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Numerical investigations of small-amplitude disturbances in a boundary
layer with impinging shock wave at Ma=4.8
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The stability behavior of a laminar boundary layer with shock boundary layer interaction and small
amplitude disturbances is investigated by linear stability theory and direct numerical simulation. By

a complex interaction of several physical properties, the impinging shock wave locally influences
stability behavior of the boundary layer, dependent on its shock strength, applied disturbance
frequency, and disturbance propagation angle with respect to the flow dirémhiiqueness angle

Due to the displacement of the boundary layer near shock impingement and the according Reynolds
number effect in this area, the boundary layer is locally destabilized. The displacement of the
boundary layer also produces an increase of the thickness of local regions of relative supersonic
speed, which promotes second mode instability. For the results obtained by direct numerical
simulation nonparallel effects could be identified and quantified. Taking these nonparallel effects
into account, linear stability theory is able to represent the stability behavior of wall distant
disturbance amplitude maxima having small obliqueness angles for the cases investigated here. For
larger obliqueness angles and disturbance amplitudes at or close to the wall the agreement between
linear stability theory and direct numerical simulation declines considerably20@2 American
Institute of Physics.[DOI: 10.1063/1.1480265

I. INTRODUCTION boundary layer, i.e., when the disturbance phase velocity is
supersonic compared to the wall-nearest boundary layer flow.
Laminar-turbulent transition is of crucial importance for For a boundary layer on an insulated wall, this is the case for
super- and hypersonic aircraft. Transition to turbulenceMach numbers larger thaa~2.2. The higher modes rep-
yields considerable aerodynamic loads. Especially undefesent sound waves reflecting from the wall and the relative
super- and hypersonic conditions, transition is not suffi-sonic line? The first of these higher modésften labeled as
ciently investigated, so far. However, a good insight into hy-“Mack Modes”), called “second mode,” is of great impor-
personic transition is given by Saric, Reshotko, and Atnal. tance at high Mach numbers, because of its large amplifica-
The first phase of transitional development, the amplifi-tion rates. The higher modes are most amplified for two-
cation of small amplitude disturbances can be described bylimensional disturbance waves. First mode disturbances
linear stability theory. Today’s investigations of compress-dominate at low supersonic Mach numbers and can be stabi-
ible, small amplitude disturbance behavior are based on thkzed by cooling, suction or a favorable pressure gradient.
work done by MacK, who considerably extended the pio- Second mode instabilities behave in a different manner, how-
neering works of Lees and LihLees and Lin carried out a ever. Suction and a favorable pressure gradient leads to a
detailed study of the inviscid theory. They classified the disstabilization of the boundary layer, but cooling destabilizes
turbances into subsonic, sonic and supersonic disturbancés For finite Reynolds numbers, viscosity is destabilizing at
and found a sufficient condition for the presence of subsonidow Mach numbers. Also, inviscid instability is weak and the
amplified disturbances in the existence of a generalized instability behavior is mainly dominated by viscous instability.
flection point. This point is located in the boundary layer,|n contrast, at higher Mach numbers the effect of viscosity is
where the gradient of the product of density and the wallstabilizing and inviscid instability picks up, becoming domi-
normal derivative of the mean flow velocity is zero. A com- nant atM a~3.8.
pressible boundary layer on an insulated flat plate always has  Shock boundary layer interaction has been a major re-

such a generalized inflection point and consequently is unsearch topic over the last decades as well. It is a crucial
stable to inviscid disturbances. These subsonic diSturbanC%ysical phenomenon which occurs in an almost infinite

can be characterized as vorticity waves and will be referregyumber of applications of external and internal flows rel-
to as first mode instabilities further on. Also for infinite Rey- evant to aircraft, rockets and projectiles. First systematic ex-
nolds numbers at first, Mack proved, that additional neutraperimental studies on laminar and turbulent boundary layers
solutions exist. These higher modes, acoustic in origin, occuhteracting with shock waves where done by Ackeret, Feld-
when a region of relative supersonic flow is present in themann, and Roftas well as Liepmann.For aircrafts flying
under super- or hypersonic conditions shock boundary layer
ITelephone:(+49)(0)711-6853429; fax(+49)(0)711-6853438; electronic INteraction is an important occurrence. It causes undesired
mail: pagella@iag.uni-stuttgart.de effects such as local heat peaks, high aerodynamic loads,
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increase of drag and jet intake performance loss, to nam&. Governing equations
only a few. A sufficiently strong shock wave causes the

