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Summary

A laminar separation bubble is formed in a region of adverse pressure gradient on
a flat plate by a separating boundary layer that undergoes transition, finally lead-
ing to a reattached turbulent boundary layer. Linear amplification of steady three-
dimensional disturbances in the flow before separation and in the laminar part of
such a separation bubble is studied by means of direct numerical simulation and
an adjoint-based optimization technique suited to study spatial optimal transient
growth. The steady disturbances develop as streaks following their excitation in the
region of favorable pressure gradient. At separation and inside the bubble, numeri-
cal and experimental results show good agreement with theoretical predictions for
the optimal disturbance. The growth rate of the steady disturbance is seen to possess
a maximum around the spanwise wave length that was found to be a preferred one
in the corresponding experiment.

1 Introduction

Transition to turbulence in a two-dimensional separated boundary layer often leads
to reattachment of the turbulent boundary layer and the formation of a laminar sep-
aration bubble (LSB). In many cases, the transition process is solely governed by
a strong amplification offluctuatingdisturbances. However, for environments with
higher free-stream disturbance levels or if a strong favorable pressure gradient pre-
cedes the adverse pressure gradient,steady3-d disturbances are sometimes observed
inside the LSB. Research of bypass transition in zero pressure-gradient boundary
layers revealed the possibility of transient growth of such disturbances that are often
referred to as streaks [1, 2]. Despite the notation ”bypass transition”, amplification
of these perturbations can still be a linear process [3].

While it is now commonly accepted that the process of formation of 3-d streaks
in flat-plate boundary layers can be caused by transient growth, the appearance of
3-d perturbations in separated flows was in the past frequently attributed to a Görtler
instability[4, 5]. Amplification of corresponding streamwise vortices is a result of



streamline curvature around the separation location. Presence of streaks in conjunc-
tion with separated flows was experimentally observed in [6], but not related to
transient growth. Their development in LSBs and their relation to transient growth
has only recently been studied experimentally and theoretically [7].

This work is a continuation and extension of a DNS study on 3-d steady dis-
turbances that was published in [8]. Therefore, a brief summary of the findings of
[8] shall be given here. Four different ways of exciting a steady perturbation either
directly via blowing/suction at the wall or by non-linear generation were applied
in that study. Even though all cases showed the same finally disturbance shape and
growth rate inside the LSB, overall best agreement with a corresponding experi-
ment could be achieved by forcing a pair of oblique waves in the region of favorable
pressure gradient. In that case, an initial streamwise vortex relaxed into a streak
downstream after a long region of transient behavior.

2 Description of the Flow Field

The reference case is chosen according to a set-up that has been studied extensively
by means of numerical and experimental methods[9, 10]. A flat plate is mounted in
the free stream of the test section of a laminar water tunnel. A streamwise pressure
gradient is imposed locally on the flat-plate boundary layer by a displacement body,
inducing a region of favorable pressure gradient followed by a pressure rise (Fig. 1).
In the region of adverse pressure gradient (APG,x̆ > 0m), a laminar separation
bubble develops. A rough estimate of the pressure gradient parameter (see [11])
for the APG-region givesP=δ̆2/ν̆ · ∂ŭslip/∂x̆|Separation ≈ −0.23. The transition
experiment is performed with controlled disturbance input. Perturbations are forced
at x=−0.23 by an oscillating wire with regularly placed 3-d roughness elements
(spacers) underneath the wire.

Non-dimensionalization is achieved by a reference velocityŬref =0.15 m/s≈
1.2 · Ŭ∞ and a reference length̆Lref =2/3 m (≈ length of the body̆LExp

DB =0.69m),
resulting in a Reynolds numberReglobal=105 in water. At the streamwise position
of the inflow boundaryxifl=−0.6, the observed boundary-layer profile can be ap-
proximated by a Falkner-Skan similarity solution withReδ1=900 andβH=1.03.

To obtain a base flow for subsequent stability calculations (of theoretical nature
or based on the Navier-Stokes equations in disturbance formulation), a DNS with
controlled disturbance input had to be carried out to generate a laminar separation
bubble close in shape to the experimental one. General physical parameters of the
flow were chosen to match the set-up described above as accurately as possible.
Details of this precursor computation can be found in [12].

