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Summary

Controlling laminar-turbulent transition in boundary layers is an important
topic of future aerodynamics. With the aid of Direct Numerical Simulation
(DNS) and Linear Stability Theory (LST) we examine different active ap-
proaches in various flow scenarios. The superposition of disturbances with
opposite phase to the initial waves in the boundary layer leads to a signif-
icant attenuation only in linear and weakly nonlinear scenarios. In stages
close to transition where strong nonlinearity has taken place we were able
to develop a method which is better suited. The direct feedback of instanta-
neous flow data obtained at the wall (wall shear stress or spanwise vorticity)
leads to better damping capabilities of nonlinear disturbances. We can show
that the main mechanism of this concept lies in the change of the sign of the
Reynolds stress of the participating modes. In addition, existing resonances
are disrupted due to the modified phase speed of the controlled modes.

1 Introduction

In the past, mainly passive methods such as smooth surfaces or advantageous
pressure distributions have been used to reduce aerodynamic drag of wings,
shifting the boundary layer transition downstream. Unfortunately, beyond a
certain Reynolds number these approaches don’t work in a satisfactory man-
ner. In this case, approaches which actively damp disturbances in boundary
layers offer new promising possibilities.

The most popular approach controlling transition is the superposition of
disturbances with opposite phase to the existing waves. First attempts have
been published by Milling [1], Liepmann et al. [2,3] and Kozlov et al. [4].
Until now, this strategy has been realized many more times both experimen-
tally [5] and numerically [6]. For disturbances with small (linear) amplitude
a reduction in amplitude of up to 90%is achievable even in experiments. In
contrast to their excellent performance in early transition stages these ap-
proaches don’t work in a satisfactory manner in cases where high amplitudes
occur due to nonlinear effects. Moreover, the generation of control waves with



large amplitude which are necessary to cancel the initial wave with the aid of
a suction/blowing slot sometimes causes very high velocities in the vicinity
of these actuators, an effect which favours nonlinearities furthermore. These
arguments make clear that there is a need for a smooth, robust control algo-
rithm which is almost independent of the amplitude of the initial disturbance.

One way to actively damp even nonlinear disturbances is the application
of concepts which use instantaneous flow data obtainable at the wall to drive
plain actuators, like wall shear stress or spanwise vorticity. Avoiding long
propagation distances between sensor and actuator this procedure (called
wz-control) results in a very effective damping even in nonlinear cases. Ad-
ditionally, the influenced modes are attenuated in a very ‘soft’ way without
the danger of producing further instabilities due to large actuator- (blowing
and suction-) amplitudes.

2 Numerical Method

All simulations were performed in a rectangular integration domain with the
spatial DNS-code developed by Konzelmann, Rist and Kloker [7-9].

The flow is split into a steady 2D-part (Blasius base flow) and an unsteady
3D-part. The z-(streamwise) and y-(wall-normal) directions are discretised
with finite differences of fourth-order accuracy and in the spanwise direction
z a spectral Fourier representation is applied. Time integration is performed
by the classical fourth-order Runge-Kutta scheme. The utilised variables are
normalised with Uss = 302, # = 1.5+ 107°% and L = 0.05m.

3 Base flow

Two different base flows, both Blasius boundary-layers have been exam-
ined. Base flow A, used for the investigation of linear scenarios and the
K-breakdown (see below) features a Reynolds number based on the displace-
ment thickness of Res; = 500 at the inflow boundary and of Res; = 1340 at
the outflow boundary. The other one, base flow B, is needed to perform all
simulations concerning point-source and white-noise excitation. Its Reynolds
number at the inflow is Res; = 1000 and Res; = 2018 at the outflow. Its
maximum amplification rate remains quite smaller than that of base flow
A but its integral amplification for some frequencies turns out to be much
larger.

