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Two-dimensional numerical investigations of small-amplitude disturbances
in a boundary layer at Ma =4.8: Compression corner versus impinging
shock wave
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Two-dimensional direct numerical simulations and linear stability theory investigations have been
carried out for a compression ramp at #4.8 and compared to earlier results of a laminar boundary
layer with impinging shock wave. The inflow parameters in both flows were identical; the ramp
angle of the compression corner was chosen to cause a separation bubble, which has exactly the
same length compared to the case with impinging shock. It turned out, that the two cases are almost
identical for the base flow properties. This is in accordance with similarity assumptions, e.g., free
interaction theory, which for smaller Reynolds numbers states, that the boundary layer should be
independent of the sort of shock-boundary layer interaction. However, linear stability theory results
differ near the corner and the impinging shock, respectively. Direct numerical simulations of
small-amplitude disturbances, which were introduced into the laminar boundary layer, also behave
in a very similar way. Amplitude distributions exhibit the same characteristics. The according
distributions of the ramp flow have slightly larger amplitudes than the case with impinging shock.
© 2004 American Institute of Physic§DOI: 10.1063/1.1738414

I. INTRODUCTION transitional behavior for a Ma4.8 boundary layer with im-
pinging shock and small amplitude disturbantds the
Shock boundary layer interaction is one major area Obresent paper, we will compare the results obtained in Ref. 2
concern in technical applications at trans-, super-, and hypefith a compression ramp flow. The flow parameters of the
sonic speeds. As discussed in many publications over the lagimp flow calculations correspond to the parameters used in
decades, it can result in hlgh aerodynamic loads, engine In|¢Qef 2. The ramp ang|e was chosen to induce a Separation
performance loss and increase of drag, to name only a felubble which has the same length at the wall compared to
examples. The base flow properties of shock-boundary layehe separation bubble in the case with impinging shock in
interactions for simple geometries, such as an impingingref. 2. Early experimental results, such as experiments re-
shock wave on a flat-plate boundary layer, a forward or rearferred to in Ref. 1 and, more recently in Ref. 3 indicated that
ward facing step and the compression ramp problem havgows with shock-boundary layer interaction do behave in a
been thoroughly explained in the many publications. A goodsimilar manner in major parts, independent of the cause of
summary can be found in Ref. 1. For a compression ramp thgeparatior(impinging shock, ramp or St@.pThiS led to the
following physical phenomena occur: The change in direcderivation of some correlation laws, which are known as the
tion of the wall due to the ramp forces the boundary layer ttfree interaction conceptThese similarity assumptions were
follow the contour, which causes a pressure gradient yieldinghe motivation for the present investigations. We wanted to
the boundary layer thickness to increase. Depending on sudiudy, whether this also holds for controlled, unsteady distur-
parameters like the ramp angle, the Reynolds number, theance behavior, which, if the answer is yes would be helpful
wall temperature conditions, and the boundary layer thickhecause according results obtained for the flat ptzdeld be
ness, a complicated system of compression waves occurgpplied to the compression corner in a quantitative manner
Provided the ramp angle is large enough, the boundary layeind vice versa. However, related publications are not known
separates. Compression waves form upstream from the cofo the authors. Within this paper, a two-dimensional
ner, which is caused by an initial turn of the flow at separatompression-ramp boundary layer with small-amplitude dis-
tion. Well outside the boundary layer, those coalesce to th@urbances is investigated numerically both with compressible
separation shock. At reattachment, additional compressiofnear stability theor§y and direct numerical simulation.
waves are present, which merge with the separation shock.
Another possible scenario is the formation of a reattachmenj. NUMERICAL SCHEME
shock before the compression waves reach the separation ) ) ) o o
shock. The two shocks will then meet at the so-called triple’™ GOVerning equations, disrcretization, initial and
or bifurcation point. Although the base flow properties have oundary conditions
been intensively studied, much less is known about the tran- Linear stability theory investigations are based on the
sitional behavior of such flows with shock-boundary layerscheme developed by Matksing local velocity and tem-
interaction. In one of our recent papers we discussed thperature profiles extracted from the direct numerical simula-
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tion of the base flow calculatiohThe numerical scheme in wall-normal direction, respectivelf and G are the flux
used for the direct numerical simulation is based on the comvectors of the original, untransformed Navier—Stokes equa-
plete two-dimensional Navier—Stokes equations in conservaions. The transformed, conservative solution vector is given
tive formulation. The description of the numerical scheme inby
this paper will be very limited regarding features already
presented earliér’ Q=J-Q ()