The resulting unsteady flow field was averaged in time and subsequently used as
a base flow with a heightymax=0.12. Fig. 2 shows the streamwise evolution of some
boundary-layer parameters to provide an impression on the flow field. As argued in
[8, 12], for the laminar part of the LSB the flow field can be well assumed to be a
sufficiently accurate solution to the steady Navier-Stokes equations.



3 Theoretical and Numerical Methods

3.1 Theoretical Method to Compute Optimal Disturbances

The present paper puts its focus on physical aspects regarding the disturbance de-
velopment. Therefore, the applied methods are described only very briefly. For the-
oretical investigations, an iterative adjoint-based optimization algorithm is applied.
The method is based on the linearized boundary-layer equations. It serves to maxi-
mize the kinetic disturbance energy at the downstream positionx1 for a given initial
energy at the inflowx0. Details of the applied method can be found in [13, 14].

In wall-normal direction a spectral method based on Chebychev polynomials
with 106 collocation points was used, while the second-order marching procedure
in streamwise direction involved173 steps for the longest domain (reaching from
x0=−0.6 to x1=0.33). Five different streamwise stations were used as inflow po-
sition (x0=−0.6, −0.45,−0.3,−0.15,0, respectively), while the outflow was kept
fixed atx1=0.33.

If the downstream location for the optimization procedure, i.e. for the theoretical
method, is extended beyondx ≈ 0.33, convergence can not be achieved anymore.
This seems to be related to the reverse-flow of the base flow profile, since artificially
setting this reverse flow to zero allows to compute through the entire separation
bubblewithoutgiving a visible change in the results up tox=0.33.

3.2 Numerical Method for Direct Numerical Simulations

Spatial direct numerical simulation of the three-dimensional unsteady incompress-
ible Navier-Stokes equations in disturbance formulation serves to compute the dis-
turbance development in the flow field described above. The method uses finite dif-
ferences of fourth/sixth-order accuracy on a Cartesian grid for downstream (N=1794)
and wall-normal (M=241) discretization [15]. Grid stretching in wall-normal direc-
tion allows to cluster grid points near the wall. In spanwise direction, a spectral
ansatz is applied (K=5). To reduce computational effort, spanwise symmetry is as-
sumed for calculations. An explicit fourth-order Runge-Kutta scheme is used for
time integration. The domain for direct simulations covers the streamwise interval
x ∈ [−0.6, 0.6182]. Upstream of the outflow boundary a buffer domain starting at
x ≈ 0.45 smoothly returns the flow to a steady laminar state.

Disturbances are forced via blowing and suction at the wall through a distur-
bance stripx ∈ [−0.4268,−0.3398]. Similarly to caseB11 of [8], a pair of un-
steady oblique 3-d perturbationsAv(1,±1)=1.164 · 10−2 is forced in the distur-
bance strip. The fundamental frequency wasβ0=30.7 and the fundamental spanwise
wavenumberγ0=72.0. As demonstrated in [8], such forcing results in an immedi-
ately decoupled steady mode (0, 2) that is then linearly amplified. As for a linearized
Navier-Stokes calculation, no steady-state solution can be obtained anymore for an
integration domain where the useful region extends further thanx ≈ 0.45.



4 Results

A double Fourier transform in time and spanwise direction of data sets from mea-
surements or computations yields disturbance amplitudes and phases. Below, the
notation(h, k) will be used to specify the modes, withh and k denoting wave-
number coefficients in time and spanwise direction, respectively.

The issue of optimal growth was not explicitly addressed in [8], but results pre-
sented there already allow a short discussion of this matter. If we focus on the distur-
bance evolution in the four small-amplitude casesBxx of [8] and consider only the
(decoupled) linear evolution of the steady disturbance slightly downstream of the
disturbance strip, we observe (Fig. 3, left) that the perturbation for caseB11 possess
the lowest initial amplitude for the streamwise velocityû′ – note that the forcing
amplitudes were adjusted so that they reach the same final state. Even if we would
consider as a criterion the (kinetic) energy instead of theû′-amplitude, still caseB11

would give the optimal growing perturbation, since in all casesv̂′, ŵ′ ¿ û′. For that
reason, below we will deal only with the case of an excitation by an oblique pair
of waves as described above. In sec. 4.1, a comparison with theoretical results is
discussed while sec. 4.2 investigates the influence of the spanwise wave length.