4 Undisturbed scenarios

4.1 K-breakdown

The most important test case for all control approaches is a typical K-
breakdown scenario as shown in Fig. 1, where transition due to fundamental
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Figurel K-breakdown: Transition due to fundamental resonance between the
modes (1,0) and (1,1) (thick lines). a) u'-amplitudes, b) phase speed c of the reso-
nant modes

resonance between discrete modes (with the same frequency) occurs. Here,
the modes (1,0) and (0,1) (the first index denotes multiples of the fundamen-
tal frequency S=10, the second multiples of the basic spanwise wave number
v = 20) are forced. The (fundamental) mode (1,0) is a 2D-mode excited with
large, nonlinear amplitude, whereas the mode (0,1) is a steady mode with
small amplitude. The modes (1,£1) are instantly generated as direct higher-
harmonics of the two initially generated modes. At x & 2 a rapid increase in
amplitude of the modes (0,1) and (1,£1) can be observed. Simultaneously, the
phase of the resonant modes (1,£1) is synchronised to that of the fundamen-
tal one, i.e. their phase speeds become equal (Fig. 1 b)). These observations
strongly indicate the presence of fundamental resonance between the large
2D- and the smaller 3D-mode. When the amplitude of the amplified 3D-waves
has reached the level of the fundamental mode the amplitudes of all modes
saturate on a high level and the transition to turbulence takes place. Together
with the increase of the 3D-amplitude the evolution of transitional structures
can be observed. Figure 14 a) shows a typical aligned pattern of A-vortices
in accordance with the detected resonance type.

4.2 Point source driven by white noise

Besides the extensively investigated K-breakdown a second transition sce-
nario was investigated. The simulation of a white noise scenario in base flow
B was stimulated by the wish of having a more ‘natural’ environment to
show the effects of active control. Following Gaster & Shaikh (e.g. [10]) a
point source with zero net mass flux (Fig. 2) is activated by a fixed time
sequence.

This sequence (Fig. 3) has a length of 20 periods of the most unstable
frequency (8 = 6) and consists of a broad range of frequencies from g = 0.3



Figure2 Disturbance function of the point source in physical space (left) and
in Fourier space (right; 0 =3, vy =k - y0).
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Figure3 Time sequence for the excitation of the point source. The sequence is
repeated every 20 periods (of the most amplified frequency 8 = 6), every period is
divided into 600 time steps.

to B = 24, all spectral portions having the same amplitude. The excitation
results in a sequence of three-dimensional wave packets generating various
nonlinear interactions further downstream (Fig. 5).

Analysing this scenario with ‘traditional” Fourier techniques doesn’t lead
to a satisfactory result, because of the distributing nature of the Fourier
transform (single events can’t be located in time). Therefore, we analyse the
time signals of the spanwise wall-vorticity with aid of the continuous wavelet
transform using a Morlet-mother-wavelet [11] at a fixed z-position. The re-
sulting wavelet-spectrum (Fig. 4) is similar to a Fourier-spectrum, but time
dependent. It shows, besides the linear portion of the time signal (maxima
around § = 7 and v = 0) additional local maxima at a spanwise wave num-
ber of 7 & 15 near the subharmonic frequency of the linear modes. Due to
the wavepacket-like complex mother-wavelet it is possible to calculate ampli-
tudes, phases and even phase speeds of the modes subject to frequency and
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Figure4 Wavelet transform of the spanwise vorticity at the wall (Morlet mother-
wavelet with wo = 3), ¢ = 7.25. a): Amplitudes for v = 0, b): Amplitudes and phase
speed versus frequency and spanwise wave number. Resonant modes are marked by
a black square.

time. Analysing the matching phase-speeds of the modal groups which are in-
volved, we come to the conclusion, that the dominating resonance mechanism
neither is fundamental nor subharmonic but ‘detuned’ with three participat-
ing modal groups. For the one wavepacket observed in Fig. 4 b) we find a
fundamental 2D mode at § ~ 7.6, v = 0 and two resonant 3D modes at
v & 15, f ~ 4.6 and 8 = 3.0. Although not visible in Fig. 4 b) the second
resonant mode with g ~ 3.0 must exist to complete the resonant wave triad.
A look at the dotted lines of Fig. 15 (further discussion of this figure in the
active control section) shows almost the same strong amplification rate for
both resonant modes which is a further clue for that kind of detuned reso-
nance. Compared to the modal evolution of the K-breakdown scenario, where
discrete modes are at work, one must consider that modal groups interact
with each other in the present case.

