
J. Fluid Mech. (2010), vol. 660, pp. 37–54. c© Cambridge University Press 2010

doi:10.1017/S0022112010001047

37

Mean flow deformation in a laminar separation
bubble: separation and stability characteristics

OLAF MARXEN1,2† AND ULRICH RIST1

1Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Paffenwaldring 21,
70550 Stuttgart, Germany

2Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA

(Received 3 December 2008; revised 22 February 2010; accepted 25 February 2010;

first published online 17 August 2010)

The mutual interaction of laminar–turbulent transition and mean flow evolution is
studied in a pressure-induced laminar separation bubble on a flat plate. The flat-plate
boundary layer is subjected to a sufficiently strong adverse pressure gradient that a
separation bubble develops. Upstream of the bubble a small-amplitude disturbance is
introduced which causes transition. Downstream of transition, the mean flow strongly
changes and, due to viscous–inviscid interaction, the overall pressure distribution
is changed as well. As a consequence, the mean flow also changes upstream of
the transition location. The difference in the mean flow between the forced and
the unforced flows is denoted the mean flow deformation. Two different effects are
caused by the mean flow deformation in the upstream, laminar part: a reduction of
the size of the separation region and a stabilization of the flow with respect to small,
linear perturbations. By carrying out numerical simulations based on the original
base flow and the time-averaged deformed base flow, we are able to distinguish
between direct and indirect nonlinear effects. Direct effects are caused by the quadratic
nonlinearity of the Navier–Stokes equations, are associated with the generation of
higher harmonics and are predominantly local. In contrast, the stabilization of the
flow is an indirect effect, because it is independent of the Reynolds stress terms in the
laminar region and is solely governed by the non-local alteration of the mean flow
via the pressure.

1. Introduction
In a flow along a rigid body with a sufficiently high Reynolds number, such as the

straight wing of an unmanned aerial vehicle, layers of rotational flow occur close to
the surface of the body. It is characteristic for these so-called boundary layers that
only the upstream part of the flow determines its downstream development and not
vice versa. This observation allows a mathematical description based on a parabolic
set of partial differential equations: the boundary-layer equations (Prandtl 1904). The
pressure remains constant in the wall-normal direction and the adjoining potential
flow governs the evolution of the boundary layer via the pressure. Two distinct states
of a boundary layer are observable: the laminar state and the turbulent state. The
region marking the change from the laminar to the turbulent state is denoted the
transition region.

† Email address for correspondence: olaf.marxen@stanford.edu
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For a very strong adverse pressure gradient (APG), a boundary layer will detach
from the wall, resulting in boundary-layer separation. In the definition of separation,
we follow Weldon et al. (2008), who derived their definition from ideas of Prandtl
(1904). The pressure of the irrotational potential flow is no longer merely imposed
on the rotational, viscosity-dominated region. Instead, this region alters the potential
flow considerably and with it the pressure distribution – a phenomenon denoted
as viscous–inviscid interaction. As a result, the standard procedure of streamwise
integration of the boundary-layer equations fails. Viscous–inviscid interaction in
steady, laminar flow is well understood for cases where the separation region is small.
An introduction can be found in Smith (1986) or Sychev et al. (1998), for instance.
In contrast, various phenomena related to unsteadiness in separated flows are much
less understood.

Both separation on the one hand and transition to turbulence on the other are
seemingly two separate phenomena with no a priori relation. However, reattachment
of a separated, initially laminar, boundary (or rather, shear) layer can occur because
of an increase in momentum exchange in the wall-normal direction, induced through
transition to turbulence. At the same time, laminar velocity profiles in a separation
region possess an inflection point and are therefore much more unstable with respect
to small disturbances than attached boundary layers. Occurrences of separation and
transition are thus often linked: separation can enhance transition, while at the same
time the resulting turbulence can reduce or terminate separation.

The resulting region from the point of separation S to reattachment R enclosing
almost stagnant fluid in its upstream part is denoted a separation bubble. Following
Gaster (1966), the expression laminar separation bubble (LSB) is used here even if
the flow transitions before the mean reattachment.

Sandham (2008) applied a semi-empirical model, based on a coupling of the
boundary-layer and the potential-flow equations, in order to study viscous–inviscid
interaction in the flow over airfoils. At angles of attack where a laminar separation
bubble occurred, he could observe a variation of transition and reattachment location
associated with the oscillatory flow over an airfoil near stall. We will look into
similar variations of these locations also caused by viscous–inviscid interaction, while
explicitly capturing the transition.

In the following, mean flow shall denote a flow field one obtains from averaging
in time. For three-dimensional calculations, averaging is also carried out in the
homogeneous spanwise direction. More precisely, the term mean flow corresponds
to the existence of a steady state of the flow field, at least in a statistical sense, so
that the time interval [tst , tst + Taver ] used for averaging has no influence on the result
irrespective of the choice of its beginning tst and duration Taver . Here only (quasi-)
time-periodic flows will be considered, in which case multiples of the fundamental
period will be used to reduce the required time Taver .

