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Summary

A family of laminar separation bubbles (LSB) in a swept boundary layer flow -
hereafter referred to as ”swept LSB”- is used to study the effect of sweep and of the
propagation direction of disturbance waves on the quality of linear stability theory
(LST) and solutions of the parabolized stability equations (PSE). To this end spa-
tial LST and linear PSE solutions are qualitatively and quantitatively compared to
highly resolved results of direct numerical simulations (DNS). The sweep angle of
the base flow is systematically varied between0◦ and45◦ and a variety of Tollmien-
Schlichting waves as well as the most amplified stationary cross-flow mode are in-
vestigated. It turns out, that even though LST works satisfactory in the presence of
sweep, flow separation and back flow, PSE is clearly preferable in terms of accuracy.

1 Introduction

Since the nineties linear PSE-methods are increasingly used for similar tasks as the
traditional spatial LST. In aircraft industry their most important field of application
lies in the semi-empiricaleN -method for transition prediction, where nowadays both
methods are utilised, as for example in [5]. In research, either method provides an
inexpensive a priori analysis of single modes or the whole flow field in form of sta-
bility diagrams, if base flow is steady. Thus purposeful disturbance scenarios can be
determined in advance of computationally more demanding methods like DNS ([6],
p. 60). For unsteady flows at least a posteriori analysis of the time averaged DNS-
flow field is possible, as done in [3], p. 140. Finally, both methods are frequently
used for the validation of codes and measurements.

All these applications depend on the ability of LST and PSE to model the
propagation of low amplitude disturbances realistically. Laminar separation bubbles
(LSB) represent a demanding base flow for both methods. One might expect prob-
lems with non-parallel effects due to curved streamlines and the rapid growth of the
boundary layer thickness over the bubble in the case of LST and with the back flow
inside the bubble for the streamwise marching procedure on which the efficiency
of PSE rests on. But forunsweptLSB this poses no problem: Over the last decade
LST has been very successfully applied to LSB in 2D-base flows (see e.g. [4], [3]



and references therein). For PSE growth rates good agreement was also achieved by
Hein in [1] (see figure 1 in [1]) compared to DNS results of the unswept version
of the same leading edge bubble investigated here. Still unknown on the other hand
is the general applicability and overall quality of LST and PSE in laminar separa-
tion bubbles in a swept, three-dimensional flow. This is investigated in detail for
Tollmien-Schlichting modes in section 3 with emphasis on the effect of sweep and
for the linearly most amplified cross-flow mode in section 4. Throughout the paper
PSE always refers to linear PSE and LST/DNS to spatial LST/DNS.

2 Base flow and numerical methods

The unswept prototype of the present leading edge bubble was extensively studied
by Rist in [4] by means of DNS and LST. Its extension to swept flows, the verifica-
tion of the base flow by step size tests, as well as the effect of sweep on the base-flow
profiles and a first LST analysis were reported by Hetsch & Rist in [2]. The DNS
calculations are split in a DNS of the steady laminar base flow and a succeeding
DNS for the disturbance propagation. These two DNS-codes solve the complete
three-dimensional Navier-Stokes equations for unsteady, incompressible flows in a
vorticity-velocity formulation. For an in-depth description of the DNS algorithms
see [6]. The LST-code used here is the same as in all three references above. The
PSE-results were obtained by the code “nolot” of the DLR-Göttingen, described in
[1]. All PSE-calculations were started with local solutions obtained from LST.

The most important base flow parameters described in [2] are repeated here: All
quantities in the paper are non-dimensionalized by the reference lengthL = 0.05 m
and the chordwise free-stream velocityU∞ = 30 m

s , which is held constant for all
cases. Thex- andz-direction are taken normal and parallel to the leading edge with
U andW being the associated base flow velocity components, respectively. Period-
icity is assumed in spanwise direction only, resulting in a quasi-2D base flow with
( ∂

∂z ≡ 0), but W (x, y) 6= 0. The calculation domain itself consists of an infinite
flat plate subjected to an adverse pressure gradient. It is introduced to the system
by prescribing the chordwise potential flow velocityUe(x) shown in Figure 1 at the
upper boundary of the domain. Different sweep anglesΨ are realized by varying
the spanwise free stream velocityW∞ = U∞ tan(Ψ) and settingWe(x) ≡ W∞.
At the inflow located atxo = 0.37 Falkner-Scan-Cooke profiles are prescribed.
With a kinematic viscosity ofν = 15 · 10−6 m2

s the flow can be characterised by
Reδ1 = U∞ δ1(xo)/ν = 331, based on the displacement thickness. The wall-
normal coordinatey ranges from0 to y = 0.059 = 18 · δ1(xo) with y = y/L.

