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Steady linear three-dimensional disturbances are investigated in a two-dimensional
laminar boundary layer. The boundary layer is subject to a streamwise favourable-
to-adverse pressure gradient and eventually undergoes separation. The separating
flow corresponds to the first part of a pressure-induced laminar-separation bubble
on a flat plate. Streamwise disturbance development in such a flow is studied by
means of direct numerical simulation, a water-tunnel experiment and an adjoint-
based parabolic theory suited to study spatial optimal growth. A complete overview
of the disturbance evolution in various areas of the favourable-to-adverse pressure
gradient laminar boundary layer is given. Results from all investigation methods
show overall good agreement with respect to disturbance growth and shape within
the entire domain. In the favourable pressure-gradient region and, again, slightly
downstream of separation, transient growth caused by the lift-up effect dominates
disturbance behaviour. In the adverse pressure-gradient region, a modal instability is
observed. Evidence is presented that this instability is of Görtler type.

1. Introduction
A spatially developing boundary layer usually displaces fluid away from the wall

and hence grows downstream. The flow will therefore not be exactly parallel to
the wall. This effect decreases downstream but can be intensified or weakened by
a sufficiently strong streamwise pressure gradient. A boundary layer subjected to
a very strong adverse pressure gradient (APG) will even move away from the wall,
resulting in boundary-layer separation. Reattachment of a separated, initially laminar,
boundary layer can occur due to viscous diffusion or due to a favourable pressure
gradient (FPG). In most cases, however, it is caused by an increase in momentum
exchange in wall-normal direction, induced through transition to turbulence. The
resulting region from separation S to mean reattachment R is denoted as a laminar-
separation bubble (LSB). LSBs appear in several technical applications, such as on
laminar profiles of a glider wing at moderate to high angles of attack and on wings
of unmanned aerial or remotely piloted vehicles.
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Due to a strong instability of the separated shear layer, the transition process
in an LSB is often solely governed by a strong amplification of high-frequency
essentially two-dimensional or weakly oblique fluctuating disturbances leading to
vortex shedding. Nevertheless, the flow usually becomes quickly three-dimensional
at transition. Two distinct classes of three-dimensional disturbances can cause such
three-dimensionality: steady and high-frequency ones. While the latter class has a
frequency of the order of the shedding frequency and has been studied in detail (e.g.
Rist 1998, 2002, 2003; Spalart & Strelets 2000), the former has attracted only little
attention.

If a strong FPG precedes the APG, steady (or very low-frequency) three-dimensional
disturbances are sometimes observed already upstream and early inside the LSB.

Quasi-steady three-dimensional disturbances are also seen for environments with
high levels of free-stream disturbance. They occur in applications of laminar-
separation control, too, if for instance steady blowing/suction through small holes is
applied upstream of the bubble or if vortex generators are present.

This paper is concerned with linear steady three-dimensional disturbance growth
in an open, incompressible flow bounded by a wall on one side only. The basic
configuration is given by a flat-plate boundary layer subjected to a strong favourable-
to-adverse streamwise pressure gradient. The pressure gradient is caused by putting
a displacement body into the flow at some distance from the plate. Such a body is
small in size and is placed sufficiently far away from the plate so that the flow in the
vicinity of the wall keeps its semi-bounded character – in contrast to e.g. a channel
flow.

1.1. Introduction to linear instability and three-dimensional disturbance growth

An important cause of disturbance growth is a modal instability. We follow the
definition of a modal instability given by Bottaro & Luchini (1999, cf. § 3). In short,
if we perturb the flow at one location, its response in terms of growth rate and
disturbance shape further away from this location does not depend on the details
of the excitation. A characteristic of a modal instability is a weak disturbance-shape
evolution: the disturbance velocity profile changes downstream only in a similar way
as the underlying base-flow velocity profile. Moreover, (typically exponential) growth
with the same growth rate can be seen in all velocity components: a distinct preferred
state in the sense of the most amplified generic state or eigenstate of the flow exists.

The lift-up effect provides a mechanism for disturbance-energy growth in shear
flows with a dominating mean-flow direction. It was discovered in inviscid flows
(Ellingsen & Palm 1975; Landahl 1975, 1980). For a stable flow, the corresponding
growth rate decreases as the cross-stream velocity diminishes.

1.1.1. Görtler instability

Görtler instability (Görtler 1941) is a centrifugal instability, associated with curved
streamlines in shear flows. For a boundary layer or shear layer, a concave wall
or streamline curvature is required (Saric 1994). Local theory predicts streamwise
vortices for a zero pressure gradient (ZPG) boundary layer on a concave surface
(Floryan & Saric 1982). The lift-up effect also plays its role in Görtler instability:
‘An important feature of steady streamwise vortices within a shear layer is the
convection of streamwise momentum in the normal and spanwise directions by very
weak . . . components of the vorticity. This produces large changes in the mean velocity
profiles’ (Saric 1994, p. 385).
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More recent investigations of Görtler instability take into account non-parallel and
non-local effects. They are based on a parabolic set of partial differential equations.
Initial conditions are either local eigenfunctions (Lee & Liu 1992) or different generic
conditions (Luchini & Bottaro 1998; Bottaro & Luchini 1999). Cossu et al. (2000)
sought a more general solution by means of an optimization procedure. Bottaro &
Luchini (1999) confirmed that for a sufficiently large Görtler number and a sufficient
distance downstream, modal disturbance behaviour is found and a normal-mode
analysis is applicable.

A weak concave streamline curvature also occurs around the separation location
of an LSB. It may give rise to a Görtler instability despite the absence of curved
walls. Inger (1987) (1987, p. 1) investigated the ‘possibility of an analogous type of
mechanism arising locally in separating shear flows.’ He derived a parameter based
on the strength of streamline curvature at separation. If this parameter exceeds
a certain value, ‘within the boundary layer above the separation point, spanwise
periodic disturbances in the form of contra-rotating streamwise vortex pairs should
appear” (Inger 1987, p. 3). He also derived a set of linearized stability equations but
without being able to find a solution to them.

