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Numerical investigations of small-amplitude disturbances in a boundary
layer with impinging shock wave at MaÄ4.8

Alessandro Pagella,a) Ulrich Rist, and Siegfried Wagner
Institut für Aero- und Gasdynamik, Universita¨t Stuttgart, 70550 Stuttgart, Germany

~Received 12 October 2001; accepted 1 April 2002; published 20 May 2002!

The stability behavior of a laminar boundary layer with shock boundary layer interaction and small
amplitude disturbances is investigated by linear stability theory and direct numerical simulation. By
a complex interaction of several physical properties, the impinging shock wave locally influences
stability behavior of the boundary layer, dependent on its shock strength, applied disturbance
frequency, and disturbance propagation angle with respect to the flow direction~obliqueness angle!.
Due to the displacement of the boundary layer near shock impingement and the according Reynolds
number effect in this area, the boundary layer is locally destabilized. The displacement of the
boundary layer also produces an increase of the thickness of local regions of relative supersonic
speed, which promotes second mode instability. For the results obtained by direct numerical
simulation nonparallel effects could be identified and quantified. Taking these nonparallel effects
into account, linear stability theory is able to represent the stability behavior of wall distant
disturbance amplitude maxima having small obliqueness angles for the cases investigated here. For
larger obliqueness angles and disturbance amplitudes at or close to the wall the agreement between
linear stability theory and direct numerical simulation declines considerably. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1480265#
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I. INTRODUCTION

Laminar-turbulent transition is of crucial importance f
super- and hypersonic aircraft. Transition to turbulen
yields considerable aerodynamic loads. Especially un
super- and hypersonic conditions, transition is not su
ciently investigated, so far. However, a good insight into h
personic transition is given by Saric, Reshotko, and Arna1

The first phase of transitional development, the amp
cation of small amplitude disturbances can be described
linear stability theory. Today’s investigations of compres
ible, small amplitude disturbance behavior are based on
work done by Mack,2 who considerably extended the pio
neering works of Lees and Lin.3 Lees and Lin carried out a
detailed study of the inviscid theory. They classified the d
turbances into subsonic, sonic and supersonic disturba
and found a sufficient condition for the presence of subso
amplified disturbances in the existence of a generalized
flection point. This point is located in the boundary lay
where the gradient of the product of density and the w
normal derivative of the mean flow velocity is zero. A com
pressible boundary layer on an insulated flat plate always
such a generalized inflection point and consequently is
stable to inviscid disturbances. These subsonic disturba
can be characterized as vorticity waves and will be refer
to as first mode instabilities further on. Also for infinite Re
nolds numbers at first, Mack proved, that additional neu
solutions exist. These higher modes, acoustic in origin, oc
when a region of relative supersonic flow is present in

a!Telephone:~149!~0!711-6853429; fax:~149!~0!711-6853438; electronic
mail: pagella@iag.uni-stuttgart.de
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boundary layer, i.e., when the disturbance phase velocit
supersonic compared to the wall-nearest boundary layer fl
For a boundary layer on an insulated wall, this is the case
Mach numbers larger thanMa'2.2. The higher modes rep
resent sound waves reflecting from the wall and the rela
sonic line.2 The first of these higher modes~often labeled as
‘‘Mack Modes’’!, called ‘‘second mode,’’ is of great impor
tance at high Mach numbers, because of its large amplifi
tion rates. The higher modes are most amplified for tw
dimensional disturbance waves. First mode disturban
dominate at low supersonic Mach numbers and can be s
lized by cooling, suction or a favorable pressure gradie
Second mode instabilities behave in a different manner, h
ever. Suction and a favorable pressure gradient leads
stabilization of the boundary layer, but cooling destabiliz
it. For finite Reynolds numbers, viscosity is destabilizing
low Mach numbers. Also, inviscid instability is weak and th
stability behavior is mainly dominated by viscous instabili
In contrast, at higher Mach numbers the effect of viscosity
stabilizing and inviscid instability picks up, becoming dom
nant atMa'3.8.

