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Active control of laminar-turbulent transition using instantaneous vorticity
signals at the wall

Christoph Gmelin and Ulrich Rist
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D-70550 Stuttgart, Germany

~Received 21 March 2000; accepted 7 November 2000!

Many approaches with the objective to actively delay the laminar-turbulent transition in boundary
layers are currently under investigation. These approaches, which are mostly based on the
superposition of anti-phase disturbances, fail in cases where high~nonlinear! disturbance amplitudes
occur. One possible solution to overcome this problem is the direct feedback of instantaneous flow
signals from the wall. In our case the spanwise vorticity (vz) on the wall is sensed, multiplied by
a certain factorA and prescribed as a new boundary condition at the wall with some time delayDt.
This procedure~called vz-control! yields a robust algorithm which is less influenced by
nonlinearities than other processes based on the linear superposition of disturbances~waves!. The
method was developed and evaluated using both linear stability theory and a three-dimensional
spatial DNS code solving the complete Navier–Stokes equations. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1336153#
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I. INTRODUCTION

The most popular approach controlling transition is t
superposition of disturbances with opposite phase to the
isting waves. First attempts have been published by Millin1

Liepmannet al.,2,3 and Kozlovet al.4 Until now this strategy
has been realized many more times both experimentally5 and
numerically.6 For disturbances with small~linear! amplitude
a reduction in amplitude of up to 90% even in experiment
achievable. In contrast to their excellent performance in e
transition stages these approaches do not work satisfacto
cases where high amplitudes occur due to nonlinear eff
superposing disturbance and control wave. Moreover,
generation of large control waves which are necessary
cancel the initial wave with the aid of a suction/blowing s
sometimes causes very high velocities in the vicinity of th
actuators, an effect which favors nonlinearities furthermo
These arguments make clear that there is a need fo
smooth, robust control algorithm which is almost indepe
dent of the amplitude of the initial disturbance. Several
tempts have been made to control turbulent flows. Con
via affection of the vorticity flux at the wall has been pr
posed by Koumoutsakos,7,8 whereas Choi, Moin, and Kim9

observed a damping effect on turbulent flows feeding b
the instantaneous wall-normal velocity at a certain dista
from the wall to the boundary. They report the establish
of a ‘‘virtual wall,’’ i.e., a plane that has approximately n
through-flow halfway between the detection plane and
wall and therefore a drag reduction of 25% and a stro
reduction of turbulent flow structures. In some aspects
approach is very similar to their idea of feedback of insta
taneous signals but in most cases flow data of the whole
field is not available. In our case this problem is handled
sensing the spanwise vorticity at the wall, present as w
shear stress and easily measurable by hot film sensor
5131070-6631/2001/13(2)/513/7/$18.00
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cavity hot wires,10 for example. These signals are multiplie
with a certain factor and prescribed as wall-normal veloc
v at the wall~for a detailed description see below in Sec. II!.

An approach complementary to our LST investigatio
~Sec. IV! has been applied by Joshiet al.11 for plane Poi-
seuille flow using the spanwise shear at the wall as sen
variable and blowing/suction for actuation, as well. Ho
ever, they converted the problem into a control theoreti
one and determined the effect of the feedback control by
position of the zeros and poles of the system. Furtherm
they obtained an optimal sensor location relative to the
tuator similar to our most effective phase shift between se
ing and actuation. Another contribution concerning feedba
control, again in planar Poiseuille flow was published by H
et al.12 Analogical to our approach they modified the Orr
Sommerfeld equation to get some information about the
bility of the controlled flow system. In contrast to the actu
tion via blowing/suction at the wall used in ou
investigations they modulated the wall temperature perio
cally to alter the fluid’s viscosity and therefore to stabili
the flow.

In our paper we use direct numerical simulations~DNS!
and linear stability theory~LST! to explore the concept o
vz-control and to evaluate its effects on the disturban
involved in the laminar-turbulent transition in a Blasiu
boundary layer. The DNS method and a discussion of res
in the linear regime are presented in Secs. II and III, inv
tigations using LST in Sec. IV, active control of nonline
disturbances in Sec. V and a summary is given
Sec. VI.