From a computation of separated flows, Pauley (1994) (1994, p. 438) concluded that
‘[v]elocity contours across the channel span showed the formation of Görtler vortices
as predicted by Inger (1987) for many conditions producing laminar separation.’
Unfortunately, Pauley (1994) does not back this conclusion by e.g. providing evidence
of steady, spatially growing three-dimensional disturbances at the separation point.
The same is true for a follow-up study (Wilson & Pauley 1998). Both papers only
show a plot of instantaneous contours of the spanwise velocity component at a single
position deep inside the separation bubble, at which streamlines should have the
wrong curvature (convex instead of concave) (cf. figure 9 in Wilson & Pauley 1998 or
figure 8 in Pauley 1994).

Thus, there is a need for more conclusive evidence for the appearance of Görtler
vortices as predicted by Inger (1987) for separating flows.

1.1.2. Transient growth

Research of bypass transition in ZPG boundary layers revealed the possibility of
temporal transient growth of steady spanwise disturbances due to non-orthogonality
of the eigenmodes (e.g. Trefethen et al. 1993; Schmid & Henningson 2001). If the
flow is stable, growth in time is bounded by viscosity.

Similarly, spatial transient growth associated with the lift-up effect occurs only for
a finite downstream distance. Nevertheless, it can lead to considerable amplitudes. In
what follows we will only consider spatial transient growth.

Using adjoint methods, an iteration procedure can be applied to calculate the
inflow disturbance resulting in the largest gain in disturbance energy for a certain
streamwise distance (Schmid & Henningson 2001). Investigations in boundary layers
(Andersson et al. 1999; Luchini 2000; Levin & Henningson 2003) show that the
optimal disturbance is a steady, spanwise-modulated streamwise vortex that relaxes
into a streak downstream. Luchini (2000) pointed out that equations for studies of
spatial transient growth are the same as for studies of Görtler instability, except for
the absence of a centrifugal term.

The presence of streaks in conjunction with separating flows was experimentally
observed by Watmuff (1999). Streak development in such flows and their relation
to transient growth has only recently been studied experimentally and theoretically
by Boiko (2002). However, we will not just consider the APG region here, since
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Figure 1. Sketch of the test section of the laminar water tunnel at the IAG. The integration
domain used for DNS is indicated by a box (not to scale): (a) side view; (b) front view.

disturbances are often already present upstream of deceleration, as e.g. in the
experiments by Watmuff (1999) and Lang et al. (2004). Levin et al. (2005) showed
evidence of steady three-dimensional disturbances in a Blasius wall jet. A wall jet is
similar to a separating flow in the sense that it also has a strong instability of the
shear layer away from the wall.

In addition to Görtler instability, transient growth is another candidate for the
appearance of steady three-dimensional disturbances in separating flows, and neither
has been sufficiently explored.

1.2. Related work and outline

In this paper, we focus on physical mechanisms leading to steady three-dimensional
disturbance growth. Some results supplementing this paper, like a discussion of the
shear-layer instability and the influence of the spanwise wavelength of the three-
dimensional disturbance, can be found in Marxen et al. (2004), Marxen (2005) and
Marxen et al. (2006). Boiko (2004, personal communication) investigated disturbance
evolution in the acceleration region theoretically.

First, the underlying base flow obtained from measurements and direct numerical
simulation (DNS) is described (§ 2). Next, details of the forcing of steady three-
dimensional disturbances in experiment and DNS are given (§ 3). DNS and
measurements for the disturbance evolution are compared with each other (§ 4)
and with theoretical results (§ 5) in order to evaluate physical mechanisms leading to
disturbance growth. We close with a summary (§ 6).

2. Base flow: time-averaged LSB
A sketch of the experimental set-up is given in figure 1. Only a brief description will

be given here; for details the reader is referred to Lang et al. (2004) and Lang (2005).
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A Cartesian reference system (x̆, y̆, z̆), as shown in figure 1, constitutes the basic
reference system throughout this work (dimensional quantities are marked by )̆. A
velocity vector is denoted as v = [u, v, w]T .

2.1. Description of the experimental set-up

A flat plate is mounted in the free stream (free-stream velocity Ŭ∞ = 0.125 m s−1) of the
test section of a laminar water tunnel (turbulence intensity T u � 0.05 % for 0.1–10 Hz
at 0.145 m s−1). A streamwise pressure gradient is imposed locally on the flat-plate
boundary layer by a displacement body with a length L̆

Exp
DB =0.69 m, inducing an FPG

region followed by an APG. In the region of the APG (starting at x̆ ≈ 0 m), an LSB
develops. The reference length is chosen to be L̆

Exp
ref = 2/3 m ≈ L̆

Exp
DB . The reference

velocity (for its derivation see Marxen 2005) amounts to Ŭ
Exp
ref = 0.151 m s−1 ≈ 1.2Ŭ∞,

resulting in a Reynolds number Reglobal = Ŭ
Exp
ref L̆

Exp
ref /ν̆ =105.

The set-up was used during several measurement campaigns carried out at the
Institut für Aerodynamik und Gasdynamik (IAG), Universität Stuttgart. Data of these
campaigns will be used for comparison with computational results throughout this
paper. Specifically, results from measurements by means of laser-Doppler anemometry
(LDA) in 2000 and 2001 are used, denoted below as ‘LDA (2000)’ and ‘LDA (2001)’,
respectively.

Transition occurs in the detached shear layer even without any forcing: vortex
shedding is followed by an immediate breakdown to three-dimensional small-scale
structures. Rist & Augustin (2006) have demonstrated the high sensitivity of an
LSB to forcing at a frequency which is strongly amplified by the shear layer. To
ensure reproducible results that are independent of this particular water tunnel and
its background noise in the relevant frequency range and to allow for a phase-
averaged post-processing, it is desirable to control the disturbance spectrum in the
flow. Following a classic approach in transition research (Klebanoff, Tidstrom &
Sargent 1962; Kachanov & Levchenko 1984), this is achieved by forcing disturbances
explicitly by means of an oscillating wire and spacers (see § 3.1).