Mean flow deformation (MFD) denotes a change of the averaged flow field with
respect to another mean state of the flow. Therefore, at least two statistically steady
states of the same flow field must exist. They can be, for instance, generated through
different unsteady forcing which vanishes in the mean so that the mean boundary
conditions are identical. If one of the flow states is fully laminar (even at reattachment
and beyond), the time average is equal to any instantaneous realization. Such a situ-
ation is considered in this paper. If no steady-state solution exists or is known, MFD
corresponds to the difference between two different statistically steady-state solutions.

In an LSB, the effect of MFD can be applied for flow-control purposes to reduce
the size of the bubble; see for instance Marxen, Kotapati & You (2006) and Rist &
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Augustin (2006). However, the underlying physical mechanisms are not yet well
understood, which provides the motivation for the present paper. The effect of mean
flow deformation is inherently a nonlinear effect: considering the Navier–Stokes
equations for the mean flow, it can be seen that MFD is caused through the action
of the Reynolds stress terms.

Boiko, Dovgal & Hein (2008) investigated the effect of steady spanwise
perturbations in the separated flow behind a backward-facing step. They found a
spanwise-modulated modification of mean velocity gradients of the separated flow.
Note that their definition of a mean flow distortion only involves time, but not
spanwise, averaging and is therefore different to the definition of MFD we use in
this paper. They found an alteration of the local stability characteristics with regard
to unsteady perturbations. They observed a peak–valley splitting, suggesting that in
their case the unsteady perturbations are subject to a secondary instability.

A number of recent investigations have studied laminar separated flows within a
global stability framework (e.g. Ehrenstein & Gallaire 2008; Marquet et al. 2008).
The study reported here differs from these investigations in two important aspects.
First, our base flow is not globally unstable. Second, we focus on nonlinear effects so
that our interpretations may, in principle, hold for arbitrarily large deviations from
a certain laminar base state. Applying a weakly nonlinear analysis, Sipp & Lebedev
(2007) investigated the change in global stability caused by the mean flow deformation
for a circular cylinder and an open cavity theoretically. They showed that the mean
flow deformation alters both the instability and the separation regions.

2. Numerical method and set-up
2.1. Numerical method

To generate a base flow for subsequent investigations of transitional flow, a steady-
state solution is obtained using an ADI method initially developed by Kloker (1993).
An adverse pressure gradient is induced via the streamwise velocity u at the upper
boundary ymax . At the inflow xifl , a self-similar solution is prescribed. The computation
is advanced in time until a steady state, the base flow, is reached.

Next, runs are carried out in disturbance formulation, i.e. the base flow is kept
frozen and enters the computation only via the nonlinear terms. The incompressible
time-dependent three-dimensional Navier–Stokes equations in vorticity–velocity
formulation are solved on a Cartesian grid using a high-order finite-difference method
(Kloker 1998). This method has been applied in several studies of transitional flow (e.g.
Bake, Meyer & Rist 2002; Wassermann & Kloker 2003). In the present formulation,
a transport equation is solved for each of the three vorticity components. The wall-
normal velocity component is computed from a Poisson equation while the spanwise
mean part of the streamwise velocity component results from an integration of the
continuity equation, from inflow to outflow. At the inflow, disturbances are set to
zero. A buffer zone at the outflow serves to avoid reflections from disturbances that
leave the domain. No-slip/impermeability conditions apply on the plate (y =0). The
spanwise direction z is periodic and the equations are solved in Fourier space with
a fundamental spanwise wavelength λz (spanwise Fourier harmonics are denoted by
their wavenumber coefficient k).

Disturbances are triggered via blowing/suction at the wall (i.e. through the wall-
normal velocity) within a disturbance strip [xst , xen] = [1.1525, 1.2834] with a certain
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Figure 1. Amplification curves for the maximum (in y) streamwise velocity fluctuation Au =
|û′(h,k)

max |. Results from two-dimensional simulations with disturbance input A(1,0)
v =4 × 10−4 for

domain heights ymax ≈ 40 δ∗
ifl (dashed line) and ymax ≈ 60 δ∗

ifl (dotted line).

fundamental frequency β0 = 2π/T0, a time harmonic h and an amplitude Av:

v̂(t, x, k)|y=0 =

{
Fds(x) Av(h, k) sin (hβ0t)) , x ∈ [xst , xen],

0, x /∈ [xst , xen].
(2.1)

Here, Fds denotes a smooth streamwise distribution assuming values in the interval
[−1, 1]. The choice of the circular frequency was guided by a stability analysis of
the base flow (Rist & Maucher 1994; Rist, Maucher & Wagner 1996). Here, it was
set to β0 = 18.0, which is close to the most (convectively) amplified frequency. In a
real-world application, the true source of such a disturbance may be for instance
acoustic noise, originating in the free stream or at the trailing edge of an airfoil.
The interaction of this noise with the leading edge of the airfoil or a rough surface
upstream of the APG region may then create boundary-layer disturbances of the type
generated here by blowing and suction at the wall, but the details of such a receptivity
process are outside the scope of this paper.