We have to admit the lack of comparison to experime
tal results but to our knowledge there are not any exp
ments concerning the direct feedback-control yet. One rea
may be the need for a very densely packed sensor/actu
array. Therefore, one future goal will be to study if this a
© 2001 American Institute of Physics
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proach can be realized by a more sparse sensor/actuato
rangement. In the actual state of affairs we have to ag
with the following quotation of Choiet al.:9 ‘‘ . . . simula-
tions can provide data on what may be possible to achi
just from fluid dynamical considerations. The primary role
simulations in the field of flow control will be to guide e
periments for complex flows.’’

II. NUMERICAL METHOD

All simulations were performed in a rectangular integ
tion domain with the spatial DNS-code developed by Ko
zelmann, Rist, and Kloker.13–15The flow is split into a steady
2D-part ~Blasius base flow! and an unsteady 3D-part. Th
x-~streamwise! andy-~wall-normal! directions are discretized
with finite differences of fourth-order accuracy and in t
spanwise directionz a spectral Fourier representation is a
plied. Time integration is performed by the classical four
order Runge–Kutta scheme. The utilized variables are n
malized with Ũ`530 m/s , ñ51.531025 m/s2 and
L̃50.05 m (̃ denotes dimensional variables!:

x5
x̃

L̃
, y5

ỹ

L̃
, z5

z̃

L̃
, t5 t̃ •

Ũ`

L̃
,

u5
ũ

Ũ`

, v5
ṽ

Ũ`

, w5
w̃

Ũ`

, Re5
Ũ`L̃

ñ
5105,

where u, v, and w are the components of the unstea
velocity disturbances. This leads to the dimensionl
frequency b52p f̃ L̃/Ũ` , where f̃ is the frequency in
Hz and the dimensionless spanwise vortic
vz5(]u/]y) 2 (]v/]x).

III. CONTROL MECHANISM

To actively damp disturbances in boundary layers
use the feedback of instantaneous signals of the span
vorticity fluctuations measured at the wall. These signals
multiplied by an amplitude factoruAu and are prescribed as
v-boundary condition after a time delayDt at the wall which
is necessary to produce the phase shiftF shown in Fig. 1.
The effects of changinguAu andDt resp.F will be studied in

FIG. 1. Illustration of thevz-control principle.
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Sec. IV using linear stability theory. Here, results of DNS a
analyzed in order to show how the method works in t
linear case.

For a small-amplitude 2D Tollmien–Schlichting~TS!
wave results of three simulations are compared with e
other in Fig. 2. Compared to the uncontrolled case there
strong damping effect of thevz-control on the disturbance
amplitude in Fig. 2~a!. Because of the small amplitudes
linear superposition of waves is valid here, i.e., the co
trolled wave ~—! in Fig. 2~a! can also be viewed as th
addition of the uncontrolled wave~-•-•-•-! with a control
wave which arises when previously extractedvw ~index w
denotes wall quantities! signals are prescribed in an othe
wise undisturbed flow~- - -!. However, this approach has t
be clearly distinguished from the ‘‘classical’’ wave superp
sition principle,5 where an anti-phase disturbance of the sa
frequency and wave number is superposed to the initial p
turbation. In the ‘‘classical’’ case, frequency and wave nu
ber of both disturbances are the same. Looking at the w
numbers of the present example in Fig. 2~b! one can clearly
see, that this is not the case here using thevz-control, be-
cause the wave numberaR and therefore the phase veloci
cph of the controlled wave is strongly different from th
uncontrolled case.

A deeper insight into the acting mechanisms can be
tained by looking at the spatial linear 2D energy balan

FIG. 2. v-amplitude~a! and wave number~b! of undisturbed linear wave,
controlled wave and control disturbance. Control parameters:uAu57.5
31025, Dt50, control array fromx52.4 . . .4.8. Control disturbance is
obtained by an extra simulation prescribing the wall signal of the run w
control at the wall without initial disturbance. Due to the presence of lin
waves addition of modes is valid.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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515Phys. Fluids, Vol. 13, No. 2, February 2001 Active control of laminar-turbulent transition
equation. This equation is derived from the 2D Navie
Stokes equations with the aid of a parallel flow assumpt
and a wave approach for the disturbances.16,17 @Flow proper-
ties are split into steady mean and fluctuating quantities.
locities in streamwise (x), wall normal (y) and span-
wise (z) direction are u5U1u8, v5V1v8, w5w8,
vZ5Vz1vz8 , respectively. Overlines denote the avera
over one period of time.#

~1!

whereE is the spatial rate of increase of the fluctuation e
ergy flux. E.0 indicates a growth of disturbances where
E,0 means a weakening of disturbances.