boundary layer to separate. The high pressure rise at sepaigy .y three-dimensional Navier—Stokes equations in Carte-

tlor_1 yields compression waves, form|_ng '_{he_ so-called S€P8ian coordinates for compressible flows in conservative for-
ration shock, which interacts with the impinging shock wave . i-tion

well outside the boundary layer. The impinging shock wave
penetrates into the boundary layer where it ends at the sonitp
line and from where it is reflected as a system of expansioryt
waves. On its way from the outflow to iso-Mach linéa
=1, the shock angle gets steeper. The compression waveépu)
associated with reattachment coalesce to the reattachmentit
shock. A comprehensive introduction into shock boundary
layer interactions of all kinds can be found in Ref. 6; more?(P€) +V.-(p+peu
recent summaries in Refs. 7 and 8. According to Ref. 8 im- dt
portant quantities like peak heating in strong interactions or 1 1
unsteady pressure peaks still cannot be predicted very accu- = 5V (9VT)+ =—V-(ou), ©)
rately or even not at all due to restrictions in computational (k—1)RePrMa Re
and measurement capabilities, especially for complex geomgyhere
etries and flow fields. T

The work done for this paper wants to merge the two @ =#L(Vu+Vu)—5(V-u)l], 4
single research topics explained above, namely transitiongith the velocity vectou=[u,v,w]” and
behavior of a laminar boundary layer lsta=4.8 with im-
pinging shock wave, which is of high scientific and practical e:f ¢, dT+3(u2+v2+w?). (5)
interest, as it was remarked, e.g., in Ref. 8. So far, no scien- v
tific publications of work done on such transitional interac-\\,a assume a nonreacting,

. S ) ideal gas with constant Prandtl
tions are known to the authors. Within this paper, we invesy, ,mberPr=0.71 and specific heat ratie=c,/c,=1.4.c,

tigate the first phase of the transition process, the lineag,q¢ are the specific heat coefficients under constant pres-
regime. In the following section, an introduction to the NU- g,re and constant volume respectively, which follow

merical scheme is given. Next, a discussion of the base-flow_ ¢, =R, with the universal gas constaRt

properties for various shock strengths follows. The next sec- ", temperatured>T,, viscosity is calculated by the
tion focuses on linear stability theory investigations. Finally, g therland law s

results from direct numerical simulations are discussed and a I
conclusion and an outlook to future research is given. M T T.+Ts
T+T '

The numerical scheme is based on the complete, un-

+V-(pu)=0, (1)

1
+V~(puu)+Vp=§aV~a, 2

Moo
while for temperatures beloWs, the relationu/w.,=T/T,,
is usedt® The thermal conductivity coefficient in EB) &
=Cpu../Pr is proportional to the viscosity.

The numerical scheme, which is based on the works O];efelr:eonrct?esr’wlmttla\f\ll?w?:ﬁ Iaengéf;?sair::go?fkl)gegzlonr:jgzendulr)%a
Thumm? EiRlerl®-*? and Fezef was extended by gt pp 9 y

Pagelld**°to investigate shock boundary layer interactionszg: Eti.:bﬁiﬁ: uf;é‘éf *:)125' Fe;agger:g;sscﬁﬁqgs; L;Sc(;llg dh\r/]v-ith
A two-dimensional base flow is calculated by solving the Y y PPy y

two-dimensional Navier—Stokes equations. After obtaining é[he displacement thickness, which is proportionalio we

steady state from the two-dimensional equations, the threégtmduce a local Reynolds numbét,=yx+Re, as well.

dimensional solver uses the steady solution as start-up dat Ime t is normalized by the ratid/u.,, whereu, is the

In contrast to the two-dimensional scheme, the three_r('ae—stream velocity, while the specific hegtis normalized

2 .
dimensional one is formulated in disturbance-flow formula-W'th uz/T.. (T.. denotes free-stream temperajuizensityp,

tion. The difference between both formulations is, that Cer_temperatureT and viscosityu are standarized by their re-

tain steady terms of the Navier—Stokes equations do not ha\féDeCt'Ve free-stream values.
to be recalculated for each time step with the disturbance- . .
flow formulationl® However, this is applicable for weak B. Integration domain

shocks only, because a larger shock angle tends to cause a Figure 1 shows the integration domain. The calculation
highly unsteady flow, even without artificial disturbances.starts atx,, the end of the integration domain is given by
The investigation of the stability behavior, regarding an un-xy . X gives the location of the shock, which is prescribed at
steady shock boundary layer situation is, therefore, beyonthe free-stream boundary, according to the Rankine—
the scope of the present investigations, but part of planneHiugoniot relations! A buffer domairt® can be switched on
future work. The investigations within this paper are limited at x5, which is damping the disturbances in order to provide
to relatively weak shocks, yielding two-dimensional steadyan undisturbed, laminar flow at the outflow boundary. The
base flows. disturbance strip is located betweep<x=x,, with Ry,