As the steady three-dimensional disturbances are spanwise periodic and evolve
linearly, there is no conceptual difference between forcing them in the form of a fixed
spanwise spacing (as done here), forcing a (stationary) local wave packet or forcing
these disturbances in some presumably natural way.

2.2. DNS to obtain the base flow for investigations of disturbance evolution

To obtain a base flow for subsequent disturbance investigations, a DNS with
controlled disturbance input had to be carried out. This DNS provided an LSB
close in shape to the experimental one. For DNS calculations, general physical
parameters of the flow have been chosen to match the flow field resulting from
the experimental set-up (§ 2.1) as accurately as possible. The incompressible three-
dimensional Navier–Stokes equations in vorticity–velocity formulation are solved
using a high-order method (Kloker 1998).

At the inflow boundary, a self-similar laminar boundary-layer profile is prescribed.
A favourable-to-adverse pressure gradient is induced via the streamwise velocity at the
upper boundary. At the outflow, a buffer zone returns the flow to a steady laminar
state so that perturbations can leave the domain without being reflected. Explicit
disturbance forcing via wall blowing and suction models the experimental disturbance
input. For details and a reasoning for the choice of the boundary conditions, in
particular with respect to the upper boundary, see Marxen (2005), where it is denoted
as the case DNLDE .
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Figure 2. (a) Coefficients for surface pressure cp (dashed line), skin friction cf (solid line);
(b) Reynolds numbers Reδ1

(solid line) and Reδ2
(dashed line). Lines denote DNS, and symbols

denote LDA (2000) and LDA (2001); cf has been computed from wall-normal derivatives of
measured profiles of the streamwise mean velocity.

The mean flow is obtained by averaging DNS results over time and span. The start
of the separation bubble is marked by the point of separation S. Boundary-layer
quantities from DNS, like displacement thickness δ1 and momentum thickness δ2, are
computed from a wall-normal integration of the spanwise vorticity ωz = ∂u/∂y−∂v/∂x

(Spalart & Strelets 2000):

Reδ1
= upsd (ymax ) × δ1 × Reglobal , Reδ2

= upsd (ymax ) × δ2 × Reglobal , (2.1)

with upsd (y) =

∫ y

0

ωz(s) ds, (2.2)

δ1 =

∫ ymax

0

(
1 − upsd (s)

upsd (ymax )

)
ds, (2.3)

δ2 =

∫ ymax

0

upsd (s)

upsd (ymax )

(
1 − upsd (s)

upsd (ymax )

)
ds. (2.4)

In these equations, ymax denotes the height of the integration domain used in the
computation. However, results are independent of the value of ymax as long as it lies
in the region of vanishing vorticity, i.e. outside the boundary layer. Coefficients for
surface pressure cp and skin friction cf are computed from

cp = 2

∫ x

0

∂2u(s)

∂y2

∣∣∣∣
y=0

ds, (2.5)

cf = 2 ωz|y=0 /Reglobal . (2.6)

Figure 2 shows the streamwise development of these boundary-layer quantities.
The time- and spanwise-averaged flow field upstream of transition can be considered

as a good approximation to the steady Navier–Stokes equations. Up to a streamwise
position of x = 0.3, velocity disturbance amplitudes remain below 10−3. Their possible
direct contribution to the base flow due to nonlinear interaction is therefore roughly
of the order of 10−6. At x = 0.42, this direct contribution has risen to 10−4.
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Figure 3. Amplification curves for the maximum (in y) steady streamwise velocity fluctuation
Au = |û′(0,k)|max : (a) even modes k = 2, . . . , 6; (b) odd modes k =1, . . . , 5. Filled symbols denote
LDA (2001), open symbols denote LDA (2000).

3. Investigating the disturbance evolution in experiment and DNS
DNS results presented below were obtained using a disturbance-flow formulation.

In this formulation, a laminar flow is assumed to fulfil the steady Navier–Stokes
equations and is used as a base flow. A solution is then sought only for the disturbance
quantities v′, ω′. As a base flow vB , ωB , the mean flow described in § 2.2 was used. The
advantage of using a disturbance formulation is a drastically reduced computational
cost due to shorter integration domains, lower spanwise resolution requirements and
much shorter convergence times towards a periodic or steady state (see Marxen et al.
2004).

For simulations in disturbance-flow formulation we consider only the first, i.e.
laminar, part of the LSB (box in figure 1). The numerical method is the same as in
§ 2.2. However, a different set of boundary conditions was applied, namely exponential
decay of velocity disturbances at the upper boundary. The flow field in the DNS is
periodic in spanwise direction and symmetric with respect to a plane z = 0.

All results are Fourier analysed in time and the spanwise direction. Fourier
coefficients will be marked by ˆ and amplitudes by |ˆ| or A. The notation (h, k)
will be used here to denote modes with h times the fundamental frequency β0 = 2πf0

and k times the spanwise wavenumber γ0 = 2π/λz.

3.1. Disturbance forcing in the experiment

A two-dimensional time-harmonic disturbance is introduced upstream of the
displacement body at x̆ = − 0.23 m (x = − 0.345) by an oscillating wire of frequency
f̆ 0 = 1.1 Hz. Additionally, three-dimensional disturbances are imposed by placing thin
(height 10−3 m) metal plates (the so-called spacers, figure 1) regularly underneath the

wire. Their spacing gives the fundamental spanwise wavelength λ̆z = 0.058 m. LDA
data were phase-averaged using a transistor–transistor logic (TTL) trigger signal
generated by the actuator driving the wire (Lang et al. 2004).