A boundary-layer interaction model is required at the upper boundary to render
simulation results independent of the domain height as shown in figure 1 (see also
Marxen 2005). This model can be interpreted such that the streamwise velocity u at the
upper boundary is known (Dirichlet condition for u), and then the continuity equation
yields the derivative for v. A non-homogeneous Neumann boundary condition for the
wall-normal velocity is applied as an upper boundary condition using the streamwise
derivative of u to prescribe a ∂v/∂y:

∂v̂(t, x, k = 0)/∂y = c(x) = ∂û(x, ymax , k = 0)/∂x for t → ∞. (2.2)

Thereby, û is computed from the boundary-layer interaction model. The integration
domain must be large enough so that the unsteady disturbance evolution for k = 0
close to the wall is not affected by the condition of vanishing unsteadiness at the
upper boundary. Note that the streamwise velocity is not fixed a priori but results
from the boundary-layer interaction model (for details see Marxen 2005). The actual
values of the wall-normal velocity at the free-stream boundary are thus a solution of
the method, with the final streamwise distribution of values becoming independent of
time. The aim of this procedure is that in every case, the same slip-flow distribution
is obtained, independent of the disturbance which is forced. The boundary-layer
interaction model has been validated against experimental results (Marxen 2005). A
decay condition is used for the spanwise-varying Fourier modes.
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Figure 2. Streamwise velocity distribution ue (base flow) prescribed at ymax,hd = 72 δ∗
ifl .

2.2. Set-up: base flow and disturbance flow

The basic configuration is given by a flat-plate boundary layer at a sufficiently high
Reynolds number subjected to a streamwise pressure gradient. This pressure gradient
is presumably caused by putting a displacement body into the flow at some distance
from the wall. The body is assumed to be sufficiently far away from the wall and small
in size that the flow keeps its semi-bounded character – in contrast to e.g. a channel
flow. Numerical results from two-dimensional and three-dimensional simulations
will be discussed, of which the three-dimensional results can be considered as direct
numerical simulations (DNS). The APG is sufficient to cause a region of enclosed
reversed flow, which we will call the separation region. At the same time, it is small
enough that we obtain laminar reattachment within a short streamwise distance.

The base flow shall fulfil two main criteria in order to be suitable for our purposes.
First, the region of reversed flow shall be sufficiently small to not introduce any
absolute or global instabilities. Second, the adverse pressure gradient shall be strong
enough to induce a notable viscous–inviscid interaction. Comparing the perturbed
mean flow and the unperturbed steady-state flow then allows us to obtain a very
clean representation of the effects of the viscous–inviscid interaction. Once a good
understanding of this interaction has been achieved, results obtained for different
forcing amplitudes can be more easily interpreted. This latter procedure – comparing
e.g. the mean flows obtained with different forcing amplitudes – is applicable even in
more strongly separated flows (Marxen & Henningson 2007), where a steady state is
not straightforward to attain, and the first criterion can be relaxed. Here, we restrict
ourselves to the mildly separated case.

All quantities are normalized by a dimensional reference length L̃ref and a reference

velocity (free-stream speed at the inflow) Ũ∞. The global Reynolds number is
Reglobal = Ũ∞L̃ref /ν̃ = 105. The origin of the coordinate system is placed at the (virtual)
origin of the flat plate.

To obtain the base flow, at the inflow xifl = 0.37 a Blasius boundary-layer profile
is prescribed with a Reynolds number based on the displacement thickness of
Reδ∗ = Ũ∞δ̃∗/ν̃ =331. Even though in the following figures the (arbitrary) reference
length has been used, a conversion to a normalization length scale based on the
displacement thickness at the inflow can easily be done by multiplying the respective
quantity, for instance the streamwise axis, by a factor of Reglobal/Reδ∗ ≈ 300. In
the wall-normal direction, the domain from the wall at y = 0 to ymax = 72 δ∗

ifl . The
computational grid used to compute the steady state for ymax = 72δ∗

ifl is 385 equidistant
points in the wall-normal direction and 2786 points in the streamwise direction. The
prescribed distribution u(x, ymax =72δ∗

ifl ) at the upper boundary is given in figure 2.
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Figure 3. Coefficients for surface pressure cp , skin friction cf (a), and Reynolds numbers based
on the displacement thickness Reδ∗ and on the momentum thickness Reθ (b). Comparison of
base-flow values (solid lines), the Blasius values for ue ≡ 1 (symbols) and slip flow results cp,slip

(dashed line).

The motivation behind this distribution is to obtain the best possible match of the
steady state with results of Rist & Maucher (1994) and Rist et al. (1996) while at
the same time using a four times larger domain. Details on how this distribution was
derived can be found in Marxen (2005).

The unperturbed flow, generated using the ADI method, remained in a steady state
and exhibited no sign of vortex shedding. Similarly, when switching off the disturbance
input in the simulations with unsteady forcing using the disturbance formulation and
explicit time stepping, two-dimensional and three-dimensional perturbations in the
flow field decayed over time and the field returned to the unperturbed base state (Rist
et al. 1996). This is considered as evidence that our base flow is globally stable and
that our method did not artificially suppress unforced vortex shedding. Moreover,
those results suggested that any possibly occurring reflections at the outflow boundary
are sufficiently small to not contaminate the solution in the separation region.

