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Many approaches with the objective to actively delay the laminar-turbulent transition in boundary
layers are currently under investigation. These approaches, which are mostly based on the
superposition of anti-phase disturbances, fail in cases wherdmgiineay disturbance amplitudes
occur. One possible solution to overcome this problem is the direct feedback of instantaneous flow
signals from the wall. In our case the spanwise vorticity)(on the wall is sensed, multiplied by

a certain factoA and prescribed as a new boundary condition at the wall with some time delay

This procedure(called w,control) yields a robust algorithm which is less influenced by
nonlinearities than other processes based on the linear superposition of disturweamas The
method was developed and evaluated using both linear stability theory and a three-dimensional
spatial DNS code solving the complete Navier—Stokes equations20@L American Institute of
Physics. [DOI: 10.1063/1.1336153

I. INTRODUCTION cavity hot wirest® for example. These signals are multiplied
with a certain factor and prescribed as wall-normal velocity
The most popular approach controlling transition is they at the wall(for a detailed description see below in Sec). Il
superposition of disturbances with opposite phase to the ex- An approach complementary to our LST investigations
isting waves. First attempts have been published by Milting, (Sec. I\) has been applied by Joskt al! for plane Poi-
Liepmannet al,>*and Kozlovet al* Until now this strategy  seuille flow using the spanwise shear at the wall as sensor
has been realized many more times both experimeftaiiy  variable and blowing/suction for actuation, as well. How-
numerically® For disturbances with smafllinean) amplitude ever, they converted the problem into a control theoretical
a reduction in amplitude of up to 90% even in experiments isone and determined the effect of the feedback control by the
achievable. In contrast to their excellent performance in earlyosition of the zeros and poles of the system. Furthermore,
transition stages these approaches do not work satisfactory they obtained an optimal sensor location relative to the ac-
cases where high amplitudes occur due to nonlinear effectsiator similar to our most effective phase shift between sens-
superposing disturbance and control wave. Moreover, thing and actuation. Another contribution concerning feedback
generation of large control waves which are necessary toontrol, again in planar Poiseuille flow was published by Hu
cancel the initial wave with the aid of a suction/blowing slot et al'?> Analogical to our approach they modified the Orr—
sometimes causes very high velocities in the vicinity of thesesSommerfeld equation to get some information about the sta-
actuators, an effect which favors nonlinearities furthermorebility of the controlled flow system. In contrast to the actua-
These arguments make clear that there is a need for #on via blowing/suction at the wall used in our
smooth, robust control algorithm which is almost indepen-investigations they modulated the wall temperature periodi-
dent of the amplitude of the initial disturbance. Several atcally to alter the fluid's viscosity and therefore to stabilize
tempts have been made to control turbulent flows. Controthe flow.
via affection of the vorticity flux at the wall has been pro- In our paper we use direct numerical simulatigBiNS)
posed by Koumoutsakd€ whereas Choi, Moin, and Kith  and linear stability theoryLST) to explore the concept of
observed a damping effect on turbulent flows feeding backv,-control and to evaluate its effects on the disturbances
the instantaneous wall-normal velocity at a certain distancéwvolved in the laminar-turbulent transition in a Blasius
from the wall to the boundary. They report the establishingooundary layer. The DNS method and a discussion of results
of a “virtual wall,” i.e., a plane that has approximately no in the linear regime are presented in Secs. Il and I, inves-
through-flow halfway between the detection plane and theigations using LST in Sec. IV, active control of nonlinear
wall and therefore a drag reduction of 25% and a stronglisturbances in Sec. V and a summary is given in
reduction of turbulent flow structures. In some aspects ouBec. VI.
approach is very similar to their idea of feedback of instan- ~ We have to admit the lack of comparison to experimen-
taneous signals but in most cases flow data of the whole flowal results but to our knowledge there are not any experi-
field is not available. In our case this problem is handled byments concerning the direct feedback-control yet. One reason
sensing the spanwise vorticity at the wall, present as walinay be the need for a very densely packed sensor/actuator
shear stress and easily measurable by hot film sensors array. Therefore, one future goal will be to study if this ap-
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FIG. 1. lllustration of thew,-control principle.
b) 3,
proach can be realized by a more sparse sensor/actuator ar ~ 31F " ——— with control
rangement. In the actual state of affairs we have to agree I S qull'lfol dis'“lbimce
with the following quotation of Chokt al:® “ . .. simula- F without contro
tions can provide data on what may be possible to achieve & 293 T
just from fluid dynamical considerations. The primary role of : {\_\/,-..\
simulations in the field of flow control will be to guide ex- 28F ..,'.._,_,_,_,:,:.::.-g-..-_‘ e
periments for complex flows ! ! T
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Il. NUMERICAL METHOD 264 2 3 4 5