Although several different spanwise harmonics are excited by the spacers, mode
(0, 2) is the largest disturbance in the first part of the LSB (figure 3). It is even larger
than any unsteady disturbance (h, k) with non-zero h. Thus, focus will only be put
on the behaviour of this mode. The set-up in the LDA (2000) and LDA (2001) cases
differs slightly in the wall-normal position of the oscillating wire, which explains the
slightly different amplitudes as visible in figure 3.
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Case (0, 1) (0, 2) (1, 0) (1, ±1), each (1, ±2), each End of useful region x ≈

B01 0.200 – – – – > 0.33
B02 – 0.145 – – – > 0.33
B10,12 – – 1.000 – 0.500 > 0.33
B11 – – – 0.335 – > 0.33

B11 – – – 1.12 – > 0.39

Table 1. Disturbance v-amplitudes Av , given in percent (or ×10−2), for all cases (β0 = 30.7,
γ0 = 72.0).
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Figure 4. Amplification curves for the maximum (in y) streamwise (solid line), wall-normal
(dashed line) and spanwise (dash-dotted line) velocity fluctuation As = |ŝ ′(h,k)|max . (a) Modes
(1, 1) (thin line), (0, 2) (thick line) of case B11. (b) Mode (0, 2) (thick line) of case B02.

3.2. Disturbance forcing in DNS: direct excitation versus nonlinear generation

The choice of the location for disturbance input in DNS is roughly guided by the
experiment. Disturbances in DNS are locally forced via zero net mass flux (at every
instant) blowing/suction at the wall in the region x ∈ [−0.4268, −0.3398]. In the
following figures, the disturbance strip is visualized by a bar within the x-axis.

The disturbance amplitudes of the wall-normal velocity Av for the different DNS
cases are given in table 1. Nomenclature for the denotation of the cases follows the
one introduced in Marxen et al. (2004). Indices refer to multiples of the fundamental
frequency (first digit), multiples of the spanwise wavenumber (second digit) and
amplitude level (superscript=high level, subscript= low level) of the disturbance
input. For instance, in case B01 a steady three-dimensional disturbance is forced with
h =0 and k = 1 with a low amplitude level. In case B10,12 more than one disturbance
was forced.

Only case B02 corresponds to direct disturbance excitation of mode (0, 2), while
in all other cases mode (0, 2) is a result of nonlinear generation. In all cases no
continuous forcing of steady disturbances occurs, as they are independent of their
origin already slightly downstream of the disturbance strip from x ≈ −0.3 onwards.

The acceleration region which damps out unsteady fluctuations in particular
(figure 4a), prevents continuous nonlinear generation. A comparison with the
experiment will follow in figure 5.
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4. Results from DNS and measurements
First, disturbances in the FPG region are investigated (§ 4.1). Main emphasis,

however, is put on the APG region and the first part of the LSB (§ § 4.2 and 4.3).

4.1. Lift-up effect and transient growth upstream of separation

The low-amplitude cases Bxx (table 1) will be compared with respect to the streamwise
evolution of mode (0, 2) in the interval x∈[−0.3, 0.075) (e.g. thick lines in figure 4).
This interval lies within the FPG region. We observed (not shown here) that all cases
possess a different ratio |û′|max : |v̂′|max : |ŵ′|max . For an easier comparison, forcing
amplitudes have been chosen such that all four cases possess the same amplitudes
downstream of separation S (figure 5a).

All cases exhibit (stronger or weaker) signatures of the lift-up effect. In a parallel
mean flow, the lift-up effect can cause the disturbance component in the mean-flow
direction to grow if a disturbance component perpendicular to the mean shear is
present. This implies that in a stable parallel flow, no growth should be visible in |v̂′|.

In the FPG region, we do not observe a growing |v̂′| (figure 4) even though the
flow is not exactly parallel. Apparently, vB is sufficiently small.

The development of |û′| is governed by a competition between growth due to lift-up
and viscous decay. If a large |û′| is present initially, the viscous decay is stronger than
the production, or growth, caused by the lift-up effect (case B02, figure 4b). In case
B11, |û′| is initially (i.e. at x = − 0.3) so small that it increases within the interval
x∈[−0.3, −0.225], while both |v̂′| and |ŵ′| decrease (figure 4a): the lift-up effect has
caused transient growth.

The cases B01 and B10,12 lie in between the cases B02 and B11: the lift-up effect is
still visible via an increasing quotient |û′|max/|v̂′|max , but it is not sufficiently strong to
cause |û′|-disturbance growth downstream of x = − 0.3.

All cases Bxx possess a disturbance level lower than that observed experimentally. To
allow for a proper comparison with measurements, case B11 with increased excitation
amplitude was computed. This case favourably compares with experimentally
determined amplitudes (figure 5b). Moreover, figure 5(b) proves that the disturbance
evolution in cases B11 and B11 is indeed linear, i.e. independent of absolute amplitude.
For that reason, we will no longer specifically distinguish between cases B11 and B11

below.
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It is remarkable how similar respective |û′|-amplitude functions Au = |û′(y)| look
for all cases in the interval x ∈ [−0.3, 0.075) (figure 6), no matter whether transient
growth occurred (case B11) or not (case B02). On the other hand, this similarity
becomes understandable if we recognize that û′ is a result of lift-up in all cases. In
case B11 the lift-up effect occurs continuously along x and is responsible for transient
growth (figure 4a). Instead, in case B02 it occurs only for the disturbance-strip region
(figure 4b).

Slightly downstream of x = −0.15 transient growth has vanished even in case B11.
At this point, |û′| has become more than an order of magnitude larger than |v̂′| or
|ŵ′|. For that reason, we can denote the disturbance as a u′-streak.

The overall disturbance shape in the streak region (x > −0.15) is similar to that
known from Görtler instability, where it is usually called a streamwise vortex despite
|û′| =O(

√
Re · |v̂′|) � |v̂′|.