T

T=110.4K, (6)

Il. NUMERICAL SCHEME

Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2090 Phys. Fluids, Vol. 14, No. 7, July 2002 Pagella, Rist, and Wagner

), z=0
N N
.
A A
N Y A
A
A N
A
N \
. N
N N
NGl < e i o | =1y
i | X
i 1 -——>
' i
{ !
i )
|/\/\j\/

FIG. 1. Integration domain and disturbance strip.

=438 andRX2=952. The disturbances are periodic in span-cal step sizes in streamwise and wall-normal directions are
wise direction, having a wavelength ®f, which determines Ax=0.0357,Ay=0.00525, respectively. However, as the

the width of the integration domain ag=»\,. shock approaches the sonic line in the boundary layer it turns
towards a vertical shock normal to the plate and oscillations
C. Discretization in streamwise direction occur around the shock wave be-

- - ... cause of insufficient resolution ddirection. Without further
Due to the specific characteristics of the solution in dif-

f A tial directi the di tization | o t rid refinement or damping, these oscillations may destroy
erent spatial directions, the discretization IS specitic Oeac{?ne numerical solution. To stabilize the computation, a

spatial direct_ion, _accqrdingly. W? assume a numericql gri ourth-order accurate filter according to L#és used

with N*M gridpoints in streamwise and wall normal direc-

tion, as well asK-harmonics in spanwise direction, respec- - - - c b

tively. In streamwise direction the solution has a wave char@fi-atfitafig=afit S (Tt fio)+ 5 (Tt Tiog),

acter in the presence of disturbance waves which are either )

amplified or Qamped. Cqmpgct finite dlﬁerences are able t(\)/vhere variables marked &sdenote filtered and|; unfiltered

resolve this kind of solution in an appropriate manner. They T T .
. . ) . . values at gridpoint in x direction with

are applied here in a split-type forfThis split-type formu-

lation has some desired damping characteristics with respect a=3(5+6a), b=31+2a),

to small-scale oscillations. In wall-normal direction split- 1 (8)

type finite differences of fourth order accuracy are used to ¢~ ~5(1-2a),

calculate convective terms, while viscous terms are calcudepending only on the filtering parameter(«=0.5 means

lated by fourth-order central differences. In spanwise direcno filtering. In our simulations a filtering parameter of

tion we have periodic boundaries, which allow to apply ac=0.495 was chosen. Step size variations, presented in a

spectral approximation with Fourier expansfSime inte-  later section, proved that the filter did not influence the flow

gration is performed at equidistant time steps with a standarfield in an unphysical manner. Because of the disturbance-

Runge—Kutta scheme of fourth-order accuracy. A more thorflow formulation the filter needs not to be applied to the

ough discussion of the numerical scheme can be found idisturbances.

Ref. 10. To summarize, the formal accuracy of the scheme is

(Ax*6, Ay*, At* zspectral. E. Boundary conditions

D. Filter 1. Free-stream boundary

Test computations have shown that the above discretiza- The boundary conditions at the free-stream boundary are
tion reliably works for oblique shocks in the computation of applied in a different manner for the computation of the base
the base flow, as long as the step sizes are fine enough. Tygiew and the disturbances. The two-dimensional program,
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FIG. 2. Skin friction for the cases with shock angles 12.5°,0=13.2°, ando=14°.

which is used to calculate a steady solution as start-up da@ownstream of the shock location at the free-stream bound-

for the three-dimensional code, applies a characteristiary are calculated by the Rankine—Hugoniot relattérasd

boundary condition, according to Harfslt assumes that also held constant a few gridpoints downstream. A steady

flow variables remain constant along the characteristics ishock then establishes itself within the whole flow field dur-

the inviscid potential flow. While this works well for the ing calculation.