Thus, a family of swept LSB with arbitrary sweep angle is obtained, which –in
agreement with the independence principle of infinite swept geometries, see [2]–
have identical separation and reattachment positions atxs = 1.75 andxr = 2.13,
respectively. The steady calculation of the separation bubble is justified by its small
size (e.g. the maximum back flow is0.3 % U∞) and experience with the unswept
case in [4]. It is converged to steady state, if the differences inV and the vorticity
componentsΩx andΩz of two consecutive time levels are smaller than10−10.



3 Tollmien-Schlichting waves

For the investigation a packet of Tollmien-Schlichting (TS) waves with varying
spanwise wavenumberγ ∈ [−40,−30,−20, 0, 20, 30, 40] was excited by a dis-
turbance strip displayed in Figure 1. They all share the most amplified frequency
ω = 18 of the0◦-base flow. In the following the notation(ω/γ) is adopted for dis-
crete modes in the frequency-spanwise wavenumber spectrum. Small initial ampli-
tudes ofAv = 10−10 grant a purely linear development throughout the domain. Fig-
ure 2 shows two examples of amplification curvesu′ω,γ(x) = maxy(Âu

ω,γ(x, y)),
whereÂu

ω,γ denotes the amplitude of a double Fourier analysis of the disturbance
velocity componentu′ in time and span. Local DNS-amplification rates may be ob-
tained byαi[DNS] := −d(lnu′ω,γ)/dx. For quantitative comparison local amplifi-
cation ratesαi obtained by LST are integrated to calculate the amplification curve
Ao e−

∫
αi dx. Its initial amplitudeAo is fitted to match the DNS results around the

neutral pointxneut = 0.95 (see Fig. 2), after which most modes are amplified for
the first time. The relative errorrrel := |DNS−LST |/DNS was then evaluated at
x

DNS−max
, the position of the peak of the DNS-amplification curve shown in Fig-

ure 2. Here the greatestN -factor, defined asN(x) :=
∫ x

xneut
−αi dx, is achieved.

All findings were compiled into table 1. Analogous results for PSE are found as a
second entry in same table. Table 2 gives the propagation angleΨ = arctan(γ/αr)
of all modes in a body-fitted and a streamline orientated coordinate system,αr rep-
resenting the chordwise wavenumber. For most modesΨ changes only little in the
present base flow, so those values can be regarded as typical.

The effect of sweep: The relative error of the LST-amplification curves is quite
high. On the average it was found to be40% for the0◦-base flow and about50% for
the sweep anglesΨ∞ = 30◦ and45◦. All in all there is a tendency towards higher
errors for increasing sweep anglesΨ∞. Note that45◦-mode(18/ − 40) displays
a slightly atypical behaviour in table 1, as it is nearly neutrally stable. LST was
applicable for the whole range ofΨ∞ ∈ [0◦, 45◦], but the modes(18/±40) showed
first, still negligible convergence problems in their damped regions forΨ∞ = 45◦.
The attempt to calculate a complete stability diagram by LST in a60◦ bubble failed
due to heavy convergence problems already in the amplified regions of the flow.
PSE on the other hand was able to predict the disturbance development starting at
the neutral point with a relative error of only6% in the mean, nearly unaffected by
Ψ∞. In the45◦-case beginning convergence problems made it necessary to double
the step size for the modes(18/30) and(18/40). This coarse discretisation led to
higher errors compared to other PSE-results.