Case B11 shows the best overall agreement with experimental results already in the
FPG region (x �0). This is true with respect to amplification (figure 5b) as well as
disturbance shape (figure 6). Thus, steady disturbances observed in the experiment
are a result of nonlinear generation caused by a fluctuating disturbance mode (1, 1).
Further justification for this hypothesis can be found in Marxen et al. (2004): they
found that case B11 agrees perfectly with the experiment – not only with respect to
the steady perturbations but also for the unsteady perturbations.

4.2. Generic (modal) growth in the APG region

In the region x∈[0.075, 0.225] differences between the cases Bxx gradually decrease
(figure 7). All cases come together at roughly the same x-position: at separation S
(x =0.225), deviation in disturbance growth (figure 5a) and shape (figure 7, lower
panels) has become negligible. We will argue that the disturbance evolution in this
region cannot solely be explained by transient growth (due to the lift-up effect) as in
the FPG region. Instead, evidence is presented that modal growth occurs in the APG
region. A physical mechanism causing the instability will be suggested in § 5.

In this and the next paragraph, we mainly consider case B11 or B11 within x ∈
[−0.15, 0.39]. This case agrees best with measurements, and it will turn out that this
case is closest to pure modal growth, too.

Modal growth implies that a single, common growth rate can be defined for
all velocity components. Even though this can be fulfilled only approximately in
non-parallel flow, growth rates based on the different components should still be
reasonably close.

A modal growth rate based on following absolute wall-normal maxima (dotted lines
in figure 8) fails to meet this criterion. A definition based on total kinetic disturbance
energy (which is dominated by û′) does not appear helpful either, since it cannot
distinguish between transient and modal growths.

It is more useful to distinguish between inner and outer maxima (in y) of |v̂′| and
|ŵ′|: Both outer maxima |v̂′|outer , |ŵ′|outer have at least a qualitatively similar behaviour
(figure 8a). The slope of |v̂′|outer is still different from the one of |û′|max and |ŵ′|outer .
Interestingly, both inner maxima |v̂′|inner and |ŵ′|inner (figure 8b) grow together around
the separation location (for details of this aspect see § 5.3.2).

The qualitatively different evolution of inner and outer |v̂′|-disturbance maxima
leads to the idea described in the following: While a modal instability amplifies each
component of the disturbance vector by the same factor, transient growth (as a result
of a lift-up mechanism) acts strongest on those disturbance components which have
the largest mean-flow counterpart. Therefore, if the disturbance velocity vector is not
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lines; experiment: symbols). Base-flow quantities uB are also shown.
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aligned with the base-flow vector in the beginning, it will eventually become aligned
in case of transient growth. In turn, if it keeps its angle with respect to the (changing)
base flow while growing, this growth should be due to a modal instability. We note
that the lift-up effect is not the only mechanism that can lead to transient growth,
but it is expected to be particularly important in a boundary layer and even more
so in a free shear layer. Levin et al. (2005) noted that the transient growth is about
10 times larger for the Blasius wall jet than for a Blasius boundary layer. This effect
shall therefore be examined more closely. We introduce the following transformation:

[û′
‖ v̂′

⊥ ŵ′]T =
1

‖ vB ‖

⎡
⎣ uB vB 0

−vB uB 0
0 0 ‖ vB ‖

⎤
⎦ [ û′ v̂′ ŵ′ ]T . (4.1)

The purpose of (4.1) is to follow v̂′
⊥ along the detaching shear layer, and therefore

v̂′
⊥ is not considered (or equivalently set to zero) in the region below the separating

streamline. Wall-normal amplitude maxima of the components of the left-hand-side
vector of (4.1) are given in figure 9(a). Except where mean reverse flow occurs
(x > 0.225), both |û′

‖| and |v̂′
⊥| possess a single wall-normal maximum only. While



178 O. Marxen, M. Lang, U. Rist, O. Levin and D. S. Henningson

û′
‖ cannot be distinguished from û′, v̂′

⊥ differs considerably from v̂′. Moreover, the

lines for |v̂′
⊥|max and |ŵ′|outer in figure 9(a) would (almost) collapse if shifted by a

constant.
The difference between |v̂′

⊥|max and |v̂′|max can roughly be explained as follows: For
the strong FPG at x < 0, the base-flow vector points slightly towards the wall (vB < 0).
Thus, in (4.1) a positive û′ gives a small positive contribution to (the negative) v̂′

⊥, so
that |v̂′

⊥| < |v̂′| (figure 9a). The opposite is true in the APG region, x > 0. This argument
is supported by the favourable correlation between the slope of Reδ1

(figure 2b) and
the difference |v̂′

⊥|max − |v̂′|max in the region x ∈ [−0.15, 0.225].
The growth rates α = 1/|ŝ ′| · ∂ |ŝ ′|/∂x (figure 9b) are small first but continuously

increase until a maximum is reached close to S. Most importantly, now all three
components exhibit essentially the same growth rate. This can be interpreted as the
disturbance vector roughly keeping its shape relative to the mean-flow vector while
growing. It indicates the existence of a single (amplified) eigenmode. In fact, this shape
argument largely holds for û′

‖ and v̂′
⊥ if we account for boundary-layer growth by

normalizing the y-coordinate with δ1 (for û′ see Marxen 2005, and for v̂′
⊥ see figure 17

below). Justification to use |ŵ′|outer when computing growth rates comes from the fact
that the instability takes place away from the wall, following the separating shear
layer, as is later explained in § 5.2 and § 5.3.2.

4.3. Transient effects in the APG region

4.3.1. Disturbance evolution deeper inside the separation bule: transient growth

Downstream of S transient growth sets in again, despite the persistence of a modal
instability: a larger growth rate in |û′| compared to |v̂′

⊥| and |ŵ′|outer is seen (figure 9b).
In turn, this suggests that the disturbance can now be regarded as a superposition of
modes again. Since all components are still growing, we have a mixture of transient
and modal growths.