freestream boundary in the two-dimensional program, it

could not be applied to the three-dimensional code. There-
. o2 . . I1l. RESULTS

fore, a nonreflecting boundary conditfdnis implemented

here. The basic idea of this nonreflecting boundary conditios\. Unperturbed laminar boundary layer

is to neglect V|§C|d terms, based on the free—stream assump- The jnvestigations within this paper are limited to a

tion. The equations are thus reduced to a hyperbolic proble

X b Maminar flat-plate boundary layer with shock boundary layer
Incoming characteristics are then set to zero.

interaction and Mach numbeMa=4.8, free-stream tem-
perature T,=55.4K and constant wall temperature
Tw/Tw.ag=1, whereT,, ,q is the adiabatic wall temperature
The inflow variables are from the compressible bound-or the case without shock. The Reynolds-number with re-
ary layer equations. They are held constant during the simuspect to the displacement thicknes$ slightly upstream
lation. At the outflow boundary, the flow field variables are shock-impingement, but outside the interaction region cho-
computed neglecting second derivativghe no-slip con-  gen aR,=1100 is Rg« g _1105= 12 546. For the shock wave,

dition and vanishing normal velocity component are assumeqle consider three different shock angles relative to the hori-

at the wall. The disturbance is introduced inside the disturs, .o ovic. 12.5°, 0=13.2°, ando=14°. An earlier vali-

pance strip, gccording tp Fig. 1. !t simulates perio'd.ical blow-dation of the unperturbed flow with impinging shock was
ing and suction by varying the disturbance quantities)(,  erformed forMa=2 and adiabatic wall**5where suitable

given by a function data have been available. The three different shock angles

2. Inflow, outflow conditions, wall boundary

f (g,z,t)=é*sin(wt)*cos(kﬁz)*sin(ng)*e‘bfz, have been chosen to obtain a flow situation, where the
- 9) boundary layer is still bound to the plate=12.59, a small
—2m<§{<2m, separation area occulg=13.29, and a large separation

with é=+27 at x, andx,, respectively. In our modal dis- bubble(o=14°) appears. Fig_ure 2 compares thg skin friction
cretization in spanwise directiork indicates the spanwise ©f the three cases. Separation can be determined Oby a nega-
Fourier modes, with=0 meaning a two-dimensional distur- {v& Skin friction coefficientc;. Results foro=13.2° and
bance. The disturbance frequency, heredetermines the ¢=14° based on a finer grid with both half step sizes in
streamwise wave number, . Thus, the obliqueness angle streamwise and wall-normal direction are also given in Fig.
is given by tany=(k@)/«, . For the present investigations, the 2, which prove our solutions as grid independent. It should

wall temperature remains constant. Wall pressure is comPR€ pointed out that this statement also includes negligible
puted from thev-momentum equation. influence of the filter used, because the filtering spectra de-

pend on the step size as well.

In Fig. 3, density gradient$dp/dy| for o=14° are
shown. The largest shock anglein our series of computa-
tions imposes the highest pressure gradient on the boundary

At the beginning of the calculation, a laminar flow with- layer, thus forcing a considerable thickening, as well as a
out impinging shock, given by the boundary layer equationdarge separation bubble, as already seen in Fig. 2. Due to the
is specified within the whole integration domain. Also at thethickening of the boundary layer and the resulting system of
beginning of the simulation, the shock is introduced into thecompression and expansion waves, which are typical for
free-stream boundary. For several grid points upstream frorauch a flow problerf, the flow is deflected in a manner
the passage of the shock through the free-stream boundawhich is indicated by some manually placed streamlines in
relevant flow variables are held constant. The variable$ig. 3 for the given case.

3. Initial conditions, implementation of impinging
shock wave
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0.6
FIG. 3. Density gradients|dp/dy|
> 04 and selected streamlines for the case
with shock angleo=14°. Note: y-
02k coordinate stretched by a factor of 11.
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B. Linear stability theory versusR, and disturbance frequency
Linear stability theory is used to predict the stability be- 27 pug
havior of a boundary layer flow for small amplitude distur-  F= 2. (11

bances. In practice, linear stability theory is typically applied
under the assumption of a strictly parallel flow, i.e., extract-where A(x)/A, is the amplitude ratio of any flow variable

ing boundary-layer profiles fou(y) and T(y) for R, andf* is the dimensional disturbance frequency. Four cases
=const from the flow field as base-flow profiles for the are presented: No shock and the three flow cases with shock
theory. However, as it will be shown in the following section, impingement as considered above. Darker shadings represent
nonparallel effects are already considerably large even for higher amplification rates and the iso-contour line labeled
case without impinging shock wave and they can be exwith “0” indicates neutral amplification. Drawing our atten-
pected to increase because of the wall-normal velocities intion to the case without shock in Fig. 4, we see two separated
duced by the shock boundary layer interaction. More resultsegions of positive amplification. These are, according to