The effect of the propagation direction: Table 2 reveals that the propagation di-
rectionΨ grows monotonically with the spanwise wavenumberγ. The general trend
for LST “larger errors for more oblique modes with larger|γ| and therefore larger
|Ψ |” is much more pronounced than the effect of a rising sweep angle. The smallest
relative errors of16% − 19% are found for modes aroundγ = 0. For very oblique



modes within the same base flow the errors are up to4 times higher. Note that there
is no trend “larger errors for modes with larger|γs|” with respect to the angleΨs

relative to the direction of the potential stream line. Obviously, in the45◦-case the
TS-wave(18/30) with the smallest angle in the stream-line orientated coordinate
system does not exhibit the minimal error. PSE shows also the tendency for higher
errors for more oblique modes, but much less pronounced than for LST.

LST for local quantities and qualitative comparison: The high relative errors
listed in table 1 should not discourage the use of LST in swept LSBs. Fitting the
curves at the neutral point is necessary in the context ofN -factor calculation, but
shows theintegratederror from there up to the point of comparison. The direct re-
sults of LST arelocal ones –growth rates, wavelengths, propagation directions– for
which only the error at the place of comparison is taken into account. Also, many
applications of LST mainly requirequalitativecomparisons of curves. This yields
improved results, because the curves are fitted at an arbitrary point, for which the
error is equally distributed over the whole length of the domain. Furthermore com-
parison with linear theories are only meaningful until one mode reaches the critical
amplitude value of about1% Ue where nonlinear effects should not be neglected any
longer. Therefore, the interval of comparison will typically be smaller than analysed
here. An example of a nonlinear scenario is shown in Figure 3, where the LST of
the dominating mode(18/0) shows excellent agreement up to the point of satura-
tion and even the mode(18/40) with the extremely high relative error of78% (at its
peak atx ≈ 2.25) compares more or less satisfactory within the linear regime.

4 Stationary cross-flow modes

In the 45◦ base flow the strength of the crossflow (CF) velocityWs, the span-
wise base flow velocity in a streamline orientated coordinate system, reaches a
value of aboutWs,max/Us,max = 8% relative to its streamwise counterpartUs.
Furthermore,Ws-profiles exhibit an inflection point indicating the influence of an
inviscid crossflow instability. LST was used to determine the most amplified sta-
tionary CF-mode. The maximal growth ratesαi of stationary CF-modes inside the
LSB were found to be roughly one-third of those of the most amplified TS-waves.
The strongest amplification was exhibited by the modes(0/40) and(0/50), which
showed nearly identical amplification curves. The(0/40) was chosen for further
comparison. As displayed in Figure 4, the LST- and PSE-amplification curves were
individually fitted to the DNS-result in order to achieve the best overall match. Af-
ter a short transient phase PSE yields excellent agreement with the DNS solution,
whereas LST looks even qualitatively less convincing than for the TS-waves from
section 3. On the other hand they-scale is much larger here. Other authors also
indicate that LST fails to give good quantitative results in the case of CF-modes.
Wassermann and Kloker for example examined several CF-modes in an accelerated
45◦-boundary layer without separation in [6]. They report that the LST systemati-
cally underpredicts the DNS-growth rates, a trend which is also observable in Figure



2 for the TS-waves investigated here. In their study amplification curves of DNS and
LST differed at the middle of the domain already by a factor of3− 4.

5 Conclusion

The applicability and accuracy of linear stability theory and linear PSE was investi-
gated for a generic family of small laminar separation bubbles. LST and PSE were
found to be applicable in the whole sweep angle range ofΨ∞ ∈ [0◦; 45◦]. As both
methods showed beginning convergence problems in the45◦-base flow increasing
difficulties can be expected for higher sweep angles. A packet of TS-waves with sys-
tematically varying spanwise wave numberγ was compared to DNS-results for all
sweep angles. In terms of accuracy PSE is clearly superior to LST, which systemat-
ically underpredicts the DNS-growth rates. Compared to DNS-amplification curves
the mean error over all modes and sweep angles yielded6% for PSE compared to
46% for LST. An error of64% already results in an amplitude factor difference of
2.8 between LST and DNS, which would correspond to a∆N = 1 in a N -factor
prediction. On the other hand the amplification in LSBs is so extreme compared to
attached boundary-layer flows –the maximum growth rate of the present LSB is 16
times higher than that of the same inflow without pressure gradient– that even such
an error might result in only a small∆ x-shift of the predicted transition location.