Deeper inside the LSB (x > 0.33), |u′
‖| continues to grow, while |v̂′

⊥| and |ŵ′| decay

(figure 9a). Thus, downstream of the modal-instability region we have again a region
of transient growth. It is the parallel component (û′

‖) which grows due to the lift-up

effect. This explains why we observe growth in |û′| and |v̂′|.

4.3.2. Additional transient effects in the region of modal growth

In § 4.2, we have presented strong evidence that disturbance evolution in case B11

/B11 up to S is purely due to a modal instability with common amplification rates,
no matter if based on |û′

‖|, |v̂′
⊥|, or |ŵ′|outer . It turns out that case B01 is close to case

B11 (or B11) and will therefore not be considered further.
However, in cases B02 and B10,12, larger growth can be observed in |v̂′

⊥| (and in
case B02 also in |ŵ′

outer |) but smaller growth in |û′
‖| (figure 10). In fact, one may say

the following: the smaller the growth rate of |û′
‖|, the larger the growth of |v̂′

⊥|. An

explanation is the occurrence of transient growth for the entire domain, which –
within the unstable region – occurs simultaneously with the modal growth. The
(assumed) superposition of amplified and damped modes is such that |v̂′

⊥| and |ŵ′|
grow stronger than modal, while |û′

‖| grows weaker.

5. Physical mechanisms of the disturbance growth
A theoretical method is applied to the present flow. It is based on the linearized

boundary-layer equations and seeks a general solution by means of an optimization
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procedure. The purpose of applying this method is threefold. First, it will give an
upper bound to the disturbance growth. Second, a comparison to DNS results will
help to understand the dynamics of the disturbance evolution in the FPG region by
means of the identification of similarities and differences. Third, if a modal instability
is present in the APG region sufficiently far downstream of the forcing (i.e. inflow)
location in the theory, we expect to see disturbance growth. Observing such a growing
disturbance with the same growth rate independent of the inflow location can therefore
be regarded as additional evidence for the occurrence of a modal instability (§ 5.1).
In order to evaluate the cause of the onset of modal growth, we define an equivalent
Görtler number (§ 5.2). Finally, the evolution of the wall-normal amplitude functions
in the non-parallel and separating flow will be discussed (§ 5.3).

5.1. Spatial optimal growth based on the linearized boundary-layer equations

The theoretical method utilizes an adjoint-based algorithm to optimize the inflow
disturbance profile at x0 in order to obtain the largest disturbance energy at the
outflow position x1. Details of the method can be found in Andersson et al. (1999)
and Levin & Henningson (2003). It is known to be valid in attached boundary layers
but has not yet been applied to separated flows.

The base flow comes from DNS and was interpolated on to the grid used in the
boundary-layer equations. Five different streamwise stations were taken as the inflow
position (x0 = − 0.6, −0.45, −0.3, −0.15, 0). The outflow position was kept fixed at
x1 = 0.3348.

5.1.1. Optimally growing disturbances in the FPG region

The amplification of û′ for all inflow positions x0 are compared with DNS results
in figure 11(a). The best agreement in the interval x ∈ [−0.6, −0.075] of theoretical
results with DNS is seen in case B11, which was the case in which we observed
a transiently growing |û′| within x ∈ [−0.3, −0.225]. The agreement is particularly
good if x0 lies at a similar location or upstream of the disturbance strip in DNS (i.e.
x0 = − 0.6 or −0.45). Hence, for a further comparison with the DNS we choose case
B11 and the optimal disturbance prescribed at x0 = − 0.45 (figure 11b).

The theoretically obtained disturbance is initially a pure streamwise vortex (û′ =0
at x = x0). It decays, while the lift-up effect induces a strong transient |û′|-growth,
so that eventually |û′| � |v̂′|, |ŵ′|. The final outcome is a u′-streak. This sequence of
processes is analogous to that in a ZPG boundary layer (Andersson et al. 1999).
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Due to a weaker streamwise decay of |v̂′| in the boundary-layer computations, the
growth in |û′| is stronger than in the DNS and never vanishes for any x (figure 11b).
Responsible for this effect is the difference in wall-normal disturbance functions v̂′

(figure 12).

5.1.2. Optimal growth versus optimal wall-forcing: a comment on receptivity

The non-normal nature of the local stability operator leads to both transient growth
and sensitivity to forcing (for details see Schmid & Henningson 2001). This gives an
indication as to why none of the DNS cases nor the experiment agrees perfectly with
the optimal calculations (figure 11b). While the shape of the amplitude functions is
qualitatively the same, the optimal position for forcing (i.e. maximum v̂′ at the inflow)
is further away from the wall (figure 12). However, the disturbance excitation takes
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growth rates α = 1/|ŝ ′| × ∂ |ŝ ′|/∂x (symbols refer to theoretical results) together with DNS
results for case B11 from figure 9(b) (lines).

place at the wall in the DNS or close to it as with the roughness elements (spacers)
in the experiment and therefore remains slightly suboptimal. Thus, the present DNS
data confirm for an FPG boundary layer what has been found experimentally by
(Fransson et al. 2004, cf. § IV.C) for a ZPG boundary layer.

Case B02 is the optimal DNS case in the sense that it requires the lowest forcing
amplitude (table 1) to reach the same amplitude as all other cases. Even though this
case possesses the same û′-amplitude functions as the other cases (as pointed out in
§ 4.1), it bears no resemblance with optimally growing theoretical results in the FPG
region. Three brief conclusions can be drawn from this. First, if we want a large û′

from wall forcing but not necessarily its downstream growth, it is advantageous to
locally trigger the lift-up effect as in case B02. Second, if we want to continuously
trigger the lift-up effect and transient growth using near-wall forcing, exciting a pair
of oblique waves as in case B11 is most efficient. Third, if we want overall optimal
growth, we have to apply disturbance forcing away from the wall.