For the simulations with a compression corner, a
boundary-fitted grid in the physical-y space is needed to with Q as the solution vector of the untransformed Navier—
properly represent the geometry, which has to be mappegtokes equations, where
onto an equally spaced and equidistant grid in the numerical
¢-7 space(see Fig. 1 This has been achieved by an appro- ~ j_ X dy dy ox

. . , . =L = 6
priate transformation of the Navier—Stokes equations, ac- 9 dm 9 Jn ©
cording to the scheme presented in Ref. 6. The derivatives in _ _ _

the streamwise direction now become is the determinant of the Jacobi matrix. The transformed

Navier—Stokes equations in numerical space are then

g 1] a) ay d\[ay\] L
ax 3|\ a8/ \an) Vo) \Ge] ) D R s
' ' St aEt I "
and in the wall-normal direction K
g 1| a\(ax a\[ax\] High-order compact finite differences in split-type for-
@: I\ an/\og] &_g) anl | (2} mulation are used for streamwise derivatives, while in wall-

o _ _ _ normal direction high-order finite differences are applied for
Second derivatives are implemented by applying the first deconvective and central differences for viscous terms. Time

rivative twice. The transformed flux vectors are then integration is performed with a standard fourth-order accu-
ay Ix rate Runge—Kutta scheme. In contrast to the simulations with
Fi=F—+G— 3 impinging shock in Ref. 2 it was not necessary to apply a

dn dn filter” in the ramp case. Because a shock wave impinging on

in streamwise direction and the boundary layer is not present, gradients of the flow quan-
tities in the streamwise direction are not as high as in Ref. 2.

L AP (49  The inflow boundary variables and the wall temperature are

t o€ d€ held constant. In the untransformed scheme, the wall pres-
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TABLE I. Relevant grid parameters used in simulations. within the whole integration domain. Velocities, energy, vis-

Case MXN Ay Ax cosity, c_jen3|ty, and the temperature are normalized with their
respective free stream values, the pressure and energy by the
ﬁ_‘a”dzfd 322242181 8-882 gg g-gi? 2239’95 dynamic pressurpX u%?, specific heat coefficients, andc,
Iner Ax . . *2/T* H ;

Finer Ay 601X1201 0.002 625 0.035 6999 W|th I(um /TQF]. D|men3|o_nal \éfirlaples arr]e labeled with anf af]

Higher domain 60%1201 0.005 25 00356999 terisk. In the streamwise |rect|qn, the square root of the

Impinging shock o=14° 301x 801 0.005 25 0.0356999 local Reynolds numbeR,= X Re is used as a measure for

the streamwise location on the body, with the global Rey-
nolds number R&100 000. From this global Reynolds num-
_ _ ber Re=pXuiL/u’ alength scald is obtainedL normalizes
sure is calculated from the-momentum equatiofi.in the engths such as the streamwise and wall-normal coordinates
transformed case, derivatives in both th@nd 7 direction  y—y* /| andy=y*/L. For temperatures above the Suther-
are present in the-momentum equation, land temperature viscosify= u*/u is calculated by Suth-

ay IX erland’s law, below the relatiop™/ux =T*/TZ is used.

{pv} [ (puv — 7yy) + —(pv2+p Tyy)’
B. Computation of the grid

d ay X . . .
_( g(puv Teg) + —,§(pvz+p—7'yy)) =0. (8) Our formulation of the grid is based on the analytical

+
an function presented in Ref. 9. We have

In the general case, the wall pressure has to be calculated
implicitly, because derivatives in both tifeand » direction y=a-| X+
are present, as it can be seen in 8). However, a grid with
the metric coefficientx/dn=0 simplifies the wall-pressure with Y=0 at the wall andY=y; for y=<« at the inflow
calculation, so it can be calculated in an analogous manner d®undaryx. is the streamwise coordinate of the corner, and
in the untransformed case. Therefore, the grids used for cat describes the magnitude of the radius at the corner and at
culations presented within this paper are generated accorthe free stream, respectively. For a ramp angle

ingly.