on this will be shown in the next section. Mack? the first instability mode at lower and the second
Figure 4 shows amplification ratese; from linear sta-  instability mode at higher frequencies, respectively. In the
bility theory picture for 0=12.5° in Fig. 4, the second mode is slightly
A shifted towards lower frequencies at and near shock impinge-
J |n(_X) ment, due to the influence of the shock wave. The clear dis-
_ Ao tinction among the first and the second mode is lost. Near
—aE——, (10) - :
IX shock impingement, only a small, closed area of damping

no shock 0=12.5
0.0003 0.0075  0.0003¢
0.00025F { 00050 0.00025F
0.0002F 0.0002F
0.00015 0.00015F_
0.0001F — ~ 0.0001F
se-05f  First Mode 5E-05F
1 0; Jo— 3 1 ('8 0 01 e
1200 1400 1600 [ 1200 1400 1600 g
6=13.2° 0=14°
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0.00025 0.00025F
0.0002F 0.0002 F
0.00015F _ 0.00015
0.0001F 0.0001F
5E-05F SE-05 ,
1 0 . 10\W '8 = >/1// G | ; ‘ﬁ
1200 1400 1600 g 1200 1400 7600 g

FIG. 4. Linear stability for two-dimensional disturbances and shock angteh2.5°, 0=13.2°, ando=14° with respect to streamwise directié and
frequencyF. In the inviscid case, the shock would hit the plate&Rat~1400.
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no shock

—— R_=6900

—a— R=1400

——>—— R_=1300

R.=1400 o )
FIG. 5. Amplification rate— «; vs dis-
turbance frequencyF calculated by
linear stability theory for the cases
P . X ] without shock andr=14° at different
Soeg. R,.

S

remains. The amplification rates at shock impingement antlach number range, viscosity has a destabilizing effect on
downstream of it increase according to the darker shadingthe stability of the boundary layer. The amplification curves
there. A larger shock angle is expected to influence stabilitfor the case with a shock angle e=14° are given in Fig. 5
behavior to a higher degree. Fer13.2°, the observed shift at R,=1300 andR,= 1400 (open symbols The maximum
towards lower frequencies and the rise of the amplificatioramplification rate becomes even larger than the correspond-
rates near shock impingement has become more significarihg amplification rate aR,= 6900 without shock. It can thus
compared too=12.5°. It is even more pronounced for be stated that the displacement of the boundary layer, which
o=14°. Another plainly recognizable effect is the occurrenceresults in a diminishing of the influence of viscosity, leads to
of new instabilities around the shock impingement area, foa destabilization, but it can not be accounted for the total rise
frequencies betweeR=12+10" > andF=20+10"">. in amplification. The unstable region arouifd=16-10"°

Due to the complexity of the behavior of linear distur- belongs to the new instabilities mentioned before.
bances in compressible flows, it can not be expected to relate Figure 6 compares streamwise velocity profiles and their
the phenomena described above to one single factor. Thereharacteristicsi( ) =a(#) at five consecutive locatiorR,
fore, we try to explain the influence of the shock wave on thewith the corresponding phase velocity, of a disturbance.
linear stability by taking a closer look at various effects andFor n< 74 the disturbance wave propagates at supersonic
what sort of behavior has to be expected for both first andpeed relative to the flow becausér) +a(#) <c,,, where
higher mode instabilities. First, we investigate the influenceu(#) is the streamwise velocity component aaly) the
of viscosity. Figure 5 shows the amplification rate versus thdocal speed of sound. Mack pointed out, that the amplifica-
disturbance frequency for linear stability calculations oftion rate of second-mode instabilities is strongly dependent
boundary layers with and without shock at different locationson the thickness of such local regions of relative supersonic
Ry. Comparing the cases without shock Rt=1400 and flow. The figures shows, that the thicknesgs of relative
R,= 6900 (filled symbolg, the effect of viscosity becomes supersonic flow increases by the presence of separation until
obvious. For the curve &,=1400, maximum amplification a maximum aRR,~ 1350 is reached. Hence, another portion
rates for both first and second mode disturban@esond of the total rise of second mode instability can be assumed to
mode disturbances are located at higher disturbance frequebe caused by the increase of thickness in this local super-
cieg are smaller than the corresponding values Ry  sonic regions.
=6900, indicating a stabilizing effect of viscosity at higher Although the first-mode instability in Fig. 4 seems to
Mach numbers, as mentioned in the Introduction. vanish locally with increasing shock strength, a first-mode