Shock boundary layer interaction has been a major
search topic over the last decades as well. It is a cru
physical phenomenon which occurs in an almost infin
number of applications of external and internal flows r
evant to aircraft, rockets and projectiles. First systematic
perimental studies on laminar and turbulent boundary lay
interacting with shock waves where done by Ackeret, Fe
mann, and Rott4 as well as Liepmann.5 For aircrafts flying
under super- or hypersonic conditions shock boundary la
interaction is an important occurrence. It causes undes
effects such as local heat peaks, high aerodynamic lo
8 © 2002 American Institute of Physics
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2089Phys. Fluids, Vol. 14, No. 7, July 2002 Numerical investigations of small-amplitude disturbances
increase of drag and jet intake performance loss, to na
only a few. A sufficiently strong shock wave causes t
boundary layer to separate. The high pressure rise at se
tion yields compression waves, forming the so-called se
ration shock, which interacts with the impinging shock wa
well outside the boundary layer. The impinging shock wa
penetrates into the boundary layer where it ends at the s
line and from where it is reflected as a system of expans
waves. On its way from the outflow to iso-Mach lineMa
51, the shock angle gets steeper. The compression w
associated with reattachment coalesce to the reattach
shock. A comprehensive introduction into shock bound
layer interactions of all kinds can be found in Ref. 6; mo
recent summaries in Refs. 7 and 8. According to Ref. 8
portant quantities like peak heating in strong interactions
unsteady pressure peaks still cannot be predicted very a
rately or even not at all due to restrictions in computatio
and measurement capabilities, especially for complex ge
etries and flow fields.

The work done for this paper wants to merge the t
single research topics explained above, namely transitio
behavior of a laminar boundary layer atMa54.8 with im-
pinging shock wave, which is of high scientific and practic
interest, as it was remarked, e.g., in Ref. 8. So far, no sc
tific publications of work done on such transitional intera
tions are known to the authors. Within this paper, we inv
tigate the first phase of the transition process, the lin
regime. In the following section, an introduction to the n
merical scheme is given. Next, a discussion of the base-
properties for various shock strengths follows. The next s
tion focuses on linear stability theory investigations. Fina
results from direct numerical simulations are discussed a
conclusion and an outlook to future research is given.

II. NUMERICAL SCHEME

The numerical scheme, which is based on the works
Thumm,9 Eißler,10–12 and Fezer13 was extended by
Pagella14,15 to investigate shock boundary layer interaction
A two-dimensional base flow is calculated by solving t
two-dimensional Navier–Stokes equations. After obtainin
steady state from the two-dimensional equations, the th
dimensional solver uses the steady solution as start-up d
In contrast to the two-dimensional scheme, the thr
dimensional one is formulated in disturbance-flow formu
tion. The difference between both formulations is, that c
tain steady terms of the Navier–Stokes equations do not h
to be recalculated for each time step with the disturban
flow formulation.10 However, this is applicable for wea
shocks only, because a larger shock angle tends to cau
highly unsteady flow, even without artificial disturbance
The investigation of the stability behavior, regarding an u
steady shock boundary layer situation is, therefore, bey
the scope of the present investigations, but part of plan
future work. The investigations within this paper are limit
to relatively weak shocks, yielding two-dimensional stea
base flows.
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A. Governing equations

The numerical scheme is based on the complete,
steady, three-dimensional Navier–Stokes equations in Ca
sian coordinates for compressible flows in conservative
mulation

]p

]t
1¹•~ru!50, ~1!

]~ru!

]t
1¹•~ruu!1¹p5

1

Re
¹•s, ~2!

]~re!

]t
1¹•~p1re!u

5
1

~k21!RePrMa2 ¹•~q¹T!1
1

Re
¹•~su!, ~3!

where

s5m@~¹u1¹uT!2 2
3~¹•u!I #, ~4!

with the velocity vectoru5@u,v,w#T and

e5E cvdT1 1
2~u21v21w2!. ~5!

We assume a nonreacting, ideal gas with constant Pra
numberPr50.71 and specific heat ratiok5cp /cv51.4. cp

andcv are the specific heat coefficients under constant p
sure and constant volume, respectively, which followcp

2cv5R, with the universal gas constantR.
For temperaturesT.Ts , viscosity is calculated by the

Sutherland law

m

m`
5S T

T`
D 3/2T`1Ts

T1Ts
, Ts5110.4 K, ~6!

while for temperatures belowTs , the relationm/m`5T/T`

is used.16 The thermal conductivity coefficient in Eq.~3! q
5cpm` /Pr is proportional to the viscosity.