The terms which form the major part of the right ha
side of Eq.~1! are:

• the energy production term, whereu8v8 is the averaged
Reynolds stress

~2!

• the dissipation

D52nE
0

`

vz8
2 dy, ~3!

• and the pressure term

P52
1

r

d

dxE0

`

p8u8 dy. ~4!

All integrals are solved by integrating the flow quantiti
from the wall to the upper edge of the integration dom
using finite differences of fifth-order accuracy. The error o
tained by solving the integrals not to infinity is negligib
because the integrands are already very close to zero a
upper boundary.

The application ofvz-control atx.2.5 changes the sign
of E together with the curves forR andP ~Fig. 3!. Clearly,
the energy production termR dominates the complete energ
balance. Its sign, respectively, the sign of the Reynolds st
u8v8 @see Eq.~2!#, determines the sign of the whole righ
hand side of Eq.~1! and therefore the attenuation or grow
of the regarded disturbance (u8v8.0⇒R,0⇒E,0⇒re-
duction of amplitude and vice versa!. The first of the two
remaining terms, the dissipation termD has always a damp
ing effect whereas the pressure termP always tends to coun
teract the production termR.
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Normal-to-the-wall profiles of Reynolds stress, distu
bance amplitudes and phases for a fixedx-position, for one
case with amplification and the other with active dampin
are shown in Fig. 4. The change of sign of the Reyno
stressu8v8 @Figs. 4~a! and 4~d!# when control is applied is
not caused by differentu8 or v8 amplitudes@Figs. 4~b! and
4~e!# but by its strong sensitivity to the phase differen
DQ5uQ(u8)2Q(v8)u aroundDQ(y)5 p/2 @Figs. 4~c! and
4~f!#. A phase difference ofDQ(y)5 p/2 would lead to
u8v8(y)50. Accordingly, a phase difference ofDQ(y)
,p/2 results in positive Reynolds stress and damped dis
bances in the controlled case, and vice versa. The effec
the control on the amplitude profiles is to increasev8 at the
wall to a finite value, leaving the profiles ofu8 andv8 in the
boundary layer more or less unchanged.

IV. LINEAR STABILITY THEORY

To get an overview of the damping capabilities of t
new concept and to optimize the parameters for further sim
lations, investigations using linear stability theory~LST!
were performed. Therefore, the boundary conditions at
wall for the Orr–Sommerfeld~and Squire equation! had to
be changed~index w denotes wall properties! to

vw8 5A•vz,w8

~5!

vw8 5A•S ]u8

]y
2

]v8

]x
D ,

~11 iAa!•vw8 2A•S ]

]yD
w

u850 ~6!

with

A5uAu•eiF,

whereuAu is the amplitude factor andF is the phase differ-
ence betweenvw andvz,w similar to the time delay used in
the simulations. Due to the ability to expressvz in terms of
u andv @Eq. ~6!# the discretized system remains a homog
neous eigenvalue problem which can be solved in the s
way as the original Orr–Sommerfeld equation.

FIG. 3. Streamwise distribution of the main energy-balance terms base
Eq. ~1!, dotted lines: uncontrolled case for reference.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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A strong damping effect and a significant reduction
the unstable area in the stability diagram~Fig. 5! is already
caused by very small amplitudesuAu.

Results of a detailed investigation of the influence on
most unstable eigenvalues are presented in Fig. 6 for am
tudes in the range of 531025<uAu<2031025 and all pos-
sible phase anglesF betweenvw andvz,w . With increasing
control amplitude the dependence of the spatial wave n
beraR on the phase angle is changing from a sine-like cu
to a curve with a singularity which strongly deviates fro
the uncontrolled case~Blasius!. Two eigenvalues are show
for the largest amplitudeuAu because both are amplified for
certain region ofF. Also they are no longer periodic with
respect toF. However, when mode #1 leaves the domain
F52p it has the same eigenvalues (a r ,a I) as mode #2 at
F50 which in turn exhibits the same values atF52p as #1
at F50. This indicates that both belong to the same kind
disturbance which has now a 4p periodicity instead of the