. All Slm_u'atl_ons were p(_arformed ina reCtangmar Integra_FIG. 2. v-amplitude(a) and wave numbefb) of undisturbed linear wave,

tion doma‘n with the spatial DNS'COd_e de\_/ell()ped by Kon-controlled wave and control disturbance. Control parametgbs=7.5

zelmann, Rist, and Klokéf~1°The flow is split into a steady x10°5, At=0, control array fromx=2.4 . . .4.8. Control disturbance is

2D_part (B|asius base ﬂo\)vand an unsteady 3D_part' The obtained by an extra simulation prescribing the wall signal of the run with
. : - : . control at the wall without initial disturbance. Due to the presence of linear

X .(stre.a_mW|s'§eandy (wall-normal) directions are dlscretllzed waves addition of modes is valid.

with finite differences of fourth-order accuracy and in the

spanwise directiorz a spectral Fourier representation is ap-

plied. Time integration is performed by the classical fourth'Sec. IV using linear stability theory. Here, results of DNS are

order Runge—Kutta scheme. The utilized variables are norénalyzed in order to show how the method works in the

) ] ~ ~_ -5
malized with U,=30m/s, »=15x10°m/¥ and linear case.

L£=0.05m { denotes dimensional variabjes For a small-amplitude 2D Tollmien—Schlichting'S)

% y 5 U wave results of three simulations are compared with each

X==, y==, z==, t=t- -=, other in Fig. 2. Compared to the uncontrolled case there is a
L L L L strong damping effect of the,-control on the disturbance
~ ~ ~ ~ o~ amplitude in Fig. 2a). Because of the small amplitudes a
u v w U.L : " - - .

U=— p=-— wW=— Re=——=10° linear superposition of waves is valid here, i.e., the con-
U, U, U, v ’ trolled wave (—) in Fig. 2@) can also be viewed as the

addition of the uncontrolled wavé----- -) with a control
where u, v, and w are the components of the unsteady : : . .
. . i . . wave which arises when previously extracteg (index w
velocity disturbances. This leads to the dimensionless . : :
P here ¥ is th ___denotes wall quantitigssignals are prescribed in an other-
frequency f=2mfL/U.., where f is the frequency in \ise yndisturbed flow- - -). However, this approach has to
HZ_ and the dimensionless  spanwise  vorticity be clearly distinguished from the “classical” wave superpo-
w,=(9uldy) = (9v9x). sition principle® where an anti-phase disturbance of the same
frequency and wave number is superposed to the initial per-
IIl. CONTROL MECHANISM turbation. In t_he “classical” case, frequency a.nd wave num-
ber of both disturbances are the same. Looking at the wave
To actively damp disturbances in boundary layers wenumbers of the present example in Figb)2one can clearly
use the feedback of instantaneous signals of the spanwisee, that this is not the case here using dhecontrol, be-
vorticity fluctuations measured at the wall. These signals areause the wave numbeir and therefore the phase velocity
multiplied by an amplitude factdA| and are prescribed as a Cpn Of the controlled wave is strongly different from the
v-boundary condition after a time delay at the wall which ~ uncontrolled case.
is necessary to produce the phase sthifshown in Fig. 1. A deeper insight into the acting mechanisms can be ob-
The effects of changingp| andAt resp.® will be studied in  tained by looking at the spatial linear 2D energy balance
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equation. This equation is derived from the 2D Navier—  Normal-to-the-wall profiles of Reynolds stress, distur-
Stokes equations with the aid of a parallel flow assumptiorbance amplitudes and phases for a fixggosition, for one
and a wave approach for the disturbant®<[Flow proper-  case with amplification and the other with active damping,
ties are split into steady mean and fluctuating quantities. Veare shown in Fig. 4. The change of sign of the Reynolds
locities in streamwise X), wall normal /) and span- stressu’v’ [Figs. 4a) and 4d)] when control is applied is