In[coshc(x—x%¢))] In[cosHc:Xx.)]
c c

+Y, (9

Y(x=|_g,)

The boundary layer is perturbed by simulated blowing tan ¢) = ' (10)
and suction at a disturbance strip on the wall. At the outflow Lgr—Xc
boundary, flow variables are calculated with the Navier—g ;o given by the relation
Stokes equations neglecting second derivatives. First deriva-
tives are obtained by a second-order backward difference. At tan(¢)c[Lgr—Xc]
the beginning of the simulation, a laminar flow obtained bya_ - —c Lgr—In{coshic(Lg—xc) ]} +In{costic-x ]}

the compressible boundary layer equations is specified

0=14°

1.5314
1.3083
1.0853
0.8623
0.6392
0.4162
0.1931

FIG. 2. Density fields for the case
with impinging shock wave(upper
figure) and the compression ramp
(lower figure. Darker shadings indi-
cate higher density. Note that figures
are stretched in thg direction.
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0 5 10 15x 20 25 30 FIG. 3. Comparison of the density
fields of the case with impinging

shock in physical space to the com-

pression corner in computational

¢=6° Computational Space space.
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Lgr is the length of the integration domain. In streamwisehere, an equidistant grid in both streamwise and wall-normal

direction, we have direction has been chosed-{0), which is shown in Fig. 1.
Therefore Ax=A¢ andAy= A #. In our simulations, we use
X=Xo+§. 12 4—6°, x.=18.33, at the walk, =10, aty=o c,,=0.5, d
Equation(9) is solved both at the wally(,) and at the =0.05. Other relevant parameters of our simulations are

free-stream boundaryy(). Values are then interpolated be- given in Table I.M/Ay and N/Ax are the number of grid
tween the upper and lower boundary for the whole field, points/step sizes in thg and £ direction, respectively.

Xie= (17T () Xuie) T (5 Xee(e) 13 | RESULTS
Yien =) Yue T in) Yoore) - 149 ) Base flow
Interpolation in the wall-normal direction is calculated expo- . . .
nentially In the following, results for the compression ramp WI|!
' be shown and compared to the flat-plate boundary layer with
eldn)_q ” impinging shock. In both cases, the free stream Mach num-
f(m:ﬁ, n'= (M—D)A7y’ (19  peris Ma=4.8, free-stream temperatufe =55.4K and the

wall temperature is held constantt=270K. For the case
The variabled specifies the magnitude of stretching in with impinging shock on the flat plate the shock angle with
the wall-normal direction. Within the simulations presentedrespect to the wall igr=14°. For this case results were al-