LSTwas found to work best for0◦-base flows. The errors increased with rising
sweep angle, in the mean by a factor of1.25 from Ψ∞ = 0◦ to 45◦. More pro-
nounced is the dependency of LST from the propagation directionΨ of the analysed
mode. It exhibited the general trend “larger errors for modes with larger propagation
angles”. In the present investigation the errors of the most oblique waves were up to
4 times higher than errors for two-dimensional waves. The accuracy ofPSE-results
on the other hand was rather independent of the sweep angle. But oblique waves
with the largest propagation angle also showed the maximum errors. In the mean
they differed from the minimum error of the mode(18/− 20) by a factor of1.75.

In application LST is very robust and easy to handle and automate because of
its local character. It is well suited to get an overview, for the qualitative comparison
of curves or when a great number of modes has to be calculated, as for stability
diagrams. Due to its step-size restriction PSE requires more attention per run. PSE
comes into play when greater accuracy is desired and is clearly superior for CF-
modes. Note that the present base flow was a flat-plate boundary layer. In curved
geometries, PSE has the additional advantage of the inclusion of curvature terms.
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Table 1 First number: Relative errorrrel := |DNS − LST |/DNS of LST results in per
cent with respect to DNS amplification curves, evaluated at X-position of greatest amplifica-
tion of the DNS-curve (see Fig. 2). Its dependency on various modes(ω/γ) (columns) and
sweep anglesΨ∞ of the base flow (rows). Second number: Same findings for PSE.

Ψ∞ (18/-40) (18/-30) (18/-20) (18/0) (18/20) (18/30) (18/40) mean

0◦ 58 / 8 55 / 6 16 / 5 16 / 4 16 / 5 55 / 6 58 / 8 39 / 6

30◦ 51 / 6 58 / 4 58 / 6 19 / 5 15 / 1 62 / 6 73 / 2 48 / 4

45◦ 25 / 6 51 / 2 59 / 2 19 / 5 39 / 9 81 / 10 78 / 11 50 / 6

mean 45 / 7 55 / 4 44 / 4 18 / 5 23 / 5 66 / 7 70 / 7 46 / 6

Table 2 Propagation angleΨ = arctan(γr/αr) in degrees with respect to theX-axis of
modes in table 1 according to LST atx = 1.4. Second number: Propagation angleΨs =
arctan(γr/αrs) in streamline orientated coordinate system, displayed in Figure 1.

Ψ∞ (18/-40) (18/-30) (18/-20) (18/0) (18/20) (18/30) (18/40)

0◦ −41 −32 −22 0 22 32 41

30◦ −30/− 61 −25/− 56 −19/− 49 0/− 31 27/− 4 43/ 12 58/ 28

45◦ −25/− 71 −22/− 67 −17/− 62 0/− 46 32/− 14 54/ 8 79/ 33



Figure 1 30◦-base flow: Topview. Disturbance stripx ∈ [0.5; 0.64], LSB betweenxs =
1.75 & xr = 2.13, potential streamline. Propagation directionΨ of investigated TS-waves
(ω/γ) according to LST atx = 1.4. Smaller Figure: potential chordwise velocityUe(x).

Figure 2 Amplification curves. Left:(18/40) in 45◦-base flow withx-positions of error
evaluation in section 3 (example of high relative error compared to other TS-waves). Right:
(18/20) in 30◦-base flow (lowest relative error). Lines: DNS, diamonds: LST, circles: PSE.



Figure 3 45◦-LSB nonlinear scenario: Dominating disturbance(18/0) with initial ampli-
tudeAv = 10−5, all other modes:Av = 10−10, shown only(18/40). End of linear regime
atx ≈ 1.8 indicated by dash-dotted lines. Lines: DNS, diamonds: LST.

Figure 4 45◦-LSB: Linearly most amplified stationary CF-mode(0/40) with disturbance
strip. Initial amplitude:Av = 10−10. Lines: DNS, diamonds: LST, circles: PSE.