The shock wave withr=14° forces the boundary layer instability has to be present, according to the findings by
to separate and the separation bubble displaces the boundarges and Lirt because a generalized inflection point exists
layer away from the wall. In a simplified manner this could (see Fig. 7. The location of the generalized inflection point
be understood as an increase of the local Reynolds number Fig. 7 moves in wall-normal direction due to the displace-
Ry, becausd&k,~ &, with 6 as the boundary layer thickness. ment of the boundary layer by the separation bubble.
An infinite local Reynolds number corresponds to an inviscid  Figure 8 shows amplification rates for a frequerfey
flow. Therefore, the influence of viscosity decreases with in=10+10"°, but different shock angles and propagation
creasing displacement of the boundary layer. In the presemingles of the disturbance wavgwith respect to the stream-
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FIG. 6. Velocity profiles and their characteristics at five consecutive locaiynsAlso, corresponding phase velocitieg, of a disturbance withF=1

-107* are given. Shock angle=14°.

wise direction. Forg=0°, which corresponds to a two-

that —

«; adopts negative values, indicating that small distur-

dimensional disturbance, the maximum amplification rate idbances are damped here, which compensates the risexpf

raised by a factor of=30. For ¢y=25°, this factor is~60,

to a certain degree. In summary, for linear stability theory an

while for =45°, the amplification rate grows by a factor of impinging shock wave locally influences the stability behav-

~6. Ahead of the high local rise far=14° it can be seen

R,=1200 R,=1250
* 30+ 30,
c=14°
——————— no shock
- '/\/‘i
101 10}
003 002 0.0 003 0,05 00 =
d/dn(pdu/dn) d/dn(pdu/dn)
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301 a0,
_§<>
207 ——30] /
] —
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10] 10)
1 \
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30y

q

101

ior of a boundary layer considerably. This influence depends

-0.03
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-0. 02
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30,

003

-0. 02

-O
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FIG. 7. Location of generalized inflection poid¢pdu/d»)dz=0 for the caser=14° (solid line) and without shocKbroken ling at differentR, .

Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 7, July 2002 Numerical investigations of small-amplitude disturbances 2095

no shock — y=0° c=12.5°
0.6F R y=25° o6t
0.4}

s 0.2¢

-t

-0.2F

b

FIG. 8. Amplification rates by linear stability theory far=12.5°, ¢=13.2°, ando=14°. Disturbance frequency =1-10"4, propagation angles of
disturbance waves with respect to theirection arey=0°, y=25°, andy=45°.

on the shock angle, the wave angles with respect to thex  correspond to those used in earlier sections. In addition, re-
direction and the disturbance frequenky The larger the sults of linear stability theory, as well as results of a simula-
shock angles, the higher the local influence and the largertion based on an idealized parallel boundary layer at three
the area of influence with respect to the streamwise directiorconsecutive locationR, are given. A typical nonparallel ef-
fect is the individual amplification rate for each flow-field

C. Direct numerical simulations and comparison with variable. In contrast to this, linear stability theory yields one
linear stability theory single amplification rate as long as it is based on a strict

In the present section we focus on results which werdarallel flow assumption as mentioned before. To prove that
obtained by direct numerical simulatio®NS). Periodical the differences between the flow variables of the numerical
disturbances are introduced at the disturbance strip. Duringimulation and the differing amplification rates between lin-
simulation these travel downstream through the interactioar stability theory and simulation are caused by nonparallel
region and finally into the buffer domain at outflow. Simula- ffects, the code has been modified to simulate stability be-
tions are carried out until a periodical disturbance structure i§avior at three consecutive locations based on an idealized,
present inside the integration domain. The flow field is therparallel base flow. As it can be seen in Fig. 9, thus obtained
analyzed. In order to better understand the following resultgesults agree very well with linear stability theory. System-
with a shock, we first draw our attention to a case withoutatically, near-wall amplification rates such as amplification
impinging shock wave. Figure 9 shows amplification ratesrates obtained from the maximum disturbance amplitudes of
obtained by extracting different disturbance maxima fromu, v, andp (of which only the wall pressure is shown in Fig.
the amplitudes of a timewise Fourier transform for one dis-9) tend to be farther from the calculated values by linear
turbance period of such a simulation. The disturbance fretheory than wall distant maximdT, p, and for three-
qguency is given in the plot, the other simulation parameterglimensional disturbances).