For the simulations, lengths are nondimensionalized b
reference lengthL, which appears in a global Reynolds num
ber Re5r`*u`*L/m`5105. Because it is common use in lin
ear stability theory to apply a Reynolds number scaled w
the displacement thickness, which is proportional toAx, we
introduce a local Reynolds numberRx5Ax* Re, as well.
Time t is normalized by the ratioL/u` , where u` is the
free-stream velocity, while the specific heatcv is normalized
with u`

2 /T` ~T` denotes free-stream temperature!. Densityr,
temperatureT and viscositym are standarized by their re
spective free-stream values.

B. Integration domain

Figure 1 shows the integration domain. The calculat
starts atx0 , the end of the integration domain is given b
xN . xs gives the location of the shock, which is prescribed
the free-stream boundary, according to the Rankin
Hugoniot relations.17 A buffer domain18 can be switched on
at x3 , which is damping the disturbances in order to provi
an undisturbed, laminar flow at the outflow boundary. T
disturbance strip is located betweenx1<x<x2 , with Rx1
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 1. Integration domain and disturbance strip.
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5438 andRx2
5952. The disturbances are periodic in spa

wise direction, having a wavelength oflz , which determines
the width of the integration domain aszN5lz .

C. Discretization

Due to the specific characteristics of the solution in d
ferent spatial directions, the discretization is specific to e
spatial direction, accordingly. We assume a numerical g
with N* M gridpoints in streamwise and wall normal dire
tion, as well asK-harmonics in spanwise direction, respe
tively. In streamwise direction the solution has a wave ch
acter in the presence of disturbance waves which are e
amplified or damped. Compact finite differences are able
resolve this kind of solution in an appropriate manner. Th
are applied here in a split-type form.19 This split-type formu-
lation has some desired damping characteristics with res
to small-scale oscillations. In wall-normal direction spl
type finite differences of fourth order accuracy are used
calculate convective terms, while viscous terms are ca
lated by fourth-order central differences. In spanwise dir
tion we have periodic boundaries, which allow to apply
spectral approximation with Fourier expansion.20 Time inte-
gration is performed at equidistant time steps with a stand
Runge–Kutta scheme of fourth-order accuracy. A more th
ough discussion of the numerical scheme can be foun
Ref. 10. To summarize, the formal accuracy of the schem
~Dx4 – 6, Dy4, Dt4, z spectral!.

D. Filter

Test computations have shown that the above discre
tion reliably works for oblique shocks in the computation
the base flow, as long as the step sizes are fine enough.
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cal step sizes in streamwise and wall-normal directions
Dx50.0357, Dy50.005 25, respectively. However, as th
shock approaches the sonic line in the boundary layer it tu
towards a vertical shock normal to the plate and oscillatio
in streamwise direction occur around the shock wave
cause of insufficient resolution inx direction. Without further
grid refinement or damping, these oscillations may dest
the numerical solution. To stabilize the computation,
fourth-order accurate filter according to Lele21 is used

a f̂ i 211 f̂ i1a f̂ i 115a fi1
c

2
~ f i 121 f i 22!1

b

2
~ f i 111 f i 21!,

~7!

where variables marked asf̂ i denote filtered andf i unfiltered
values at gridpointi in x direction with

a5 1
8~516a!, b5 1

2~112a!,
~8!

c52 1
8~122a!,

depending only on the filtering parametera ~a50.5 means
no filtering!. In our simulations a filtering parameter o
a50.495 was chosen. Step size variations, presented
later section, proved that the filter did not influence the flo
field in an unphysical manner. Because of the disturban
flow formulation the filter needs not to be applied to t
disturbances.

E. Boundary conditions

1. Free-stream boundary

The boundary conditions at the free-stream boundary
applied in a different manner for the computation of the ba
flow and the disturbances. The two-dimensional progra
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Skin friction for the cases with shock angless512.5°,s513.2°, ands514°.
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which is used to calculate a steady solution as start-up
for the three-dimensional code, applies a characteri
boundary condition, according to Harris.22 It assumes tha
flow variables remain constant along the characteristics
the inviscid potential flow. While this works well for th
freestream boundary in the two-dimensional program
could not be applied to the three-dimensional code. The
fore, a nonreflecting boundary condition23 is implemented
here. The basic idea of this nonreflecting boundary condi
is to neglect viscid terms, based on the free-stream assu
tion. The equations are thus reduced to a hyperbolic prob
Incoming characteristics are then set to zero.