5.1.3. Modal instability

For a discussion of the region of modal instability we focus first on the x0 = − 0.45
case only. As before, we apply (4.1) to obtain the disturbance-velocity components
û′

‖, v̂′
⊥. Amplitudes and growth rates of these two components as well as |ŵ′|outer are

given in figure 13.
At separation S, the close(st) matching of amplification rate (figure 13b) and

amplitude functions (figure 14, upper panels) between the boundary-layer calculation
and the DNS/experiment can be observed. Agreement inside the LSB (figure 14) is
roughly independent on the inflow position x0 of the optimal disturbance.

5.1.4. Validity of the linearized boundary-layer equations inside the LSB

Deeper inside the LSB (x > 0.3), DNS results indicate a stronger importance of
transient growth and eventually exhibit a vanishing modal growth of the steady
three-dimensional disturbance. Results from the linearized boundary-layer equations
fail to exhibit vanishing modal growth. Nevertheless, |û′|max and (inner, i.e. overall)
|v̂′|max (figure 11b) as well as amplitude functions (figure 14) remain reasonably close
even at x = 0.33.
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No convergence could be obtained when the outflow location x1 was moved
further downstream than x1 = 0.3348. All present observations suggest that the
boundary-layer computations are valid at the separation location but not too far
beyond it.

5.2. Instability mechanism at the onset of modal growth: Görtler-type instability

The parabolic boundary-layer equations solved earlier (§ 5.1) can handle transient
growth associated with a superposition of several (mostly or exclusively damped)
eigenmodes on the one hand and modal growth associated with a single amplified
eigenmode on the other. We now want to seek evidence for the hypothesis that the
existence of a single amplified eigenmode is due to a Görtler-type instability.

As discussed in the introduction (§ 1.1.1), occurrence of concave streamline curvature
in a boundary-layer flow is a key requirement for a Görtler-type instability. Streamline
curvature is connected to ∂xV . To evaluate the role of streamline curvature upstream
and around S, the curvature is quantified from the mean flow by means of an
equivalent Görtler number Gequiv . As in more recent approaches in Görtler theory
(Lee & Liu 1992; Cossu et al. 2000) we can imagine including a wall-curvature term in
the linearized boundary-layer equations that contains the Görtler number G. Hence,
with a non-zero G, these equations would contain a term of the form (base flow
vB

T = [U V ]T = [ uB vB ]T )

γ 2(2G2U + ∂xV ) × û′.

This implies the following definition of an equivalent Görtler number Geq = Geq(x, y):

2G2
eqU

.
= (2G2U + ∂xV ). (5.1)

For flow over a curved wall with negligible streamwise evolution (∂xV � 2G2U )
we have Geq = G. For sufficiently strong streamline curvature along a straight wall
(∂xV � 2G2U ) we have Geq =

√
∂xV/(2U ) instead. To allow for ∂xV < 0, a refined

definition of the equivalent Görtler number (G =0) will be used in the following:

Gequiv (x, y)
.
= sign(∂xV )

√
|∂xV |/2U. (5.2)

With this definition, (only) positive Gequiv corresponds to a concave curvature.
From x = −0.15 onwards, Gequiv is seen to increase along x up to x = 0 (figure 15a).

It reaches a plateau, or more precisely a local minimum, around x =0.075 until it
climbs to an overall maximum only slightly upstream of S. Downstream of S, it
quickly drops again. If we follow Gequiv at a distance y/δ1 ≈ 1.4 (figure 15b) we see a
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resemblance to the curve with amplification rates α from |v̂′
⊥|max or |ŵ′|outer of DNS

(see e.g. figure 9b).
The Görtler-type instability can only be expected in the part of the flow further

away from the wall, since it is only there that Gequiv possesses appreciable values
(figure 15a), in particular around S. This is consistent with a sketch in Inger (1987)
(1987; cf. figure 5). This observation also suggests to indeed consider |ŵ′|outer rather
than |ŵ′|inner to compute growth rates of the Görtler instability.

5.3. Disturbance-shape evolution in the strongly non-parallel flow

The peak in values of the equivalent Görtler number (figure 15) in conjunction with
the collapse of transformed amplification rates from DNS and theory (figure 13)
suggests the onset of modal growth to be located slightly upsteam of x = 0. At this
onset, the disturbance takes the familiar form of a ‘local’ streamwise vortex as known
from Görtler instability in attached, self-similar boundary layers (compare e.g. our
respective amplitude functions with figure 2 in Lee & Liu 1992). However, slightly
upstream of S and inside the LSB we do not see the shape of a ‘local’ vortex anymore
(figure 14), and this motivates a closer inspection.

5.3.1. The streak component

Downstream of x =0, the strong APG causes the mean flow to turn away from
the wall. The streamwise vortex and its accompanying û′-streak turn in a similar way
(figure 18). Since the streak (or more precisely its wall-normal maximum) moves away
from the wall, its growth ( = ∂ |û′|/∂x) must be stronger further away from the wall.
This is exactly what we see in figure 16(b, c) if we compare αû′

‖ and ∂û′/∂x. Vanishing

growth in |û′| close to the wall can be understood based on the lift-up effect together
with the fact that v′ changes its sign along y (figure 17).

5.3.2. The vortex components

At x = 0, the mean flow is essentially wall-parallel, and the streamwise growth
of the disturbance is small. Hence, û′ does not notably contribute to the continuity
equation and ∂ŵ′/∂z = 2γ0ŵ

′ agrees well with −∂v̂′/∂y (figure 16a). In a visualization,
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we see the corresponding streamwise vortex with its axis parallel to the wall at x =0
(figure 18).

At x = 0.15, the streamwise vortex already points away from the wall. Growth
and absolute amplitude of û′ are now sufficiently strong so that 2γ0ŵ

′ and −∂v̂′/∂y
differ except very close to the wall and in the free stream (figure 16b). If we consider
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transformed variables instead and normalize the wall-normal coordinate y by the
displacement thickness δ1, we see that v̂′

⊥ keeps the same shape until into the LSB,
with its maximum around y/δ1 ≈ 1.4 (compare a, b and c in figure 17). This shape
closely resembles the one at x = 0 (figure 17a versus the lower centre panel of figure 6),
where v̂′

⊥ ≈ v̂′. The fact that v̂′
⊥ (and similarly also û′

‖ ) keeps its shape is another

argument in favour of a Görtler-type mechanism active beyond x =0, in addition to
the growth-rate-based argument of § 5.2.