wise (z) direction areu=U+u’, v=V+v’', w=w’', not caused by differeni’ or v’ amplitudegFigs. 4b) and
w;=Q,+w,, respectively. Overlines denote the average4(e)] but by its strong sensitivity to the phase difference
over one period of timg. A®=|0(u')—0(v")| aroundA®(y)= m/2 [Figs. 4c) and
4(f)]. A phase difference ofA®(y)= =/2 would lead to
e i wlU T g u’'v’(y)=0. Accordingly, a phase difference aO(y)
Cdx)o 2 (u'"+0")dy < /2 results in positive Reynolds stress and damped distur-
bances in the controlled case, and vice versa. The effect of
=R+D+P the control on the amplitude profiles is to increaseat the
d o ©___ U - wall to a finite value, leaving the profiles af andv’ in the
—y—f v'wz'dy—j (u'?—v'*)—dy+v.pl, boundary layer more or less unchanged.
dx Jo 0 Ix
S;ﬂ IV. LINEAR STABILITY THEORY
()

To get an overview of the damping capabilities of the
whereE is the spatial rate of increase of the fluctuation en-new concept and to optimize the parameters for further simu-
ergy flux. E>0 indicates a growth of disturbances whereasjations, investigations using linear stability theofyST)
E<0 means a weakening of disturbances. were performed. Therefore, the boundary conditions at the
The terms which form the major part of the right hand wall for the Orr—Sommerfeldand Squire equatiorhad to

side of Eq.(1) are: be changedindexw denotes wall properti¢go
« the energy production term, whewév ' is the averaged Ao
Reynolds stress Vw= A" Ozw

) ' 6)
Ju v
R_joo I &U+ dV)d v‘;v:A ——-)
= . —u'v W d_x Y, 2) ay ¢
—— J
>0 —0 (1+iAa)~v\;V—A~(—) u'=0 (6)
ay w
* the dissipation with
o A=|A|-€?,
— 12
D= Vfo ;" dy, © where|A| is the amplitude factor ané is the phase differ-

ence between,, and w,,, similar to the time delay used in
* and the pressure term the simulations. Due to the ability to express in terms of
1d (o u andv [Eq. (6)] the discretized system remains a homoge-
P=-- —f p'u’ dy. (4)  neous eigenvalue problem which can be solved in the same
p dxJo way as the original Orr—Sommerfeld equation.

All integrals are solved by integrating the flow quantities

from the wall to the upper edge of the integration domain

using finite differences of fifth-order accuracy. The error ob- 308

tained by solving the integrals not to infinity is negligible F b ' /— E §A

because the integrands are already very close to zero at the 2208 - ' _ ,;" P B R7s7T

upper boundary. Bosk- :/, v e D "—i
The application ofw,-control atx>2.5 changes the sign - - b el

of E together with the curves fdR andP (Fig. 3. Clearly, 03 fi /\ g

the energy production teriR dominates the complete energy ! ;‘ .

balance. Its sign, respectively, the sign of the Reynolds stress ;g o3} 21

u'v’ [see Eq.(2)], determines the sign of the whole right- i . R g‘

hand side of Eq(1) and therefore the attenuation or growth -2E-08f E =~ R+D+P - '°v..m

of the regarded disturbancei’'p’' >0=R<0=E<O0=re- i ' _

duction of amplitude and vice versarhe first of the two -3E-08 ——d——

remaining terms, the dissipation tefnhas always a damp- X

ing effect whereas the pressure telPmalways tends to coun-

> FIG. 3. Streamwise distribution of the main energy-balance terms based on
teract the production terrR. Eq. (1), dotted lines: uncontrolled case for reference.
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FIG. 5. Curve of zero amplification for 2D waves. Comparison of uncon-
trolled case(Blasiug and controlled case. Control parametefa=2
X107%, &=0.

expected 2r. Similar results have been obtained by Sen and
Arorat®for the linear stability analysis of compliant walls. At
®~37 ag for |A|=20x10"° tends to zero which causes

1 1 problems for the local approach of LST so that the eigenval-

AP g APV I AP o APV, ues could not be computed there. For small to moderate con-
) . f) trol amplitudes the amplification rates indicate a 1:1 division
15k 1O(W)-OW)| of ;>0 anda,<0, i.e., damping and amplificaticispatial

; approach of LST. Only the 47 periodic result is different.
However, the large damping foA|=20x 10" ° of mode #1
for ®<# has no particular advantage because of the exis-
tence of the unstable mode #2 which would amplify. Thus,
the largest possible damping for all modes appears to the left
of &~ 7/2.