5 Active Control

5.1 Superposition of anti-phase disturbances

The first control method we investigated was the well tested (experimental
[13] and numerical [14]) wave superposition approach. This ‘classical’ ap-
proach is basically limited to linear 2D and 3D disturbances because super-
position of several modes without the generation of new modal products is
only possible when the amplitude of the initial disturbance is small. For such
a case, single modes can be attenuated by adding an identical but anti-phase
wave. Theoretically, with proper amplitude and phase of the control wave
complete cancellation of the initial wave is possible [15] but due to inevitable
deviations from the ideal case in practice this goal is never reached. The
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Figure5 White noise excitation. Spanwise vorticity at the wall plus vortex struc-
tures, visualized with aid of the A2-method [12]. The time step between two pictures
corresponds to one period of 3 = 6.
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Figure 6  Active control of linear waves with different spanwise wave numbers
(8 = 10, base flow A). Fourier amplitudes of the spanwise vorticity at the wall
wz,w. Dotted lines: uncontrolled case; ST1 and ST2 = disturbance and control
strip, respectively.

simulation of the linear case (Fig. 6) nevertheless shows, that for both 2D-
and 3D TS-waves a reduction of the initial amplitude of approximately three
orders of magnitude is achievable.

The extension of this concept towards arbitrary linear disturbances leads
to the use of temporal FIR-filters to produce the necessary counter-disturbance
similar to those already used in experimental investigations [16]. The (phys-
ical) filter corresponds to a complex transfer function between sensor- and
actuator-signal in Fourier space. It has to be trained for each flow condition
to suit the local flow conditions or has to be adapted continuously. To avoid
time-consuming calculations, in our case the filter was trained once to obtain
the filter coefficients for subsequent runs [15].

Active control via FIRfilters at different streamwise positions is now com-
pared in Fig. 7 for the K-breakdown scenario already used above. Here, con-
trol is applied only to the fundamental 2D-mode which is evolving in an
almost linear way. Depending on the position of the control strip (ST2), the
results nicely show how the efficiency of the wave-superposition principle di-
minishes with downstream distance due to non-linear effects. Only because
of its ‘quasi-linear’ behaviour (with respect to phase speed or amplification)
we are initially able to control this mode. The resonant 3D-modes are not
controllable via the same mechanism, because they are completely coupled
to the fundamental 2D-mode and do not show any linear (i.e. independent)
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Figure 7 K-Breakdown: Active control of the fundamental mode (1,0) via wave
superposition at different downstream stations. a) x = 2.41, b) z = 2.94, ¢) © =
3.46, d) = = 3.98. Dotted lines: uncontrolled case for reference.

behaviour. However, as soon as the primary 2D disturbance is damped the
phase-coupling of the modes (1,0) and (1,1) is broken up and the resonant
modes don’t possess the same phase speed any more [17], which is necessary
for an efficient energy transfer. Thus, a further amplification of the 3D-modes
is prevented (compared to the dotted reference lines). The remaining steady
3D disturbance modes (0,k) are very difficult to control. They exhibit some
kind of transient growth for large = (especially visible in Fig. 7 b) and c)).

5.2 w,-Control

Another way to actively damp disturbances in boundary layers is the feed-
back of instantaneous signals, e.g. of the spanwise vorticity fluctuations (w.)
measured at the wall. These signals are prescribed as a v-boundary condition
at the wall after multiplication by a complex amplitude A (whose imaginary
part causes the phase shift ¢ shown in Fig. 8).
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First, results of DNS are analysed in order to show how the method works
in the linear case. For a small-amplitude 2D Tollmien-Schlichting (TS-) wave
three simulation results are presented in Fig. 9: one for the reference case
without control, one with control applied, and the third shows the results
obtained for the control signal alone. Throughout the control strip a gradual
amplitude reduction can be observed for the controlled case in Fig. 9 a).
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Figure9 Comparison of v-amplitudes (a) and wave numbers (b) with and with-
out w;-control. Additionally one can observe the control signal (|4| = 7.5 - 1072,
no phase difference between w, and vy, the control array reaches from z = 2.4 to
4.8). Base flow A. Every curve represents a single simulation.