For the unsteady simulations, the steady state was interpolated onto a finer,
stretched grid with 225 grid points in y and a shorter domain x ∈ [1.0216, 3.647] was
used. The upper boundary is located at ymax =0.132 ≈ 40δ∗

ifl . It was checked that this
shortening did not affect the region of interest around the location of the separation
bubble (details for the streamwise shortening can be found in Appendix A.3 of
Marxen 2005, and for the wall-normal shortening in § 5.2.2 of the same reference).
In the three-dimensional case, the number of spanwise Fourier modes is 63 and the
spanwise wavenumber γ = 2π/λz = 40.0.

To reproduce the present study experimentally, a tunnel with a very low
turbulence level would be required. Moreover, a suitable contoured upper ceiling
or a displacement body, examples of which are given by Watmuff (1999) and Lang,
Rist & Wagner (2004), could be used to generate a matching pressure gradient.
Not only the inviscid cp at the wall (figure 3) but also the inviscid ue at a certain
distance from the wall reported here (figure 2) should help to create an initial design
of the shape of the ceiling/displacement body. The final design then would have to
be adjusted in an iterative way, as a boundary layer also occurs on this body and
probably would have to be sucked off (Lang et al. 2004). Alternatively, a rounded
backward-facing step could be used. Bestek, Gruber & Fasel (1993) related their
numerical configuration, which is similar to the present one, to such a step. Bao &
Dallmann (2004) demonstrated experimentally that a steady-state laminar separation
bubble can indeed be obtained on a rounded step (see their figure 9, upper).
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Reproducing the present results numerically would require the usage of an
interactive upper boundary condition similar to the one used here or in Maucher,
Rist & Wagner (2000). Another possibility would be to use a very large domain. The
difficulty in the latter approach would be to match the present pressure gradient at
the wall (or the boundary-layer edge), and would most likely require a trial-and-error
procedure.

2.3. Post-processing

All boundary-layer quantities derived from DNS such as the displacement thickness
δ∗ and the momentum thickness θ are computed using a pseudo velocity. Following
Spalart & Strelets (2000), this pseudo velocity upsd is obtained from a wall-normal
integration of the spanwise vorticity ωz.

To track the streamwise evolution of a forced disturbance and its nonlinearly
generated harmonics, a double Fourier transform in time and spanwise direction (the
latter only for three-dimensional computations) yields disturbance amplitudes and
phases. Throughout this paper, the notation (h, k) will be used to specify modes,
with h and k denoting wavenumber coefficients in time and spanwise direction,
respectively.

3. Interaction of the separation bubble and forced perturbations
The set-up follows the one that has been studied before by Rist & Maucher (1994),

Rist et al. (1996) and Marxen (2005). Therefore, only a brief description is given
below.

3.1. Description of the steady-state base flow

A tiny, shallow separation bubble develops on the plate. The maximum reverse-flow
intensity is ur,max ≈ 1 %. Figure 3 shows the streamwise development of important
boundary-layer parameters. In this and the following figures, SB and RB mark the
separation and reattachment location of the steady (laminar) base flow, index B,
respectively. Despite the bubble being small, a notable difference to the pressure
distribution of a corresponding inviscid flow (denoted as slip flow) is visible. Compared
to a flat plate, a strong increase in the quantities related to the displacement of the
boundary layer (such as δ∗, Reδ∗) can be seen. Only far downstream of separation is
a Blasius boundary layer formed again.

We believe that for the effects considered in this paper, the present LSB can
be regarded as representative of boundary layers with strong or sudden pressure
gradients up to those with a significant amount of reverse flow due to separation.
Some evidence for the latter case can be found in Marxen & Henningson (2007).
Note that the non-local effects that will be described below are associated with an
elliptic behaviour and cannot be captured by the parabolic boundary-layer equations
(if no interactive boundary condition is used).

3.2. Comparison of the steady-state base flow and the disturbed flow

Three different cases, two two-dimensional cases and one three-dimensional
simulation, will be considered below. Only in the three-dimensional simulation
(details of which can be found in Marxen 2005), is full breakdown to turbulence
achieved by forcing a disturbance with A(1,1)

v =4 × 10−4. The difference between the
two two-dimensional cases lies in the forcing amplitude (A(1,0)

v =4 × 10−4 versus
A(1,0)

v = 4 × 10−5). All calculations presented here are advanced until T � 40 T0,
when initial transients have decayed sufficiently and a statistically steady state is
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Figure 4. Skin-friction coefficient cf for the different cases. (a) Two-dimensional cases with
different forcing amplitudes and (b) two-dimensional versus three-dimensional simulation.
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ψB + ψ ′ = 0 for disturbance input A(1,0)
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reached. The interval for time averaging is chosen to be two periods of the forced
perturbation.

3.2.1. Influence of MFD on separation characteristics

The disturbance input strongly affects the separation region. A strong rise in the
skin friction can now be observed (figure 4) in between SB and RB . The position of this
rise coincides approximately with the saturation location of the forced disturbances
and their higher harmonics, e.g. mode (2, 0), as can be seen in figure 7. More important
for the scope of this paper, however, is the observation that also upstream of this rise
a difference in cf compared to the base flow is visible already.