Impinging shock, 6=14° s ¢=6°

~~~~~~~~~~ o ¢=6° higher integration domain o - o
FIG. 4. Skin friction coefficient distri-

o.c0t5p i 4=6°, finer Ay bution ¢; versus square root of local
: Reynolds numbeR, . Comparison of
_oeo0t¢g . fE— $=6°, finer Ax case with impinging shoclksolid line)
1) ’

and compression cornédotted lineg.
Also given are results of grid-
refinement/enlargement studies of the
ramp flow(dotted lines with symbo)s
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— = ¢=6° R =1000
s — —o— - 0=14°%R_=1000
- — e $=6° R =1350
04 - —o— - 0=14°%R=1350

——— $=6° R =1700

— —v— ~ o=14° R.=1700

FIG. 5. Streamwise velocity components of base flow
at three consecutive locatioRs=1000,R,= 1350, and
R,=1700. Here, the wall is at=0.

ready published in Ref. 2. The ramp angle with respect to thériction of the compression ramp perfectly matches the skin
horizontal direction isp=6°. As a first approximation for friction of the case with impinging shock. Also shown in Fig.
turbulent boundary layers a corner angle, half the angle of are results of grid-refinement/enlargement studiksted
ihe impinging shock, gives_ a similar wall-pressure distribu-jines with symbols, according to the legén@ihey prove the
tion in both cases, according to Ref. 3. The ramp angle 0fig independency of our simulations. According results for

¢=6° was obtained by iteratively changing the wedge anglqhe case with impinging shock can be found in Ref. 2.
until maximum agreement with respect to the skin friction In Fig. 5 u-velocity profiles at three location®, are
. X

distribution. In Fig. 2 the density field for both cases is e

given. Also shown are selected streamlines, which visualizgom_parEd for the ramp aind the case with impinging shock.

the flow in the free stream and in the boundary layer, wher&rofiles forR,=1000 are identical. Near and at the wall the

a separation bubble can be observed in both cases. It will bether velocity profiles agree very well with each other, even

shown in the following, that the two flows are very similar. inside the separation bubble B=1350. However, farther
When the flow field in the ramp case downstream of thefrom the wall the profile aR,=1700 has slightly lower ve-

corner is mapped on the flat plate, which means a rotatiotocity in the case of the impinging shock, while &,

with its negative ramp angle the resulting flow field matches=1350 it is the opposite.

with the case with impinging shock. In Fig. 3 such a con-  Figure 6 compares the wall-pressure distribution of both

struction is given for the two density fields. As it can be seencases. As for the skin-friction distribution, the wall pressure

the two density fields look very similar except for the im- is ijentical for both types of shock-boundary layer interac-
pinging shock and its reflection as an expansion wave at thffon

sonic line, which is not present in the compression corner. - . .
. . . Thus the base flow calculations presented here are in full
The contour levels of both configurations agree gquantita-

tively. For all other flow variables the resuits Cc)rm:)areagreement with free-interaction theory, which says, that the
equally well. boundary layer behavior in shock-boundary layer interaction

We now take a closer look at the skin friction distribu- Should be largely independent of its origin. This holds even
tions, which are given in Fig. 4. It can be seen, that the skirfluantitatively, as it can be seen in the present comparisons.

Ba-aau
0.055
¢o5¢p S . N $=6°
FIG. 6. Wall-pressure distribution ver-
0.045 0=14° sus square root of local Reynolds
s 0.04 2 numberR, . Comparison of case with
r impinging shock(solid line) and com-
0.035 F pression corner(dotted lines with
0.03 E o symbols.

0.025 ———%75p5 800 1000  i200 1400 7600 1800
X
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FIG. 7. Linear stability theory results.
Disturbance frequenc¥ versus local
Reynolds numberR, . Darker shad-
ings indicate larger amplification rates
«; . White represents negative/neutral
amplification.
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FIG. 8. Eigenfunctions of the primi-
tive flow variables atR,=1350. Dis-
turbance frequenci =0.0001.

30
25F
20

FIG. 9. Wall-normal phase distribu-
tions ® of the primitive flow variables
at R,=1350. Disturbance frequency
F=0.0001.
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35:'
30f ¢=6°
25F 5=14° -
20F -
: -
15k
10F
0(5 N 1l2. L
FIG. 10. Pressure, temperature eigenfunction and cor-
responding phase distribution Rf= 1350. Disturbance
frequencyF=0.000 05.
35; 35:-
30} ¥ 30f
25F 25f
20F 20F
= s f
15F 15¢F
10f 10}
: 5-
FE T o
o(p’)
B. Linear stability theory the second modés destabilized and locally shifted to lower

We now compare compressible linear stability theory re_frequencies. New instabilities at higher frequencies are
