 



 

Figure 1:  Integration domain for DNS of LSB control 

The integration domain is sketched in Figure 1.  At the inflow boundary (A-B) a 
Blasius boundary layer solution with Reδ* = 1722 is prescribed and the potential 
flow at the free-stream boundary (B-C) is decelerated by 10 % of U∞  such that 
laminar separation takes place.  The displacement effects of the LSB on the 
potential flow are captured by a viscous-inviscid boundary layer interaction model 
[5] at every time step of the calculation.  On the surface of the plate the no-slip 
condition is applied except for a disturbance strip upstream of the LSB where 
controlled 2D and 3D boundary layer disturbances can be introduced into the flow 
by suction and blowing.  However, the present LSB is so unstable that the small 
numerical disturbance background suffices to produce an unsteady flow which is 
characterized by unsteady vortex shedding in the rear part of the LSB (cf. [2]). 

 

Figure 2:  Illustration of time-averaged streamlines and wall-friction coefficient. 



The resulting time-averaged flow with LSB is illustrated in Figure 2 by means of 
streamlines and wall-shear stress.  Laminar separation and (temporal mean) re-
attachment are marked by the letters ‘S’ and ‘R’, respectively.  The separation 
streamline Ψ = 0 is shown as a thick line to exemplify the shape of the LSB.  The 
oscillations of the skin friction behind ‘R’ are due to non-periodicity and an 
insufficiently long time series for averaging of the instantaneous data.  They have 
no influence on the following investigations. 

The next step is to control the flow using periodic suction and blowing at the wall.  
Primary parameters for the specification of disturbances are the maximum 
amplitude of the wall-normal velocity component v’, the disturbance frequency β 
and whether the disturbance is two- or three-dimensional.  This latter case is 
identified by multiples of the fundamental spanwise wave number γ  of the Fourier 
method used in z direction.  After a Fourier analysis of the unsteady flow w.r.t. 
time one obtains the so-called frequency-spanwise-wavenumber spectrum, whose 
modes are indicated by two indices (h/k), where h, and k indicate multiples of β 
and γ, respectively, such that k = 0 indicates two-dimensional disturbances and 
h = 0  represents steady wave components. 

 

Figure 3:  Disturbance amplification of modes in the frequency-spanwise-wavenumber 
spectrum 

The spatial evolution of two-dimensional disturbances from a 2D disturbance strip 
placed at x ≈ 11 are shown in Figure 3.  The fundamental disturbance frequency 
corresponds to β = 2πfL/U∞ = 5, where f  is the frequency in Hertz.  Disturbance 
growth due to hydrodynamic instability starts already far upstream of laminar 



separation (S).  Many higher harmonic wave components develop with increasing 
amplitude until non-linear saturation (indicated by a vertical line).  This non-linear 
saturation corresponds to formation of large-amplitude vortices in the separated 
shear layer which are then convected downstream at practically constant 
amplitude.  The enhanced wall-normal momentum transfer forces the shear layer 
to re-attach at (R) in the temporal mean.  The small subharmonic (0.5,0)  indicates 
that a high degree of periodicity has been obtained. 

Simulation of LSB Control 

The present control scheme relies on a careful and efficient adjustment of the 
laminar-turbulent transition location in the LSB.  Starting with 2D investigations 
using DNS and linear stability theory (LST) [2], [8] the scope of the present work 
also includes the effects of steady and unsteady 3D disturbances [1], [3].  

The effect of increasing the upstream suction and blowing amplitude for 2D 
forcing is illustrated in Figure 4 by means of the separation streamlines for six 
different cases.  For the largest disturbance amplitude v’= 2⋅10-4 the LSB has just 
disappeared.  These results illustrate that the LSB not only shrinks by an earlier re-
attachment because of earlier laminar-turbulent transition as the forcing amplitude 
is increased, but that laminar separation occurs also later then.  We attribute this 
latter effect to less displacement of the boundary layer for shallower bubbles [7]. 

 

Figure 4:  Separation streamlines for different wall-forcing amplitudes 

Comparing the case with the smallest to the one with largest forcing amplitude in 
Figure 5 one observes a considerable reduction in displacement thickness δ1 and 
shape factor H12 as the bubble disappears.  Since the momentum thickness δ2 is 
also reduced w.r.t. the reference case, an according drag reduction is also 
observed.  Thus, the aim of the present control scheme, to contribute to drag 
reduction, can be fully achieved by using 2D disturbances. 



 

Figure 5:  Comparison of Reynolds numbers based on displacement thickness (δ1 ) and 
momentum thickness (δ2 ) as well as the shape factor H12 = δ1 / δ2 for the case with smallest 

and with largest forcing amplitude. 