Only in the two-dimensional case with a very small disturbance input
(A(1,0)

v = 4 × 10−5) does the flow still separate. In this case, the separation bubble
is shortened from both sides compared to the base flow (figure 4a). The entire bubble
has become smaller, as can be seen from the mean dividing streamline ψ in figure 5.
These observations, the bubble becoming smaller by being shortened from both sides,
are consistent with observations reported in Rist & Augustin (2006) and Marxen
et al. (2006) for entirely different cases, respectively.

Moreover, it can be seen in figure 5 that the larger the disturbance input, the closer
the layer of strong |∂u/∂y| moves to the wall. The wall-normal velocity at the edge of
the boundary layer is reduced, too, and so is the displacement effect of the boundary
layer.
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Figure 6. Isosurfaces of Λ2 = −125 (vortex-visualization criterion by Jeong & Hussain
1995) from DNS at t/T0 = 25.0 in the interval (x, y, z) ∈ [1.96 . . . 2.12, 0 . . . 0.075,
−λz,0/2 . . . λz,0/2 (≈0.0785)]. Lines indicate the location of Λ-shaped vortices and a secondary
vortex is marked by a circle.

No qualitative difference between the two-dimensional and the three-dimensional
simulations occurs (figure 4b), in particular upstream of transition (x < 2). The strong
rise observed in cf is more pronounced in the three-dimensional case because in the
three-dimensional simulation, the flow undergoes transition to small-scale turbulence.
In the three-dimensional case, Λ-vortices appear during breakdown (figure 6), similar
to observations of Alam & Sandham (2000), before they break down into smaller,
secondary vortices. In the two-dimensional case, a mere shedding of large-scale
spanwise rollers (vortices) occurs.

3.2.2. Influence of MFD on linear stability characteristics

Results of the Fourier analysis described in § 2.3 are given in figure 7 for one of
the two-dimensional and the three-dimensional cases. The MFD in u corresponds
to mode (0, 0) in figure 7. The simulations are indeed converged to a periodic state
as can be judged from the low level of subharmonic content mode (0.5, 0), which
is a remainder of the start-up. Because of the qualitative similarity of figures 7(a)
and 7(b), only the three-dimensional case is considered below because it is the more
realistic situation in practice.

Because the local linear stability properties of a boundary-layer velocity profile
depend strongly on the distance of the shear layer from the wall (Rist et al. 1996),
the movement of the shear layer observed in § 3.2.1 is expected to change the
instability. To quantify this expectation, results for A(1,1)

v = 4 × 10−4, where breakdown
to turbulence occurs, shall be compared to a computation in which only a small-
amplitude disturbance (A(1,1)

v =4 × 10−8) is forced such that the flow remains laminar
throughout the domain.
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Amplification rate Im(α(h,k)
DNS) = −1/u(h,k) ∂u(h,k)/∂x compared to linear stability theory

(symbols) based on the respective mean flows. The line legend is the same as in (a).

Figure 8(a) shows that the flow field with larger disturbance input is more stable
than the original base flow. Results from linear stability theory (LST), solving the
Orr–Sommerfeld equation based on the respective time-averaged flows, confirm that
indeed the linear stability properties have changed (figure 8b). The MFD has reduced
the linear instability of the flow field notably: at x = 1.75 (which corresponds to SB),
a reduction in amplification rate of more than 26 % is observed. But even slightly
downstream of the disturbance strip centred at x = 1.218, a small difference in growth
rate is already visible.

3.3. Physical mechanisms

The observations in § 3.2 can briefly be summarized in the following way: MFD
reduces separation and instability. This effect is visible already in the laminar part of
the flow where the disturbance level is small. It shall be explained in the following.

3.3.1. Mechanism responsible for the change in the mean flow

Figure 7 shows that the MFD, mode (0, 0), is already larger than the disturbed
modes (1, 0) or (1, 1) at the location of the disturbance strip. This observation can
be explained by viscous–inviscid interaction. The strong displacement generated by
the separation bubble alters the overall pressure gradient mostly in the vicinity of the
bubble, as well as in the oncoming boundary layer before separation. If transition
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v = 4 × 10−4 simulations together with base-flow values (solid lines). The scale of the

plots has been chosen in a way to allow the best view of the area around the local maximum
at x ≈ 1.5. However, in the two-dimensional forced case, ∂cp/∂x reaches values up to ≈0.26
and in the three-dimensional case up to ≈0.51.

causes the flow to reattach earlier, and therefore changes the displacement in the
rear part of the bubble, this affects the flow upstream via an altered global pressure
distribution.

On the basis of these considerations, the pressure gradient of the laminar base
flow and the disturbed flow shall be compared for both a two-dimensional and
the three-dimensional simulation. Figure 9 shows that with disturbance input, the
pressure gradient is reduced by ≈5 % (two-dimensional) or ≈6 % (three-dimensional)
(at x ≈ 1.5) upstream of transition, while it is stronger downstream of it. The boundary
layer possesses sufficient momentum to overcome the weaker pressure rise, and, as a
result, it no longer separates with the forcing. Once the flow has transitioned, it can
easily overcome a much stronger pressure rise without separating.