4.1 Optimal Growth: DNS and Theory

Results of the theoretical optimization procedure for all the considered inflow po-
sitions x0 are compared with numerical results in Fig. 3 (left). Good agreement
of theoretical and DNS results is observed for the streamwise disturbance velocity
component, if the inflow position for theoretical calculations is chosen upstream
of the disturbance strip in the DNS. Inside the separation bubble, DNS as well as
theoretical results become independent on the initial (inx) condition. However, for
x > 0.225, i.e. inside the LSB, the theoretical prediction gives slightly larger growth
rates compared to the DNS. Wall-normal and spanwise velocity components from
theory also agree well with DNS (Fig. 3, right), even though the largest differences
can be seen in the wall-normal componentv̂′.

The reason for the mentioned differences are due to different shapes of the wall-
normal amplitude functions. These are given in Fig. 5 for three different streamwise
locations (from left to right) and all three velocity components (from top to bot-
tom). Similar to transient growth in a Blasius boundary-layer, an initial streamwise
vortex (Fig. 5,x=−0.15) relaxes into a streak inside the LSB (x=0.3). Even though
theoretical and DNS results possess a slightly different amplitude function initially,
inside the separation bubble an almost perfect matching is observable.

As pointed out before (sec. 3.1), downstream ofx ≈ 0.33 theoretical compu-
tations fail to converge, but DNS results still show good agreement with the exper-
imental data (Fig. 3, right and Fig. 5 forx=0.405). This hints at the possibility of
elliptic effects, not captured by the boundary-layer equations, to set in. However,
additional research is necessary for further clarification.



4.2 Influence of the Spanwise Wave Length

A free parameter neglected in the study [8] shall be investigated here: the spanwise
wave number. Motivation of such a study comes from the question why in the exper-
iment – of all spanwise wave lengths – the one corresponding to mode(0, 2) in the
present nomenclature appears to be a preferred wave length of the set-up. In the ex-
periment, the wave length was chosen by ’trial-and-error’, i.e. the length of, and gap
between, the spacers (see Fig. 1) was varied until the most regular vortical structures
appeared [16, 9, 10]. These showed only a weak deviation from a sinusoidal shape
in spanwise direction around the separation location.

Fig. 4 shows results for the entire investigated parameter space. Focus is put on
thex-positions that are located in the region of adverse pressure gradient (x=0.15)
and at separation (x=0.225). As for the theoretical results, a local maximum in am-
plification rate (Fig. 4, left) occurs for a wave number close to mode(0, 2), while
the DNS results possess such a maximum only forx=0.3 (not shown). Results for
very small spanwise wave numbers (γ < 72) become inaccurate due to too low
integration domains in wall-normal direction.

Despite the amplification rates from DNS being largest for small spanwise wave
numbers (Fig. 4, left) in the present scenario, it becomes clear that in particular these
perturbations experience a strong penalty in absolute amplitude (Fig. 4, right). The
reason for this lies in the consideration of transient growth alongx (and in case of
DNS also receptivity matters) that is taken into account only in the latter case.

5 Conclusion

The present study sheds some light on the origin and linear evolution of steady,
spanwise-harmonic perturbations in a laminar separation bubble. All calculations
discussed are based on a case for which a profound experimental data base exists.

Good agreement of DNS, theory, and measurements suggests that inside the
separation bubble, indeed the optimal steady three-dimensional disturbance could be
observed in the present case. Furthermore, the experimentally determined spanwise
wave number was confirmed to be the most preferred one of the whole set-up.
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Figure 1 Configuration for the experiment by Lang et al. [9, 10]. The integration domain
used for DNS and theory is indicated by a box (not to scale).
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