no shock —_—u
T
o 03F N
i P _ FIG. 9. Amplification rates of wall
025fF —m— p —--v-— wallpressure p, ‘ distant disturbance maxima and wall
02t —* linear stability theory pressure by direct numerical simula-

idealized, parallel base-flow
g--%

tion, compared with linear stability

0.15 o
theory and an idealized parallel-flow
0.1 = simulation; disturbance frequendy
0.05 == =1-10"% no shock.
0k )
1100 1700
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0655 05 075 4 FIG. 10. Amplitude distributions of
ju’l relevant flow variables compared with

linear stability theory atR,=1330.

Disturbance frequency B=1-10"%.

50F

Figure 10 compares disturbance amplitudes from the diwith shock boundary layer interaction, simulated by DNS.
rect numerical simulation with eigenfunctions of linear sta-First, the case with a relatively small shock angle of
bility theory for some flow variables &R,=1330 without ¢=12.5°is investigated, for which a smaller influence of the
impinging shock. Phase angles for the same case are corshock wave on the disturbance amplification can be expected
pared in Fig. 11. Having the differences between linear stafcf. Fig. 2. Figure 12 shows maximum disturbance ampli-
bility theory and direct numerical simulation observed earliertudes for all relevant flow variables. Here, disturbances are
in this section in mind, they agree remarkably well. two-dimensional. Along with the results of DNS with im-

We now move on to take a closer look at the stability pinging shock wave, data of a DNS without shock as well as
behavior of small amplitude disturbances in flow situationscorresponding curves from linear stability theory are given.

no shock, R,=1330

201 20r 20r T
n n ni___
15} 15F 15¢
10F 10f 10F §
5F 5k 5k
i - -2 { O ‘ i . 1 I
0 95""12 J4 16 18 03 7 0 5, 10 75
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%0 %5 fo 1 12 13

FIG. 11. Phase anglé® of relevant flow variables compared with linear stability theoryRat 1330. Disturbance frequency Fs=1-10"4.
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FIG. 12. Maximum disturbance amplitudes of flow variables for a shock angle=df2.5° compared to the case without shock and linear stability theory.
Two-dimensional disturbancég=0°), disturbance frequendy=1-10"*.

As with the nonparallel

effects, the influence of the shockshock” to the corresponding results of linear theory, we see

wave on the stability behavior is significantly different for that in both cases the difference between the predicted curve
each individual flow field variable. Like in the case without of the disturbance amplitude by linear stability theory is the
shock, linear stability theory lies in better accordance withsame. This difference can thus be identified as the already

wall distant maxima such as temperatureor density p.

presented nonparallel effects, as discussed before. Hence, it

Comparing the two base flow cases “with and withoutcan be stated that linear stability theory as it is applied here
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FIG. 13. Maximum disturbanc
theory. Propagation angles of
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FIG. 14. Maximum disturbance amplitudes of flow variakpeand T for a shock angle o&=13.2° compared to the case without shock and linear stability
theory. Two-dimensional disturbancég=0°), disturbance frequendy=1-10"*,

is qualitatively able to predict disturbance amplitude behavdistant amplitudes linear stability theory quantitatively works
ior for wall-distant maxima of flow variables. However, rather well. This is not true for the pressure disturbance at the
close to the wall, where, v, andp maxima are located, the wall, as before. Downstream of the shock impingement at
nonparallel results exhibit a local increase of the disturbanceR,~ 1500 wall-pressure amplitudes are damped uRiil
in the vicinity of the impinging shock which is not present in ~1600, where damping is followed by another amplifica-
the linear stability theory results. The same is valid for threetion. A closer investigation of this phenomenon revealed nei-
dimensional disturbance wavég=25° andy=45°) in Fig.  ther a beating of waves nor a nonphysical problem such as
13, where disturbance amplitudes of temperafurpressure  numerical reflections from the free-stream or outflow bound-
p, as well as the disturbance velocity component in spanwisary.
directionw are shown. Thev maximum is located in a far- Figure 15 shows the wave number distributien
ther position normal to the wall, close to the temperature=2n/\ of the DNS for the wall pressure disturbance and a
maximum. The rise of the disturbance amplitudes for obliqudixed frequencyF =10-10 °. The wave number can be re-
waves is much smaller than in the two-dimensional case igarded as a measure for the wave propagation speed
Fig. 12. Linear stability theory predicts only a small rise because ot,=F/«,. Hence, at shock impingement and a
compared to the boundary layer without impinging shock.certain area upstream of it, the disturbance wave is deceler-
Again, the influence of the shock is most pronounced at neamted by the shock, downstream shock impingement, it is ac-
wall amplitude maxima, such gs which is located directly celerated. The area of alternating amplification and damping
at the wall. For=45° linear stability theory does not predict atR,~ 1600 discussed above can be correlated to a decelera-
the correct behavior. Instead of an additional amplification, ition and acceleration of the wave propagation represented in
predicts a minor damping. For a boundary layer with noFig. 15 as a local increase followed by a decrease of the
impinging shock it is known, that by increasing the angle wave numbery,, respectively. As stated before, this occur-
of the disturbance propagation with respect toxligrection,  rence cannot be related to an external effect.
results of linear stability theory exhibit increasing non- Amplitude profiles normal to the wall and phase angles
parallel effects. for the case withr=13.2° andy=0° atR,= 1325, which is