3.3.2. Mechanism altering the linear instability and nonlinear effects

The MFD, mode (0, 0), is a product of the quadratic nonlinearity of the Navier–
Stokes equations, and so is its accompanying upstream effect, which is strongly
dependent on the forcing amplitude (see figure 4a). On the other hand, favourable
agreement of the forced mode (1, 1) with local linear theory has been observed in all
cases as illustrated in § 3.2.2. Hence, the disturbance undergoes linear amplification in
a region where the flow has been nonlinearly distorted.

To demonstrate that this is no contradiction, we have carried out an additional
simulation (as in § 3.2.2, we consider only the three-dimensional case) with very small
disturbance input A(1,1)

v = 4 × 10−8. The base flow for this simulation is the flow field
deformed by the MFD, i.e. the time-averaged total flow field from the simulation
obtained with A(1,1)

v = 4 × 10−4.
The small-amplitude simulation based on the deformed flow field exhibits the same

amplification as the large-amplitude simulation up to x = 1.65 (this x value is based
on visual inspection, figure 10a), i.e. we have linear behaviour up to that location.
Downstream of this x-location, nonlinear saturation effects set in (‘direct’ effects) and
the amplification rate for the large-amplitude (breakdown) simulation drops. But even
at SB (x =1.75) the difference between the linear simulation based on the deformed
flow field and the full nonlinear simulation (dashed versus dotted line) is much smaller
than the difference between the linear simulations based on the deformed and the
undeformed flow fields (dashed versus solid line), respectively.
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Figure 10. (a) Amplification rates Im(α(1,1)
DNS) based on the maximum (in y) streamwise velocity

fluctuation |û′(1,1)
max |. Results for A(1,1)

v = 4 × 10−8 using the laminar base flow (solid line), the
laminar base flow+MFD (dashed line) and for the reference case A(1,1)

v = 4 × 10−4 (dotted
line). (b) Same as (a), except that amplification rates are divided by the local boundary-layer
displacement thickness δ∗. Line legend is the same as in (a).

To illustrate that the change in instability between the original base flow and
the deformed mean flow is in part due to the wall-normal distance of the shear
layer, we have normalized the amplification rates by the respective displacement
thicknesses. The displacement thickness can be regarded as a certain measure for
the distance of the shear layer from the wall. Figure 10(b) shows that at x = 1.65
the difference in amplification after normalization is only 16 % compared with 26 %
before normalization (figure 10a). Another influence is most likely the differences in
shapes of the velocity profiles.

We summarize that we have observed two types of nonlinear effects: ‘direct’
saturation effects and ‘indirect’ effects related to the change of the stability via
altered mean-flow profiles (i.e. MFD), caused by a change in the overall pressure
distribution. Indirect effects could be evaluated (for x � 1.65) from a comparison of
both calculations with Av = 4 × 10−8 (the solid and dashed lines in figure 10a) and are
therefore independent of the disturbance amplitude at the locations where we observe
them. As this effect is caused by an event (the transition) further downstream, we can
also denote this effect as non-local. In contrast, direct effects require the disturbance
to reach a certain threshold amplitude and were visible from a comparison of the
linear computation using the time-averaged flow field (i.e. the base flow+MFD) with
the one of oblique breakdown (the dashed and dotted lines in figure 10a). This effect
is initiated at the position where the disturbance amplitude becomes large and is thus
a local effect.

4. Discussion
As indicated in the introduction, our results may have implications not only for

flow control but also for related tasks such as transition/separation prediction. These
implications shall be discussed in the following.

4.1. The feedback loop

The main feature of the effect of MFD is the non-local change of the pressure gradient
via viscous–inviscid interaction caused by disturbance input in the first place. As a
result, the pressure gradient, boundary-layer evolution and disturbance amplification
are all coupled via this interaction: we have a situation with loop character.
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Figure 11. (a) Contours of vvis (black lines) as defined in (4.1). Contour levels span the interval
[−0.0048,0048] with a spacing of 9.6 × 10−4. Negative contours are dashed. (b) Contours of q
(white lines) as defined in (4.3), with a spacing of 19.2 × 10−4, together with contours of vvis

(grey scale).

The feedback loop occurs in space, namely in the streamwise direction. However,
to better illustrate this feedback loop, we consider the temporal evolution in the
three-dimensional case during the start-up of the simulation. When we start with
the steady-state solution and ramp up the disturbance input, a wave packet is
generated and convected downstream. The wave (of the packet) belonging to the
forcing frequency travels into the undisturbed flow, where it gets amplified with an
amplification rate according to linear stability theory based on the undisturbed flow.

As soon as the disturbance reaches large amplitudes, breakdown to turbulence
occurs. The resulting turbulent boundary layer causes (initially) a stronger
displacement than the laminar boundary layer in place before. To quantify this
viscous displacement, we will consider the following quantity, based on the spanwise-
averaged wall-normal velocity at the upper boundary ymax of the simulation in
disturbance formulation (therefore, it is denoted by a prime ′):

vvis (t, x) =
1

t

∫ t

0

v̂′
k=0(τ, x, ymax ) dτ. (4.1)

Note that vvis will converge towards the mean flow deformation vMFD = v̂(0,0) if
v̂′

k = 0 becomes stationary. As a result of the breakdown and the associated stronger
displacement, vvis is positive towards the rear part of the bubble (figure 11a), and it
peaks at t/T0 ≈ 13 (see the circular region labelled A in figure 11a) before levelling
off.