In wave-superposition control, where an anti-phase disturbance of the
same frequency and wave number is superimposed on the initial perturba-
tion, frequency and wave number of both disturbances would be the same.



Figure 9 b) clearly indicates that this is not the case using the w,-control,
because the wave number ag and therefore the phase velocity cpp, of the con-
trolled wave differs from the uncontrolled case. These results show, that this
approach is completely different to the wave-superposition principle.

LST Results To get an overview of the damping capabilities of the present
concept and to optimise the parameters for further simulations, investiga-
tions using linear stability theory (LST) have been performed. Therefore,
the boundary conditions at the wall for the Orr-Sommerfeld (and Squire)
equation had to be changed. The amplification-factor between v,, and w;
is expressed as a complex number A = |A| - e'® allowing a variable phase &
between sensor- and actuator signal.

A strong damping effect and a significant reduction of the unstable area
in the stability diagram (Fig. 10) is already caused by very small amplitudes
|A]. Results of a detailed investigation of the influence on the most unstable
eigenvalues are presented in Fig. 11 for an amplitude of 2-10~> and a variation
of the phase angle @ between v,, and w ,,. The computation of the eigenvalues
shows, that there is a strong dependence on the phase angle. One can find the
largest possible damping for all modes in the region of ¢ ~ Z...5. Therefore,
to achieve the desired damping effect it is most important to use an according
phase angle between v,, and w, 4.

Energy Properties A deeper insight into the acting mechanisms can be
obtained by looking at the spatial linear 2D energy balance equation
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This equation is derived from the 2D Navier-Stokes equations with the aid
of a parallel-flow assumption and a wave approach for the disturbances [18]
(overlines denote an average over one period of time). The spatial rate of
increase of fluctuation energy flux (E) can be split into the energy production
(R), the dissipation (D), a pressure term and a small negligible rest (eqn. 1).
Figure 12 compares the most important energy-properties for the case of
an amplified TS-wave with and without active control. The application of
w-control at x > 2.4 changes the sign of the energy flux together with the
curves for production and pressure term. Clearly, the energy production term
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Figure10 Neutral Curves (a; = 0) of 2D-TS-modes in the Blasius boundary
layer A according to LST with active control applied. (a): |4] = 5-107%, (b):
|[A]=1-107%, (c): |A| =2-1075, (d): |A] =4-107°.

R dominates the complete energy balance. Its sign, respectively the sign of
the Reynolds stress u'v’ (see eqn. 1), determines the attenuation or growth
of the regarded disturbance (uv'v' > 0 = R < 0 = E < 0 = reduction of
amplitude and vice versa). The change of sign of the Reynolds stress u'v’
when control is applied is not caused by different u' or v' amplitudes but by
its strong sensitivity to the phase difference A@® = |@(u’) — O(v')| around

AB(y) = % which is altered by the non-zero v, [19].

DNS results As a test case for the effect of the w,-approach on disturbances
with large amplitude the well-known K-breakdown scenario from Fig. 1 is
used again. Applying w.-control to this scenario two main control effects can
be distinguished: direct damping of nonlinear disturbances and the affection
of the resonant behaviour due to the influence of the control on the phase
speed of the controlled modes [17]. From Fig. 11 it is obvious that the optimal
phase shift between w, and v is more or less independent of the frequency.
Thus, controlling with a fixed time delay between sensor and actuator signal
yields to a different, non optimal control phase for some frequencies. To obtain
the desired phase for every occurring frequency resp. wave number a spatial
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Figure 11 Dependence of wave number and amplification rate on the phase
between v, and w, . according to LST. |[A|] = 2 - 10757 spanwise wavenumber
v=0.
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Figure12 Downstream development of integral energy quantities. § = 10, con-
trolled at « > 2.4 (JA| = 0.0001, & = 7/2). Dotted lines: uncontrolled case.