2. Inflow, outflow conditions, wall boundary

The inflow variables are from the compressible boun
ary layer equations. They are held constant during the si
lation. At the outflow boundary, the flow field variables a
computed neglecting second derivatives.18 The no-slip con-
dition and vanishing normal velocity component are assum
at the wall. The disturbance is introduced inside the dis
bance strip, according to Fig. 1. It simulates periodical blo
ing and suction by varying the disturbance quantities (rv)8,
given by a function

f rv~j,z,t !5â* sin~vt !* cos~kbz!* sin~nj!* e2bj2
,

~9!
22p<j<2p,

with j562p at x1 and x2 , respectively. In our modal dis
cretization in spanwise direction,k indicates the spanwis
Fourier modes, withk50 meaning a two-dimensional distu
bance. The disturbance frequency, herev, determines the
streamwise wave numbera r . Thus, the obliqueness anglec
is given by tanc5(kb)/ar . For the present investigations, th
wall temperature remains constant. Wall pressure is c
puted from thev-momentum equation.

3. Initial conditions, implementation of impinging
shock wave

At the beginning of the calculation, a laminar flow with
out impinging shock, given by the boundary layer equatio
is specified within the whole integration domain. Also at t
beginning of the simulation, the shock is introduced into
free-stream boundary. For several grid points upstream f
the passage of the shock through the free-stream boun
relevant flow variables are held constant. The variab
Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP
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downstream of the shock location at the free-stream bou
ary are calculated by the Rankine–Hugoniot relations17 and
also held constant a few gridpoints downstream. A ste
shock then establishes itself within the whole flow field du
ing calculation.

III. RESULTS

A. Unperturbed laminar boundary layer

The investigations within this paper are limited to
laminar flat-plate boundary layer with shock boundary lay
interaction and Mach numberMa54.8, free-stream tem
perature T`555.4 K and constant wall temperatur
Tw /Tw,ad51, whereTw,ad is the adiabatic wall temperatur
for the case without shock. The Reynolds-number with
spect to the displacement thicknessd* slightly upstream
shock-impingement, but outside the interaction region c
sen atRx51100 is Red* ,Rx51100512 546. For the shock wave
we consider three different shock angles relative to the h
zontal axis:s512.5°,s513.2°, ands514°. An earlier vali-
dation of the unperturbed flow with impinging shock w
performed forMa52 and adiabatic wall,14,15 where suitable
data have been available. The three different shock an
have been chosen to obtain a flow situation, where
boundary layer is still bound to the plate~s512.5°!, a small
separation area occurs~s513.2°!, and a large separatio
bubble~s514°! appears. Figure 2 compares the skin fricti
of the three cases. Separation can be determined by a n
tive skin friction coefficientcf . Results fors513.2° and
s514° based on a finer grid with both half step sizes
streamwise and wall-normal direction are also given in F
2, which prove our solutions as grid independent. It sho
be pointed out that this statement also includes neglig
influence of the filter used, because the filtering spectra
pend on the step size as well.

In Fig. 3, density gradientsu]r/]yu for s514° are
shown. The largest shock angles in our series of computa
tions imposes the highest pressure gradient on the boun
layer, thus forcing a considerable thickening, as well a
large separation bubble, as already seen in Fig. 2. Due to
thickening of the boundary layer and the resulting system
compression and expansion waves, which are typical
such a flow problem,6 the flow is deflected in a manne
which is indicated by some manually placed streamlines
Fig. 3 for the given case.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Density gradientsu]r/]yu
and selected streamlines for the ca
with shock angles514°. Note: y-
coordinate stretched by a factor of 11
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B. Linear stability theory

Linear stability theory is used to predict the stability b
havior of a boundary layer flow for small amplitude distu
bances. In practice, linear stability theory is typically appli
under the assumption of a strictly parallel flow, i.e., extra
ing boundary-layer profiles foru(y) and T(y) for Rx

5const from the flow field as base-flow profiles for th
theory. However, as it will be shown in the following sectio
nonparallel effects are already considerably large even f
case without impinging shock wave and they can be
pected to increase because of the wall-normal velocities
duced by the shock boundary layer interaction. More res
on this will be shown in the next section.