Compared to the rear part, a response in vvis in the front part of the LSB is slightly
delayed. The quantity vvis is negative there, because the bubble shrinks and disappears.
Eventually, its rate of change decreases (i.e. the slope of the contours becomes steeper,
see region labelled B) and the flow gradually approaches a statistically steady state.

As in thin airfoil theory (Schlichting & Truckenbrodt 2001), a continuous
source/sink distribution q = q(x) at the wall y = 0 shall be defined. This distribution
q shall generate the same wall-normal velocity vvis as the boundary layer in the
irrotational free stream, i.e. at ymax :

vvis |ymax
=

1

2π

∫ xofl

xifl

ymax

(x − ξ )2 + ymax
2

q (ξ ) dξ
.
=

∫ xofl

xifl

G (x − ξ, ymax ) q (ξ ) dξ
.
= G ◦ q.

(4.2)
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To obtain q for a given vvis , the convolution operation is inverted approximately by
the van Cittert method (Bertero & Boccacci 1998), with G defined according to (4.2):

q = G−1 ◦ vvis |ymax

≈
15∑

p=0

(1 − G)p ◦ vvis |ymax
with Gp ◦ vvis |ymax

= G ◦ G ◦ . . .︸ ︷︷ ︸
p times

◦vvis |ymax
. (4.3)

In order to evaluate the error caused by the approximative nature of (4.3) and the
choice of using 15 terms for the sum, we looked at the location of the maximum
absolute difference between vvis and v∗

vis , where v∗
vis is obtained from (4.2) using the

resulting q from (4.3). At this location, the relative error |(v∗
vis − vvis )/vvis | remained

below ≈0.07 (7 %).
Initially, when the flow in the rear part of the bubble strongly changes, this leads

to an immediate change in the source/sink distribution q (figure 11b), including the
region of separation. The boundary layer in the front part of the bubble can now
be viewed as to be subject to the action of ‘suction’ (q < 0) – or, from a different
point of view, a less severe pressure gradient. Note that while the change in q occurs
immediately, the boundary-layer response in the front region of the LSB lacks behind
because of viscous effects, so that we have a clear qualitative difference in contours
vvis and q at early times (see the black arrow in figure 11b), at which the contours
of q and vvis cross each other instead of running roughly at a constant distance from
each other.

As the disturbance forcing is continued with a fixed amplitude, the boundary layer
will eventually adapt to the new pressure gradient in a way so that separation is
delayed to a position further downstream or even completely suppressed. Therefore,
after a sufficient amount of time has passed, we not only see a qualitative similarity
of contours vvis and qMFD , but we also have qMFD ≈ 2vvis (except around the extrema
of vvis ) as in thin airfoil theory (see the white arrow in figure 11b).

Eventually, all disturbances that leave the strip and enter the APG boundary layer
get slightly less amplified (i.e. according to the amplification rate of the new mean
flow), but will still cause transition. At long times, the flow has settled and attained
the periodic, fully coupled state observed in our simulations.

Although the interpretation given above has been based on the velocity vvis at
the top boundary ymax of the particular integration domain used in the simulation,
additional checks showed that it is independent of the specific choice of ymax . Our
interpretation therefore holds for a semi-infinite domain in the wall-normal direction.

4.2. The possible role of MFD with respect to flapping, vortex shedding
and global modes

It is understood that the settlement mentioned in the previous section relies on a
constant forcing amplitude, and it will take a certain time until this state is reached.
This led Marxen (2005) to argue that the described loop-type situation could be
responsible for flapping, if the disturbance input is not held at a constant amplitude.
Such a situation is common in practice (free flight) and it may occur in experiments
when transition is not forced explicitly. For example, if the forcing had been switched
off at t/T0 = 30, the flow would return to the fully laminar state after an additional
time of t/T0 ≈ 40, as it can be estimated based on the results of Rist et al. (1996).
Then, by switching the forcing on again, we could repeat the cycle and hence cause a
low-frequency oscillation of the mean flow.
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In the literature, evidence exists that mono-harmonic forcing with a fixed amplitude
can reduce flapping significantly, see for instance Dovgal & Boiko (1994) and
figure 1.3, p. 6, in Lang (2005). Investigations by Sandham (2008) also suggested
an interconnection of viscous–invisicd interaction and flapping.

The LSB considered here can be classified as convectively unstable and hence
it is globally stable. Nevertheless, the scenario of a repeated excitation as just
described resembles the repeated reappearance of a localized wave packet considered
in Ehrenstein & Gallaire (2008). In this sense, during the start-up of our simulation,
the initial wave packet may lead to an excitation of a global mode (which is stable,
and hence we have a subcritical excitation). On the other hand, our results have
demonstrated the importance of nonlinearity, while the global stability analysis of
the type presented in Ehrenstein & Gallaire (2008) relies on a linearization around the
steady base flow. Further investigations are necessary in order to come to a definite
conclusion.