Due to the fact that the û′
‖-streak occurs at an angle to the wall, it transports

fluid to and away from the wall. Together with its strong growth, this causes a local
streamwise vortex very close to the wall at certain x-positions (e.g. observe the shape
of û′, ŵ′ in figure 16b and v̂′ in figure 17a). This vortex is located underneath the main
Görtler vortex and rotates in the opposite direction. As a result, the main vortex gets
slightly distorted at, and downstream of, S (figure 18). The connection between v̂′ and
ŵ′ close to the wall can be seen quite well in figure 16(b, c) for y < 0.003. It explains
why we observed v̂′

inner and ŵ′
inner growing together around S in § 4.2. This explanation

also justifies to discard ŵ′
inner when computing growth rates of the Görtler instability

as was done in § 4.2.

5.3.3. Downstream of the modal-instability region

Even though the instability eventually vanishes, the upper (decaying) vortex still
causes a growing û′

‖ due to the lift-up effect. In turn, this û′
‖ results in a growing |û′|

and |v̂′|. Near the wall, shapes of the streamwise and wall-normal velocity components
are indeed remarkably similar (figure 19), both being a result of û′

‖.

6. Summary and conclusions
The streamwise evolution of steady linear three-dimensional spanwise-harmonic

disturbances has been investigated in a laminar boundary layer with a favourable-to-
adverse pressure gradient. The flow eventually undergoes separation. Three different
investigation methods are applied: an experiment, DNSs and a method based on
optimal disturbances of the linearized boundary-layer equations.

All three methods exhibit a close agreement with respect to disturbance shape and
evolution for the entire streamwise domain. The linearized boundary-layer equations
turned out to be applicable even at separation, failing only deep inside the bubble.

Two different fundamental mechanisms can explain the streamwise disturbance
evolution: spatial transient growth and a modal Görtler-type instability. In certain
parts of the domain both effects are blended and contribute simultaneously to
the disturbance shape. In both mechanisms, the lift-up effect feeds growth of the
streamwise velocity component.

Non-modal disturbance evolution is observed in the stable FPG region. Corres-
ponding physical processes are analogous to those known to occur in ZPG boundary
layers. Transient growth is not observed in the DNS in case of steady wall blowing and
suction. Nevertheless even then a strong streak results near the wall due to local lift-up.

Around the start of the APG region a modal instability sets in. It can be
distinguished from transient growth by decomposing the disturbance vector into
components parallel and normal to the base flow instead of parallel and normal to
the wall. With such a decomposition, all three resulting components are seen to grow
alike further away from the wall, for cases in which transient effects do not contribute
to the disturbance evolution.
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Figure 19. Same as figure 6. Comparison of results for case B11 with measurements inside
the LSB for x = 0.3, 0.345, 0.39. Base-flow quantities uB, vB are also shown.
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The onset of instability is due to streamline curvature; i.e. it is of Görtler type.
Based on a qualitatively good correlation of the growth rate and an equivalent Görtler
number as well as on the shape of the amplitude functions, streamline curvature
remains the most probable dominating source of instability even at separation and
inside the bubble. Therefore, we have not only presented strong evidence that a
Görtler instability can be active in a separation bubble but have also reported, for
the first time, respective growth rates.

Once streamline curvature and modal instability vanish deeper inside the bubble,
we observe transient growth caused by the lift-up effect again. Hence, we have
shown that spatial modal growth (of Görtler type) of steady disturbances can be
followed by notable spatial transient growth. Disturbance growth is therefore sustained
downstream of the neutral stability curve. Together with evidence that transient
growth is important also at the onset of the instability, this suggests that the neutral
point may be irrelevant for a Görtler-type instability. Unlike in the FPG region, this
transient growth occurs in the streamwise and the wall-normal disturbance velocity
component as the mean flow points away from the wall.

Non-parallel effects are observed in the APG region and at separation, influencing
the amplitude functions in particular close to the wall. This underlines that
observations about streamwise vortices made in attached parallel flows are not
necessarily transferable to separating flows in a straightforward or simple way. The
amplitude functions of the streamwise velocity in the region of FPG were found
to be largely independent of the mechanism of disturbance excitation in DNS and
experiment. Differences in amplitude functions of the wall-normal velocity, on the
other hand, were found to be significant. Amplitude functions of the streamwise
velocity alone are insufficient to explain the dynamics of the flow.
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Luchini, P. & Bottaro, A. 1998 Görtler vortices: a backward-in-time approach to the receptivity
problem. J. Fluid Mech. 363, 1–23.

Marxen, O. 2005 Numerical studies of physical effects related to the controlled transition process
in laminar separation bubbles. Dissertation, Universität Stuttgart, Stuttgart, Germany.

Marxen, O., Rist, U. & Henningson, D. 2006 Steady three-dimensional streaks and their optimal
growth in a laminar separation bubble. In New Results in Numerical and Experimental Fluid
Mechanics V (ed. H. J. Rath, C. Holze, H.-J. Heinemann, R. Henke & H. Hönlinger), Notes
on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 92, pp. 233–240.
Springer.

Marxen, O., Rist, U. & Wagner, S. 2004 Effect of spanwise-modulated disturbances on transition
in a separated boundary layer. AIAA J. 42 (5), 937–944.

Pauley, L. L. 1994 Response of two-dimensional separation to three-dimensional disturbances.
J. Fluids Engng 116, 433–438.

Rist, U. 1998 Zur Instabilität und Transition in laminaren Ablöseblasen. Habilitation, Universität
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