Figure 4 shows amplification rates2a i from linear sta-
bility theory

2a i5

] ln
A~x!

A0

]x
, ~10!
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versusRx and disturbance frequency

F5
2p f * m`

u`
2 r`

, ~11!

whereA(x)/A0 is the amplitude ratio of any flow variabl
and f * is the dimensional disturbance frequency. Four ca
are presented: No shock and the three flow cases with sh
impingement as considered above. Darker shadings repre
higher amplification rates and the iso-contour line labe
with ‘‘0’’ indicates neutral amplification. Drawing our atten
tion to the case without shock in Fig. 4, we see two separa
regions of positive amplification. These are, according
Mack,2 the first instability mode at lower and the seco
instability mode at higher frequencies, respectively. In
picture for s512.5° in Fig. 4, the second mode is slight
shifted towards lower frequencies at and near shock impin
ment, due to the influence of the shock wave. The clear
tinction among the first and the second mode is lost. N
shock impingement, only a small, closed area of damp
FIG. 4. Linear stability for two-dimensional disturbances and shock angless512.5°, s513.2°, ands514° with respect to streamwise directionRx and
frequencyF. In the inviscid case, the shock would hit the plate atRx,sh'1400.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 5. Amplification rate2a i vs dis-
turbance frequencyF calculated by
linear stability theory for the cases
without shock ands514° at different
Rx .
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remains. The amplification rates at shock impingement
downstream of it increase according to the darker shad
there. A larger shock angle is expected to influence stab
behavior to a higher degree. Fors513.2°, the observed shif
towards lower frequencies and the rise of the amplificat
rates near shock impingement has become more signific
compared tos512.5°. It is even more pronounced fo
s514°. Another plainly recognizable effect is the occurren
of new instabilities around the shock impingement area,
frequencies betweenF512* 1025 andF520* 1025.

Due to the complexity of the behavior of linear distu
bances in compressible flows, it can not be expected to re
the phenomena described above to one single factor. Th
fore, we try to explain the influence of the shock wave on
linear stability by taking a closer look at various effects a
what sort of behavior has to be expected for both first a
higher mode instabilities. First, we investigate the influen
of viscosity. Figure 5 shows the amplification rate versus
disturbance frequency for linear stability calculations
boundary layers with and without shock at different locatio
Rx . Comparing the cases without shock atRx51400 and
Rx56900 ~filled symbols!, the effect of viscosity become
obvious. For the curve atRx51400, maximum amplification
rates for both first and second mode disturbances~second
mode disturbances are located at higher disturbance freq
cies! are smaller than the corresponding values forRx

56900, indicating a stabilizing effect of viscosity at high
Mach numbers, as mentioned in the Introduction.

The shock wave withs514° forces the boundary laye
to separate and the separation bubble displaces the boun
layer away from the wall. In a simplified manner this cou
be understood as an increase of the local Reynolds num
Rx , becauseRx;d, with d as the boundary layer thicknes
An infinite local Reynolds number corresponds to an invis
flow. Therefore, the influence of viscosity decreases with
creasing displacement of the boundary layer. In the pre
Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP
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Mach number range, viscosity has a destabilizing effect
the stability of the boundary layer. The amplification curv
for the case with a shock angle ofs514° are given in Fig. 5
at Rx51300 andRx51400 ~open symbols!. The maximum
amplification rate becomes even larger than the correspo
ing amplification rate atRx56900 without shock. It can thus
be stated that the displacement of the boundary layer, wh
results in a diminishing of the influence of viscosity, leads
a destabilization, but it can not be accounted for the total
in amplification. The unstable region aroundF516•1025

belongs to the new instabilities mentioned before.
Figure 6 compares streamwise velocity profiles and th

characteristicsu(h)6a(h) at five consecutive locationsRx

with the corresponding phase velocitycph of a disturbance.
For h,hs the disturbance wave propagates at superso
speed relative to the flow becauseu(h)1a(h),cph, where
u(h) is the streamwise velocity component anda(h) the
local speed of sound. Mack pointed out, that the amplifi
tion rate of second-mode instabilities is strongly depend
on the thickness of such local regions of relative superso
flow. The figures shows, that the thicknesshs of relative
supersonic flow increases by the presence of separation
a maximum atRx'1350 is reached. Hence, another porti
of the total rise of second mode instability can be assume
be caused by the increase of thickness in this local su
sonic regions.