After the influence of the control parameters on the ei-
genvalues have been investigated by LST, comparisons of
some cases with results of DNS have been performed. One
such example is shown in Fig. 7 where the spatial amplifi-
FIG. 4. Wall-normal distribution of Reynolds stress, amplitudeubfand ~ cation rates of the simulation already discussed in the previ-
v’, phase and phase difference between bth in the case of an amplifiegys section are compared to the results obtained by linear
uncontrolled(a—g and actively damped Tollmien—-Schiichting wale-)  g4apiliry theory. There is an excellent agreement between
at x= 3.0 (same simulation as in Fig. 2 and Fig. 3 . . ;i .

simulation and LST and the drastically reduced amplification
is validated, as well as the influence |#| and ® shown

) o ) above.
A strong damping effect and a significant reduction of

the unstable area in the stgbmty diagrdRig. 5) is already V. ACTIVE CONTROL OF NONLINEAR
caused by very small amplitudé¢s|. DISTURBANGES

Results of a detailed investigation of the influence on the
most unstable eigenvalues are presented in Fig. 6 for ampli- As a test case for the effect of the,-approach on dis-
tudes in the range of 810 °<|A|<20x 10 ° and all pos- turbances with large amplitude a typical K-breakdown sce-
sible phase angle® betweerv,, andw, ,,. With increasing nario (dotted lines in Fig. 8is used where a fundamental
control amplitude the dependence of the spatial wave nummode(1,0) with large amplitude and a stationary disturbance
ber ag on the phase angle is changing from a sine-like curve0,1) (the first index denotes multiples of the fundamental
to a curve with a singularity which strongly deviates from frequency 8, the second multiples of the basic spanwise
the uncontrolled cas@Blasiug. Two eigenvalues are shown wave numbery=20) are excited initially. Because of non-
for the largest amplitudpA| because both are amplified for a linear interactions the 3D-modg, 1) arises and falls in reso-
certain region of®. Also they are no longer periodic with nance with the fundamental 2D-modfeodes(1,0) and(1,1)
respect tob. However, when mode #1 leaves the domain atshare the same wave number framy 3.4 . . .4.0; cf. Fig. 9,
® =27 it has the same eigenvalues,(«,) as mode #2 at dashed lines The other modes shown are due to nonlinear
® =0 which in turn exhibits the same valuesdat=27 as#1 combinations. They demonstrate transition to turbulence by
at®=0. This indicates that both belong to the same kind ofgeneration of higher harmonics and the mean flow distortion
disturbance which has now amperiodicity instead of the (0,0). When the strongly amplified 3D-waves have reached

10:- ow) 10:-

-——

st e
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i [ A|=2*104,N e /10 1\” 0;2)
A =~ B Sy
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- FIG. 8. K-breakdown,u.-amplitudes vsx. Only 2D-modes controlled
10_ L o L L (|A|]=2x10*, ®~ 7/2). Dashed lines: uncontrolled case; gray lines:
0 2 T Nw 2n higher harmonics.
o
b) 15[
- the amplitude level of the fundamental mode, saturation sets
N IAI=2+10™, #2 in and transition to turbulence takes pla@ashed lines
10} — : ) . i
N {10",#?\ Applying w,-control to this scenario two main control effects
- S\/< 1 510* can be distinguished: direct damping of nonlinear distur-
5 /‘ SEg bances and the affection of the resonant behavior. The first is
% _IAI=1*10" comparable to the linear case whargcontrol was shown to
N |Al=5%10" be able to directly damp TS-disturbances.
= - A In Fig. 8 only 2D modes, i.e(1,0) and its higher har-
- Blasius . 4 . .
- ~——— monics were actively controlled with a pha®eof approxi-
5 \_/ mately 77/2 (control array fromx=3.5 to x=4.6). Despite
- X IAI=2%10", #2 the strongly nonlinear regime in this case the amplitudes of
ok the 2D modeg1,0) and(2,0) are strongly decreased.
e \ The damping of the 3D-modes is now due to the second
E effect mentioned above: Resonance in 2D boundary layers is
ast—_ accompanied by phase synchronization of the resofiabt