FIG. 4. Wall-normal distribution of Reynolds stress, amplitude ofu8 and
v8, phase and phase difference between both in the case of an amp
uncontrolled~a–c! and actively damped Tollmien–Schlichting wave~d–f!
at x53.0 ~same simulation as in Fig. 2 and Fig. 3!.
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expected 2p. Similar results have been obtained by Sen a
Arora18 for the linear stability analysis of compliant walls. A
F' 3

4p aR for uAu52031025 tends to zero which cause
problems for the local approach of LST so that the eigenv
ues could not be computed there. For small to moderate c
trol amplitudes the amplification rates indicate a 1:1 divisi
of a I.0 anda I,0, i.e., damping and amplification~spatial
approach of LST!. Only the 4p periodic result is different.
However, the large damping foruAu52031025 of mode #1
for F,p has no particular advantage because of the e
tence of the unstable mode #2 which would amplify. Th
the largest possible damping for all modes appears to the
of F' p/2.

After the influence of the control parameters on the
genvalues have been investigated by LST, comparison
some cases with results of DNS have been performed.
such example is shown in Fig. 7 where the spatial amp
cation rates of the simulation already discussed in the pr
ous section are compared to the results obtained by lin
stability theory. There is an excellent agreement betw
simulation and LST and the drastically reduced amplificat
is validated, as well as the influence ofuAu and F shown
above.

V. ACTIVE CONTROL OF NONLINEAR
DISTURBANCES

As a test case for the effect of thevz-approach on dis-
turbances with large amplitude a typical K-breakdown s
nario ~dotted lines in Fig. 8! is used where a fundamenta
mode~1,0! with large amplitude and a stationary disturban
~0,1! ~the first index denotes multiples of the fundamen
frequencyb, the second multiples of the basic spanwi
wave numberg520) are excited initially. Because of non
linear interactions the 3D-mode~1,1! arises and falls in reso
nance with the fundamental 2D-mode~modes~1,0! and~1,1!
share the same wave number fromx'3.4 . . .4.0; cf. Fig. 9,
dashed lines!. The other modes shown are due to nonline
combinations. They demonstrate transition to turbulence
generation of higher harmonics and the mean flow distort
~0,0!. When the strongly amplified 3D-waves have reach

ed,

FIG. 5. Curve of zero amplification for 2D waves. Comparison of unco
trolled case ~Blasius! and controlled case. Control parameters:uAu52
31025, F50.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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517Phys. Fluids, Vol. 13, No. 2, February 2001 Active control of laminar-turbulent transition
FIG. 6. Wave numberaR and amplification ratea I from LST with
vz-control (vw5uAu•eiF

•vz,w) applied. Streamwise position:x53.5
(Red151018), frequency:b510. ~Note that for the spatial approacha I

,0 means amplification.!

FIG. 7. Spatial amplification rates for a 2D TS wave with and without act
control. Comparison of DNS and LST. Control parameters:uAu57.5
31025, F50, control array fromx52.4 . . . 4.8.
Downloaded 28 Jan 2002 to 129.69.43.206. Redistribution subject to A
the amplitude level of the fundamental mode, saturation s
in and transition to turbulence takes place~dashed lines!.
Applying vz-control to this scenario two main control effec
can be distinguished: direct damping of nonlinear dist
bances and the affection of the resonant behavior. The fir
comparable to the linear case wherevz-control was shown to
be able to directly damp TS-disturbances.

In Fig. 8 only 2D modes, i.e.,~1,0! and its higher har-
monics were actively controlled with a phaseF of approxi-
mately p/2 ~control array fromx53.5 to x54.6). Despite
the strongly nonlinear regime in this case the amplitudes
the 2D modes~1,0! and ~2,0! are strongly decreased.

The damping of the 3D-modes is now due to the seco
effect mentioned above: Resonance in 2D boundary laye
accompanied by phase synchronization of the resonant~1,1!
to the fundamental~1,0! mode ~i.e., both waves have the
same phase speedc5 b/a fundamental). Investigations using
LST predict apart from changed amplification rates stron
altered wave numbers of the controlled mode~Fig. 6!. This
effect leads to a decoupling of the resonant modes and

FIG. 8. K-breakdown,umax-amplitudes vsx. Only 2D-modes controlled
(uAu5231024, F' p/2). Dashed lines: uncontrolled case; gray line
higher harmonics.