Although the first-mode instability in Fig. 4 seems
vanish locally with increasing shock strength, a first-mo
instability has to be present, according to the findings
Lees and Lin,3 because a generalized inflection point exi
~see Fig. 7!. The location of the generalized inflection poi
in Fig. 7 moves in wall-normal direction due to the displac
ment of the boundary layer by the separation bubble.

Figure 8 shows amplification rates for a frequencyF
510* 1025, but different shock angles and propagati
angles of the disturbance wavesc with respect to the stream
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. Velocity profiles and their characteristics at five consecutive locationsRx . Also, corresponding phase velocitiescph of a disturbance withF51
•1024 are given. Shock angles514°.
-

of

ur-

an
v-

nds
wise direction. Forc50°, which corresponds to a two
dimensional disturbance, the maximum amplification rate
raised by a factor of'30. For c525°, this factor is'60,
while for c545°, the amplification rate grows by a factor
'6. Ahead of the high local rise fors514° it can be seen
Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP
is
that2a i adopts negative values, indicating that small dist
bances are damped here, which compensates the rise of2a i

to a certain degree. In summary, for linear stability theory
impinging shock wave locally influences the stability beha
ior of a boundary layer considerably. This influence depe
FIG. 7. Location of generalized inflection pointd(rdu/dh)dh50 for the cases514° ~solid line! and without shock~broken line! at differentRx .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 8. Amplification rates by linear stability theory fors512.5°, s513.2°, ands514°. Disturbance frequency isF51•1024, propagation angles of
disturbance waves with respect to thex direction arec50°, c525°, andc545°.
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on the shock angles, the wave anglec with respect to thex
direction and the disturbance frequencyF. The larger the
shock angles, the higher the local influence and the larg
the area of influence with respect to the streamwise direct

C. Direct numerical simulations and comparison with
linear stability theory

In the present section we focus on results which w
obtained by direct numerical simulations~DNS!. Periodical
disturbances are introduced at the disturbance strip. Du
simulation these travel downstream through the interac
region and finally into the buffer domain at outflow. Simul
tions are carried out until a periodical disturbance structur
present inside the integration domain. The flow field is th
analyzed. In order to better understand the following res
with a shock, we first draw our attention to a case witho
impinging shock wave. Figure 9 shows amplification ra
obtained by extracting different disturbance maxima fro
the amplitudes of a timewise Fourier transform for one d
turbance period of such a simulation. The disturbance
quency is given in the plot, the other simulation paramet
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correspond to those used in earlier sections. In addition,
sults of linear stability theory, as well as results of a simu
tion based on an idealized parallel boundary layer at th
consecutive locationsRx are given. A typical nonparallel ef
fect is the individual amplification rate for each flow-fie
variable. In contrast to this, linear stability theory yields o
single amplification rate as long as it is based on a st
parallel flow assumption as mentioned before. To prove t
the differences between the flow variables of the numer
simulation and the differing amplification rates between l
ear stability theory and simulation are caused by nonpara
effects, the code has been modified to simulate stability
havior at three consecutive locations based on an ideali
parallel base flow. As it can be seen in Fig. 9, thus obtain
results agree very well with linear stability theory. Syste
atically, near-wall amplification rates such as amplificati
rates obtained from the maximum disturbance amplitude
u, v, andp ~of which only the wall pressure is shown in Fig
9! tend to be farther from the calculated values by line
theory than wall distant maxima~T, r, and for three-
dimensional disturbancesw!.
ll
-

FIG. 9. Amplification rates of wall
distant disturbance maxima and wa
pressure by direct numerical simula
tion, compared with linear stability
theory and an idealized parallel-flow
simulation; disturbance frequencyF
51•1024; no shock.
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FIG. 10. Amplitude distributions of
relevant flow variables compared with
linear stability theory atRx51330.
Disturbance frequency isF51•1024.
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Figure 10 compares disturbance amplitudes from the
rect numerical simulation with eigenfunctions of linear s
bility theory for some flow variables atRx51330 without
impinging shock. Phase angles for the same case are c
pared in Fig. 11. Having the differences between linear
bility theory and direct numerical simulation observed ear
in this section in mind, they agree remarkably well.