 

Figure 6:  Disturbance amplification of selected modes for the case with steady 3D forcing 

Now we turn our attention towards a case forced by a steady 3D disturbance mode 
(0,1) (bold dash-dot-dotted line with squares) excited at the disturbance strip with 
a wall-normal amplitude v'(0,1) = 10-3, see Figure 6.  It turns out that the 
disturbance amplitude of mode (0, 1) is weakly damped at first and then weakly 



amplified far into the bubble.  Only at x ≈ 14.2 it grows close to the point of non-
linear saturation which marks transition.  A higher spanwise harmonic mode (0, 2) 
(dash-dot-dotted line with deltas) is generated by non-linear interaction of the 
mode (0, 1) with itself.  At the disturbance strip an additional 2D mode (1, 0) 
(solid line) of fundamental frequency has been excited to mimic background 
disturbances with an initial amplitude v'(1,0) = 10-6, three orders of magnitude 
below the amplitude of the 3D mode (0, 1).  This TS mode becomes strongly 
amplified by base-flow instability and exceeds the amplitude of the 3D mode 
(0, 1) at x = 13.8.  It supersedes the steady mode (0, 1) as the most dominant 
disturbance.  An oblique fundamental mode (1, 1) is generated by nonlinear 
interaction of the (1, 0) and (0, 1) modes continuously and finally reaches the 
amplitude of the 3D steady mode.  The whole scenario is dominated by unsteady 
2D effects and three dimensionality plays only a minor role.  Figure 7 shows the 
3D modulation of the separation stream surface Ψ0 with the spanwise wavelength 
of mode (0, 1), marked by λz,(0,1).  The separation stream surface Ψ0 has been 
defined as the value of the y-coordinate where the stream function Ψ = Ψ(x, y, z) 
becomes zero. 

 

Figure 7:  Time averaged separation stream surface for the case with steady 3D forcing 

In a second scenario an oblique 10o unsteady mode (1, 1) only (bold solid line 
with squares in Figure 8) is introduced into the same base flow as before.  The 
initial disturbance amplitude of mode (1, 1) has been set to v'(1,1) = 10-5 at the wall.  
Again, an unsteady 2D background disturbance (1, 0) (solid line) is also present 
with the same initial amplitude v'(1, 0) = 10-6, as before.  For verification purposes 
the development of the 2D mode (1, 0) is compared to linear stability theory.  Due 
to its very low amplitude even inside the LSB the mode shows very good 
agreement with the theory up to saturation.  In contrast to the first case the wall-
forced unsteady TS mode (1, 1) is strongly amplified by boundary layer instability 
and continues to be the most dominant mode.  Although equally amplified, the 2D 



mode (1, 0) stays below the oblique one due to its lower initial amplitude.  
Because of the strong amplification of mode (1, 1) non-linear stages of the 
disturbance development (≈ 1% U∞) are reached at x = 14.0, i.e. somewhat further 
upstream than in the steady 3D case.  The point of laminar-turbulent transition and 
thus the reattachment is shifted upstream likewise.  In this case the separation 
stream surface Ψ0 (not shown) has no spanwise undulations.  Compared to the 
previous one in Figure 7 the LSB is now reduced in length and height to about 
72 % – 76 % of the undisturbed bubble, despite the fact that the initial disturbance 
amplitude of the (0, 1)–mode in the steady 3D case was hundred times larger than 
the amplitude of the (1, 1)–mode in the unsteady case.  This is due to the feature 
of hydrodynamic instability that unsteady waves with small angles of obliqueness 
are nearly as amplified as 2D waves [8].  This clearly shows the superiority of 
unsteady control compared to steady control.  Additional simulations [1] showed 
that the bubble vanishes totally at an initial disturbance level of v'(1,1) = 10-3. 

 

Figure 8:  Disturbance amplification of selected modes for the case with unsteady 3D 
forcing 

Conclusions and Outlook 

Laminar separation bubbles have been investigated by means of direct numerical 
simulations in an adverse pressure gradient flow over a flat plate.  Different steady 
and unsteady boundary layer disturbances were introduced within a disturbance 
strip upstream of the separation and their effects on the separation bubble have 
been studied.  2D or weakly 3D unsteady disturbances have a stronger impact on 
the size of the bubble than steady disturbances because they make use of 
hydrodynamic base-flow instability.  An initial amplitude for an unsteady 2D or 



3D disturbance two to three orders of magnitude lower than a steady disturbance 
is sufficient to attain the same or even larger effect on the LSB.  As already shown 
in [3], the necessary unsteady disturbance amplitude for an efficient LSB control 
can be obtained by a signal feedback mechanism, where instantaneous amplitude 
signals of the skin-friction downstream of the LSB are used as an unsteady input 
to the disturbance strip (actuator).  Extended by an automatic adjustment of the 
amplitude gain to the currently detected size of the LSB, a fully automatic system 
appears feasible that does not need any interaction by the pilot or the flight 
management system.  In order to arrive at this end, an automatic sensor array is 
needed to detect the extent of the LSB.  An according suggestion based on 
instantaneous wall shear-stress measurements is also made in [3]. 
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