The spanwise rollers in the two-dimensional case mentioned before are similar
to those vortices often shed from LSBs during shear-layer breakdown caused by a
Kelvin–Helmholtz instability (for an example of this type of vortex shedding, see
Marxen et al. 2003). However, the present LSB is small and even entirely disappears
once a certain forcing amplitude is reached. Thus, the role the rollers play in the
reattachment process – and hence in the feedback loop – (also) requires further
investigations in more strongly separated flows.

Beside the vortex shedding caused by a Kelvin–Helmholtz instability, which often
occurs in conjunction with an explicit forcing, a second type of shedding appears
to exist. This second type remains much less understood and has been observed in
many cases without explicit forcing (e.g. Pauley, Moin & Reynolds 1990; Rist &
Maucher 2002; Ehrenstein & Gallaire 2008; Jones, Sandberg & Sandham 2008).
Different explanations for this type of shedding have been proposed or at least
investigated, including an absolute local instability similar to wake flows (Rist &
Maucher 2002; Jones et al. 2008), a global instability (Ehrenstein & Gallaire 2008),
viscous–inviscid interaction (Sandham 2008) and insufficient convergence in numerical
solution schemes (Rist & Maucher 2002).

Our present results can make a contribution to this discussion in that they indicate
that one should take into account the nonlinear contribution of the mean flow
deformation as an essential effect influencing the flow stability. A theoretical approach
similar to the global weakly nonlinear analysis used by Sipp & Lebedev (2007)
may provide further insight into the vortex-shedding dynamics for pressure-induced
laminar separation bubbles.

4.3. The role of MFD with respect to separation/transition studies

The present results suggest that studies of linear instability for a convectively amplified
perturbation in the laminar forepart of an LSB must be based on the deformed, i.e.
the finally resulting, flow field rather than on an entirely laminar base flow. Examples
in support of this assertion include the Kelvin–Helmholtz instability (Lang et al.
2004) and Görtler instability/spatial transient growth (Marxen et al. 2009), where
good agreement of linear results with an experiment was observed, respectively. In
most cases, using the deformed field is a natural choice because a fully laminar flow
is not available or might not even exist, as in the case of an experiment. Note that
not only is the amplification rate changed for a fixed frequency but in fact the entire
linear stability diagram becomes a function of the forcing; for an example see Marxen
et al. (2006).
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Our results for two-dimensional and three-dimensional forcing indicate that two-
dimensional simulations are able to qualitatively capture the important features
of MFD in short laminar separation bubbles. Nevertheless, three-dimensional
simulations are necessary if one wishes to obtain the best possible accuracy in terms
of e.g. size and position of the LSB to compare simulation results with experimental
data or for the design of technical devices.

4.4. The role of MFD with respect to separation/transition prediction

Because of the feedback loop described in § 4.1, it is difficult to accurately predict
not only the transition but also the separation location. For instance, an approach
based just on LST or the linear parabolized stability equations (PSE; for an example
see Hein 1999) with a given steady-state flow will not yield an amplitude dependence
of the separation location as it does not capture either the ‘direct’ or the ‘indirect’
nonlinear effect of MFD. But even nonlinear PSE will only be able to account for
the ‘direct’ nonlinear effect. Hence, for the most accurate prediction, an interactive
coupling has to be included to reflect the feedback loop.

This may be achieved for instance by a combination of nonlinear PSE with
an interactive upper boundary condition to alter the mean flow (and an iterative
reintegration of the boundary-layer equations). For weak deviations from a certain
reference condition, a global weakly nonlinear approach (Sipp & Lebedev 2007) may
offer another option.

5. Conclusions
The mutual influence of mean-flow separation and disturbance amplification in

a laminar separation bubble has been investigated. Forced disturbances, which are
convectively amplified downstream, develop into large-scale structures and promote
earlier reattachment or remove the separation region completely. Because of the
inviscid–viscous interaction, this change in the mean flow downstream of the transition
location changes the overall pressure distribution and with it the laminar boundary
layer in the part upstream of the transition location. In turn, this changes the
amplification rate of a small, linear convectively amplified disturbance in the laminar
part. This loop-type situation can be summarized as follows: because of transition,
the separation region becomes smaller from both sides or is even completely removed,
which in turn causes a (simultaneous) reduction in the linear amplification rate of the
initially small disturbances that later cause the transition.

The effect of MFD is inherently nonlinear and non-local, i.e. global. More
precisely, two different types of nonlinear effects were found. While the MFD at
and downstream of transition is caused directly, or locally, via the nonlinearity of the
Navier–Stokes equations, the mean flow deformation upstream is induced indirectly,
or non-locally, via a change in the streamwise pressure distribution caused by the
saturated disturbances.

Our results also suggest that it may be instructive to consider a two-dimensional
simulation as a starting point for investigations of laminar separation bubbles, as the
present two-dimensional simulations were able to capture already the fundamental
effects of the interaction between mean flow and disturbance. Because of quantitative
differences and the risk of missing inherent three-dimensional effects, in particular
differences in vortical structures at transition, they cannot entirely replace three-
dimensional simulations.
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