In the case presented in Fig. 14 the shock angle is ina position just before shock impingement, show fairly good
creased tar=13.2°. Temperature and pressure maxima aregreement with eigenfunctions and phase angles calculated
plotted as representatives of wall-distant disturbances anbly linear stability theory. The now larger nonparallel effects
disturbances, which are close to the wall for comparison t@re expected to impair the agreement between DNS and lin-
the case without shock boundary layer interaction and lineagar stability theory, which effectively is the case here. For
stability theory. Compared to=12.5° disturbance ampli- three-dimensional disturbance waveg=25° and y=45°)
tudes increase much stronger by the interaction. For the walthe match between linear stability theory and DNS for wall

15¢

FIG. 15. Wave number distributios,
from direct numerical simulation for
disturbance frequendy=1-10"* and

/\ a shock angle 0=13.2°. Two-
kN/ S dimensional disturbanceg=0°).
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FIG. 16. Maximum disturbance amplitudes of flow variabteand T for a shock angle ob-=14° compared to the case without shock and linear stability

theory. Two-dimensional disturbanceg=0°), disturbance frequendy=1-10"%.

distant amplitude maxima is slightly better than éo£12.5°.  the agreement between linear theory and DNS is best for
Finally, we discuss the case with the largest separationy/=0° but declines with increasing obliqueness angle

bubble produced by a shock angle @£14°. Results are

presented in Fig. 16 and are again compared with Iinea{v CONCLUSIONS AND FUTURE RESEARCH

theory. Although non-parallel effects are expected to grow

with increasing shock angles, the tendency of the disturbance We could identify considerable nonparallel effects for a
amplitudes of wall-distant maxima can be predicted fairlyboundary layer aMa=4.8 with respect to small-amplitude
good by linear theory. After a rise of the amplitude maximadisturbance behavior, even for a boundary layer without im-
near separation, the temperature disturbance amplitude rpinging shock wave. Linear stability theory according to
mains almost constant within the separation bubble. At reatMack could represent linear stability behavior for wall-
tachment another rise in amplitude maxima occurs. The totalistant amplitude maxima and small propagation angie$

amplitude rise here is not significantly higher than fordisturbance waves rather well despite these nonparallel ef-
0=13.2°, however.
Amplitudes and phase angles are compared with lineability behavior, dependent on the shock strength, disturbance

stability theory in Fig. 17 aR,=1250, a location slightly

fects. An impinging shock wave thus locally influences sta-

frequency and obliqueness angtef traveling disturbances.

upstream from shock impingement. Quantitatively, the trendrhe influence can be explained by an interaction of several
of the curves of the simulation can be represented by resulfactors. First, decreasing viscosity effects due to the displace-
of linear theory, although nonparallel effects grow in magni-ment of the boundary layer away from the wall are respon-
tude. Figure 18 shows maxima of disturbance amplitudes fosible for a certain rise in instability, because at higher Mach
$=25° andy=45°. As for the other cases discussed earliemumbers viscosity has a known stabilizing effect. Also, local
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FIG. 17. Comparison of amplitude

distributions of numerical simulation
™ with eigenfunctions of linear stability
theory and corresponding phase angles
for selected variables aR,=1250.
Shock anglec=14° and propagation
angles of disturbance waves with re-
spect to thex direction =0°. Distur-
bance frequency iE=1-10"%.
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