We now move on to take a closer look at the stabil
behavior of small amplitude disturbances in flow situatio
Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP
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with shock boundary layer interaction, simulated by DN
First, the case with a relatively small shock angle
s512.5° is investigated, for which a smaller influence of t
shock wave on the disturbance amplification can be expe
~cf. Fig. 2!. Figure 12 shows maximum disturbance amp
tudes for all relevant flow variables. Here, disturbances
two-dimensional. Along with the results of DNS with im
pinging shock wave, data of a DNS without shock as well
corresponding curves from linear stability theory are give
FIG. 11. Phase anglesQ of relevant flow variables compared with linear stability theory atRx51330. Disturbance frequency isF51•1024.
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FIG. 12. Maximum disturbance amplitudes of flow variables for a shock angle ofs512.5° compared to the case without shock and linear stability the
Two-dimensional disturbances~c50°!, disturbance frequencyF51•1024.
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As with the nonparallel effects, the influence of the sho
wave on the stability behavior is significantly different f
each individual flow field variable. Like in the case witho
shock, linear stability theory lies in better accordance w
wall distant maxima such as temperatureT or density r.
Comparing the two base flow cases ‘‘with and witho
Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP
k

h

t

shock’’ to the corresponding results of linear theory, we s
that in both cases the difference between the predicted c
of the disturbance amplitude by linear stability theory is t
same. This difference can thus be identified as the alre
presented nonparallel effects, as discussed before. Hen
can be stated that linear stability theory as it is applied h
ility
FIG. 13. Maximum disturbance amplitudes of selected flow variables for a shock angle ofs512.5° compared to the case without shock and linear stab
theory. Propagation angles of disturbance waves with respect to thex directionc525° andc545°, disturbance frequency isF51•1024.
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FIG. 14. Maximum disturbance amplitudes of flow variablesp andT for a shock angle ofs513.2° compared to the case without shock and linear stab
theory. Two-dimensional disturbances~c50°!, disturbance frequencyF51•1024.
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is qualitatively able to predict disturbance amplitude beh
ior for wall-distant maxima of flow variables. Howeve
close to the wall, whereu, v, andp maxima are located, the
nonparallel results exhibit a local increase of the disturban
in the vicinity of the impinging shock which is not present
the linear stability theory results. The same is valid for thr
dimensional disturbance waves~c525° andc545°! in Fig.
13, where disturbance amplitudes of temperatureT, pressure
p, as well as the disturbance velocity component in spanw
directionw are shown. Thew maximum is located in a far
ther position normal to the wall, close to the temperat
maximum. The rise of the disturbance amplitudes for obliq
waves is much smaller than in the two-dimensional case
Fig. 12. Linear stability theory predicts only a small ri
compared to the boundary layer without impinging sho
Again, the influence of the shock is most pronounced at n
wall amplitude maxima, such asp, which is located directly
at the wall. Forc545° linear stability theory does not predi
the correct behavior. Instead of an additional amplification
predicts a minor damping. For a boundary layer with
impinging shock it is known, that by increasing the anglec
of the disturbance propagation with respect to thex direction,
results of linear stability theory exhibit increasing no
parallel effects.

In the case presented in Fig. 14 the shock angle is
creased tos513.2°. Temperature and pressure maxima
plotted as representatives of wall-distant disturbances
disturbances, which are close to the wall for comparison
the case without shock boundary layer interaction and lin
stability theory. Compared tos512.5° disturbance ampli
tudes increase much stronger by the interaction. For the w
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distant amplitudes linear stability theory quantitatively wor
rather well. This is not true for the pressure disturbance at
wall, as before. Downstream of the shock impingement
Rx'1500 wall-pressure amplitudes are damped untilRx

'1600, where damping is followed by another amplific
tion. A closer investigation of this phenomenon revealed n
ther a beating of waves nor a nonphysical problem such
numerical reflections from the free-stream or outflow boun
ary.

Figure 15 shows the wave number distributiona r

52p/l of the DNS for the wall pressure disturbance and
fixed frequencyF510•1025. The wave number can be re
garded as a measure for the wave propagation speedcr ,
because ofcr5F/a r . Hence, at shock impingement and
certain area upstream of it, the disturbance wave is dece
ated by the shock, downstream shock impingement, it is
celerated. The area of alternating amplification and damp
at Rx'1600 discussed above can be correlated to a dece
tion and acceleration of the wave propagation represente
Fig. 15 as a local increase followed by a decrease of
wave numbera r , respectively. As stated before, this occu
rence cannot be related to an external effect.