FIR-Filter is applied to the input data to treat every wave number in the same
way. In terms of Fourier space the (transformed) sensor signal is multiplied by
a complex transfer function to obtain the actuator output. Thus, it is possible
to filter the input data as a function of their spatial wavenumber and to choose
the optimal phase relation for every mode. An additional desired effect is the
prevention of instabilities, which might be introduced unintentionally by the
actuator response to the flow field.

Investigations applying w,-control in combination with a spatial filter in
late nonlinear stages of the K-breakdown to both 2D and 3D modes indicate
that an amplitude reduction of more than one order of magnitude is possible.
Figure 13 shows a simulation with control of the 2D (..,0) and 3D (..,1) modes
where the control array extends from x = 3.5 to = 5.0. The control ampli-
tude is turned on via a spatial ramp function which is also shown.With such



Figure13  K-Breakdown, umqz-amplitudes. Active control of the 2D- and 3D-
modes by application of w.-control in combination with a spatial FIRfilter (|A| =
1.5-107*). Dotted lines: uncontrolled scenario. Small picture: control amplitude |A|
vs. .

an arrangement it is possible to prevent the occurrence of transitional flow
structures such as A-vortices or high shear layers when active control is ap-
plied only two wavelengths prior to their first appearance in the uncontrolled
case (Fig. 14).

As with other unsteady control strategies w,-control is not well suited
for steady modes. Only by damping the fluctuating parts of the disturbance
the nonlinear generation of these modes can be inhibited. Compared to the
K-breakdown scenario controlled via wave superposition, it is possible to
successfully damp disturbances in later stages. Here we can control 2D- and
3D-modes because the w.-approach does not require linear modal properties
of these disturbances due to its mechanisms and the loss of a spatial control
path between sensor and actuator.

To confirm the results obtained for the K-breakdown case and to test
our approach in a more ‘natural’ environment, we investigated the behaviour
of the disturbances emanating from a point source driven by white noise
(section 4.2) under the influence of our active control scheme. These more
3D-dominated disturbances can not be damped by just controlling the 2D-
part of the signal. Therefore, it is necessary to use the spatial filter technique
for every spanwise wave number. It turns out, that the wave-like part of the
disturbances can be treated very efficiently by the w,-algorithm (Fig. 15),
even in very late stages. Unfortunately, interaction of the damped modes



Figure 14  Vortex structures visualised with aid of the As-method [12]. a): un-
controlled case, b): controlled case. Same simulation as Fig. 13.

with the low-wavenumber part of the signal (comparable to the stationary
modes seen in the K-breakdown) leads to a new growth of the disturbances
near the outflow boundary (z 2 8).

6 Conclusions

To actively damp disturbances in a transitional boundary layer and to de-
lay laminar-turbulent transition we used two different approaches. The first
method, the superposition of anti-phase disturbances works very well as long
as disturbances are small (i. e. linear superposition of waves of the same fre-
quency is possible). Therefore, in nonlinear scenarios such a kind of control
has to be applied in a very early stage of transition to work satisfactorily.
Another way of effective damping of transitional disturbances is the direct
feedback of the spanwise vorticity at the wall into the flow as wall-normal
velocity (w.-control). This method doesn’t lead to an immediate fast decrease
in amplitude of the controlled waves like the wave-superposition principle but
to a more continuous attenuation of the controlled disturbance. On the other
hand, this feature avoids excessively large suction and blowing amplitudes
within the control strip. In contrast to the wave superposition, w,-control
can be successfully applied even in later stages of transition when nonlinear
interactions are already present. The range of application ends when large,
vortex-like structures of the transition process are present in the boundary
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Figure15 Downstream evolution of the maximum wavelet amplitude for several
frequencies and wave numbers (especially the marked modes of Fig. 4). Active
control applied for z > 6.4.

layer. The w,-approach shows remarkable improvements compared to ‘clas-
sical” approaches but even for the most efficient approach a relaminarization
of turbulent or nearly turbulent flows seems to be out of scope.
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