3w o to the fundamental(1,0) mode (i.e., both waves have the

o _ same phase speatE B/ qyndamental- INVestigations using
FIG. 6. Wave numberar and amplification ratee; from LST with LST predict apart from changed amplification rates strongly

wzcontrol (,=|A|-€? w,,) applied. Streamwise positionx=3.5 . :
(Rey, = 1018), frequency= 10. (Note that for the spatial approach altered wave numbers of the controlled maéey. 6). This

e A

<0 means amplificatioh. effect leads to a decoupling of the resonant modes and can
2
with control F ™
----- without control 34F i
I —8— LST 1k (1,1) uncontrolled control array ..
IF --B-- LsT F = _ - Sontrol art
[ 30F (1;1) controlled ... > A5
: N ~ i
R #E {2
50 w }’;’ 26F g
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FIG. 7. Spatial amplification rates for a 2D TS wave with and without active
control. Comparison of DNS and LST. Control parametgist=7.5 FIG. 9. K-breakdown, wave numberg vs x. Only 2D-modes controlled
X1075, ®=0, control array fronk=2.4 . ..4.8. (|A|=2x10 4, &~ =/2). Dashed lines: uncontrolled case.
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FIG. 12.v' amplitudes of the fundamental 2D-modg0) for the controlled
FIG. 10. K-breakdownu,,-amplitudes vs, active control of 2D modes  K-breakdown(see Fig. 10
(..,0 and modes withy=20(..,1) (|A|=15X 105, &~ 7/2). Dashed lines:
uncontrolled case; gray lines: higher harmonics.
exceed a value of approximately 0.34% of the freestream

) velocity (Fig. 12. As an example we consider the pure skin
therefore suppress resonance. Figure 9 shows the wave nUietion of a flat plate with Re=500 000. Now it is possible
bers of the most important modes of the simulation menyq cajculate the required,-control input power, neglecting
tioned above. Before the direct attenuation wvigcontrol  |ysses due to friction in tubes and valves:
can take effect the wave number of madeQ) is shifted to
lower values(i.e., the wave is acceleratedthe resonant _ _ibQJXZAg dx @
mode(1,1) is not synchronized any more and resonance be- 3720 v '
tween(1,0) and(1,1) is prevented. Looking at further inves- ) .~ )
tigations applyingw,-control in late nonlinear stages to both Whereb is the spany,, is the amplitude ob at the wall and
2D and 3D modes an amplitude reduction of more than 5096 S the density of air. The control array reaches from,Re
is possible. Figure 10 shows a simulation with control of the= 30 000 to Rg =500 000. Compared to the power sav-
2D (..,0 and 3D (..,1) modes where the control array extends"gS AP due to reduced drag we obtain
from x=3.6 to x=5.5. Compared to the previous simula- _
tions a further reduction of the disturbances is observed. 7= —=0.035. (8)

From the technological point of view the benefits in skin

friction are of major interest. Figure 11 shows the local skinThat means that approximately 3.5% of the saved power has

friction COEﬁiCient(dimenSionleSS wall shear Stfé&ﬁ of the to be Spent to drive the control actuators.

simulation discussed above compared to the laminar and the ~ Flow structuresThe effect of applyings,-control to the

uncontrolled case. Due to control skin friction close to thefiow on the flow structures is discussed in the last two figures

laminar state is reachable. Possible benefits in power requir@Figs_ 13 and 1% The w,-contours in Fig. 13 show a re-

ment are difficult to quantify because the control result de'tarded deve|opment of high_shear |ayers Compared to the un-

pends heavily on length, placement, and gain of the controdontrolled (K-breakdown case. In the uncontrolled case at

strip. One hint for good efficiency may be that the controly~4 .3 the typical high-shear layer is followed by a rapid

velocity vy, in all cases shown in the present paper does nogollapse which is absent in the controlled case. The remain-
ing structures look more like longitudinal shear layers ac-

0.0025 —
[ . a) uncontrolled case
0.002 PN " 0.06
B v
I trolled H 004
s unconrolled — 5
[ ~ 0.02

0.0015 ~ [
» i , 0
cf B i 35
s 1
: \B\ !
controlled ~ b) controlled case
0.06

0.001 e
- Blasius (laminar) N

0.04
[ control array >
. N TR B S 0.02
O O
@Q@ Q@Q Re, Q@Q @@@ @Q@ g
N v » 2 3.5 4 x 4.5
FIG. 11. Local friction coefficient for the controlled K-breakdowig. 10. FIG. 13. K-breakdown,w,-contours in the peak planez€£0), y-axis
Dashed lines: uncontrolled case. stretched by a factor of 5.
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