Amplitude profiles normal to the wall and phase ang
for the case withs513.2° andc50° at Rx51325, which is
a position just before shock impingement, show fairly go
agreement with eigenfunctions and phase angles calcul
by linear stability theory. The now larger nonparallel effec
are expected to impair the agreement between DNS and
ear stability theory, which effectively is the case here. F
three-dimensional disturbance waves~c525° and c545°!
the match between linear stability theory and DNS for w
FIG. 15. Wave number distributiona r

from direct numerical simulation for
disturbance frequencyF51•1024 and
a shock angle s513.2°. Two-
dimensional disturbances~c50°!.
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FIG. 16. Maximum disturbance amplitudes of flow variablesp andT for a shock angle ofs514° compared to the case without shock and linear stabi
theory. Two-dimensional disturbances~c50°!, disturbance frequencyF51•1024.
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distant amplitude maxima is slightly better than fors512.5°.
Finally, we discuss the case with the largest separa

bubble produced by a shock angle ofs514°. Results are
presented in Fig. 16 and are again compared with lin
theory. Although non-parallel effects are expected to gr
with increasing shock angles, the tendency of the disturba
amplitudes of wall-distant maxima can be predicted fai
good by linear theory. After a rise of the amplitude maxim
near separation, the temperature disturbance amplitude
mains almost constant within the separation bubble. At re
tachment another rise in amplitude maxima occurs. The t
amplitude rise here is not significantly higher than f
s513.2°, however.

Amplitudes and phase angles are compared with lin
stability theory in Fig. 17 atRx51250, a location slightly
upstream from shock impingement. Quantitatively, the tre
of the curves of the simulation can be represented by res
of linear theory, although nonparallel effects grow in mag
tude. Figure 18 shows maxima of disturbance amplitudes
c525° andc545°. As for the other cases discussed ear
Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP
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the agreement between linear theory and DNS is best
c50° but declines with increasing obliqueness anglec.

IV. CONCLUSIONS AND FUTURE RESEARCH

We could identify considerable nonparallel effects for
boundary layer atMa54.8 with respect to small-amplitud
disturbance behavior, even for a boundary layer without
pinging shock wave. Linear stability theory according
Mack could represent linear stability behavior for wa
distant amplitude maxima and small propagation anglesc of
disturbance waves rather well despite these nonparalle
fects. An impinging shock wave thus locally influences s
bility behavior, dependent on the shock strength, disturba
frequency and obliqueness anglec of traveling disturbances
The influence can be explained by an interaction of sev
factors. First, decreasing viscosity effects due to the displa
ment of the boundary layer away from the wall are resp
sible for a certain rise in instability, because at higher Ma
numbers viscosity has a known stabilizing effect. Also, lo
es

-

FIG. 17. Comparison of amplitude
distributions of numerical simulation
with eigenfunctions of linear stability
theory and corresponding phase angl
for selected variables atRx51250.
Shock angles514° and propagation
angles of disturbance waves with re
spect to thex directionc50°. Distur-
bance frequency isF51•1024.
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FIG. 18. Maximum disturbance amplitudes of flow variablesT, w, andp for a shock angle ofs514° compared to the case without shock and linear stabi
theory. Propagation angles of disturbance waves with respect to thex directionc525° andc545°, disturbance frequency isF51•1024.
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relative supersonic zones become thicker within the reg
where the boundary layer thickens. This is known to prom
second-mode instability.

Future research will be carried out for secondary ins
bility mechanisms such as fundamental, subharmonic or
lique breakdown, also for stronger shocks and higher M
numbers which eventually cause an unsteady flow field. T
implies modifications of the numerical scheme. Another
sue is the sensitivity with respect to more complicated w
conditions like adiabatic or radiation–adiabatic wall te
peratures. First simulations atMa54.8 and adiabatic wal
condition did not deliver considerable differences compa
to calculations with constant wall temperature, because
constant wall temperature chosen here is identical to
adiabatic wall temperature of the corresponding bound
layer without shock. The shocks investigated here resu
only in slight changes of the adiabatic wall temperature
the order ofDT55 K. A higher Mach number and stronge
shock waves are, therefore, desirable in this case, too.
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