FIG. 9. K-breakdown, wave numberaR vs x. Only 2D-modes controlled
(uAu5231024, F' p/2). Dashed lines: uncontrolled case.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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therefore suppress resonance. Figure 9 shows the wave
bers of the most important modes of the simulation m
tioned above. Before the direct attenuation viavz-control
can take effect the wave number of mode~1,0! is shifted to
lower values~i.e., the wave is accelerated!, the resonant
mode~1,1! is not synchronized any more and resonance
tween~1,0! and~1,1! is prevented. Looking at further inves
tigations applyingvz-control in late nonlinear stages to bo
2D and 3D modes an amplitude reduction of more than 5
is possible. Figure 10 shows a simulation with control of t
2D ~..,0! and3D ~..,1! modes where the control array exten
from x53.6 to x55.5. Compared to the previous simul
tions a further reduction of the disturbances is observed.

From the technological point of view the benefits in sk
friction are of major interest. Figure 11 shows the local s
friction coefficient~dimensionless wall shear stress! cf8 of the
simulation discussed above compared to the laminar and
uncontrolled case. Due to control skin friction close to t
laminar state is reachable. Possible benefits in power req
ment are difficult to quantify because the control result
pends heavily on length, placement, and gain of the con
strip. One hint for good efficiency may be that the cont
velocity vw8 in all cases shown in the present paper does

FIG. 10. K-breakdown,umax-amplitudes vsx, active control of 2D modes
~..,0! and modes withg520 ~..,1! (uAu51531025, F' p/2). Dashed lines:
uncontrolled case; gray lines: higher harmonics.

FIG. 11. Local friction coefficient for the controlled K-breakdown~Fig. 10!.
Dashed lines: uncontrolled case.
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exceed a value of approximately 0.34% of the freestre
velocity ~Fig. 12!. As an example we consider the pure sk
friction of a flat plate with Rel5500 000. Now it is possible
to calculate the requiredvz-control input power, neglecting
losses due to friction in tubes and valves:

Pin5
4

3p
b

r

2Ex1

x2

v̂w
3 dx, ~7!

whereb is the span,v̂w is the amplitude ofv at the wall and
r is the density of air. The control array reaches from Rx1

5350 000 to Rex25500 000. Compared to the power sa
ings DP due to reduced drag we obtain

h5
Pin

DP
50.035. ~8!

That means that approximately 3.5% of the saved power
to be spent to drive the control actuators.

Flow structures.The effect of applyingvz-control to the
flow on the flow structures is discussed in the last two figu
~Figs. 13 and 14!. The vz-contours in Fig. 13 show a re
tarded development of high-shear layers compared to the
controlled ~K-breakdown! case. In the uncontrolled case
x'4.3 the typical high-shear layer is followed by a rap
collapse which is absent in the controlled case. The rem
ing structures look more like longitudinal shear layers a

FIG. 12. v8 amplitudes of the fundamental 2D-mode~1,0! for the controlled
K-breakdown~see Fig. 10!.

FIG. 13. K-breakdown,vz-contours in the peak plane (z50), y-axis
stretched by a factor of 5.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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cording to the fact that thevz-control is only sensing insta
tionary disturbances deviating fromvz of the undisturbed
base flow. Additionally, thel2 isosurfaces19 in Fig. 14 indi-
cate a complete suppression of transitional structures eve
stages where the formation ofL-vortices has already begun
The remaining structures show no significant amplificat
compared to the rapid nonlinear growth in the uncontrol
case.

VI. SUMMARY

With the aid of direct numerical simulations~DNS! it
was possible to develop a simple, yet effective control al
rithm to actively control the laminar-turbulent transition o
curring in a 2D boundary layer. It combines two main e
fects: The direct attenuation caused by a change of
energy properties and a reduced resonance according
altered phase velocity of the involved modes. Calculatio
using linear stability theory~LST! show a strong dependenc
of the resulting wave number and amplification rate on
chosen amplitude and phase difference betweenvz8 ~sensed!
andvwall8 ~stimulated!.

It is shown that this approach works very well even clo
to transition where the boundary layer instabilities ha
reached a highly nonlinear stage. Further investigations h
to show how far transition can be shifted downstream a
whether a complete relaminarisation of the flow is possi
using this approach.

FIG. 14. Isosurfaces withl25215, y-axis stretched by a factor of 5.
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