=1350 andF=0.00012.

sults obtained from investigations of the impinging shockformed, neale X .
with the compression ramp. Our linear stability theory results ~ S°me differences in Fig. 7 are present arouRgd

are based on the scheme developed by Maklknparallel ~1350, which is very close to the location of the corner and
effects are not taken into account here. The streamwise véhock impingement on the boundary layer, respectively. To
locity and temperature profiles, which are used by linear stat2ke a closer look at the disturbance behavior there, eigen-
bility theory, were extracted locally from the direct numeri- functions and phase distributionsRt=1350 are compared

cal simulations of the base flow as those shown in Fig. 5in Figs. 8, 9, 10, and 11 at three disturbance frequerf€ies
Figure 7 compares the stability diagrams obtained by linear0.0001,F =0.000 05, and-=0.000 12, respectively. Here,
stability theory for the two case&=(2#f*L)/(u¥ Re) is n=Y ReR, represents the wall normal coordinate. From the
the disturbance frequency, darker shadings indicate larggiressure eigenfunction and its corresponding phase distribu-
amplification ratesa;=(—d In(A(X)/Ay))/dx. As it can be tion for F=0.0001 in Figs. 8 and 9, respectively, it can be
seen, the two figures are virtually identical. Due to the influ-seen that the stability regime &,=1350 with F=0.0001

ence of the shock, the first instability mdds stabilized and  belongs to a second mode, because the pressure eigenfunc-

- —ln N N W
o 0O o0 O
A B B S

/aa—aa—as—-

FIG. 11. Pressure eigenfunction and phase distribution
at R,=1350. Disturbance frequendy=0.000 12.

S ST A S S S R S S : 0' — Il I A
0.05 »y.Q-1 0.15 0 2 o 4 6
pll?max (I)(p)
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F=0.0001
10° |

FIG. 12. Maximum temperature dis-
turbance amplitudes of both direct nu-
_____ oo merical simulations and integrated am-
plification rates from linear stability
theory versuRR, .

"""""" ' -—----- 0¢=6° linear stability

---------- & 0=14, linear stability

10° —550 1200 7400 7600
R

tion has one zefoin both cases. Eigenfunctions for the ve- impinging shock are also larger than in Figs. 8 and 9, com-
locity componentss andv and the pressurg quantitatively  parable to the case with=0.000 05 in Fig. 10.
match. In the case with the compression ramp, the distribu-
tions for the temperatur€ and density have larger absolute C. Direct numerical simulations of small-amplitude
maxima compared to the case with impinging shock. How-disturbances
ever, the characteristics of the eigenfunctions are identical, as
well.

The phase distributions in Fig. 9 all show very good
guantitative agreement.

In both the cases with compression ramp and impingin

shock we have a second mode-type disturbanceRat Fia. 2. diff bet the t f i aht
~1350 andF =0.0001. However, in the case with shock it is lg. 2, differences between the two configurations mig

damped, while in the case of the compression corner it igxist, which are not taken into account by linear stability

amplified. The impinging shock seems to stabilize the flow intheory.' The.refore,. a more deta.iled inyestigation with direct
numerical simulation is appropriate. Figures 12 and 13 show

this regime. ’ - -
Eigenfunctions and phase distributions for the pressurd® maximum temperature disturbance amplitudes and the

and temperature disturbances Fat=0.00005 are given in wall pressure amplitudes versus the downstream coordinate,
Fig. 10. Qualitatively, the characteristics of the curves for thd€SPectively. For the direct numerical simulations, they were

compression corner match the case with impinging shockobtained by a Fourier analysis of the flow variables over one
However, quantitative agreement is worse than for disturbance period. The wall pressure and temperature were

=0.0001 in Figs. 8 and 9. The pressure eigenfunctions anghosen here because of results obtained in Ref. 2. These two

phase distributions indicate, th&t=0.00005 atR,= 1350 guantities have the largest and smallest nonparallel effects of
belongs to a second-mode instability like in the case with@ll primitive flow variables in our simulations. Nonparallel
F=0.0001. effects highly influence the disturbance behavior, which was
The newly formed disturbances, caused by the shockquantified in Ref. 2.

boundary layer interaction at higher frequencies are of third-  The differences between the amplitudes of the direct nu-
mode type. This can be inferred from the pressure eigenfunanerical simulation and linear stability, which can be seen in
tion, which has two zeros, and its corresponding phas&igs. 12 and 13, were identified and quantified as an effect of
distribution in Fig. 11. Higher mode instabilities, such asnonparallelism for the case with impinging shock in Ref. 2.
second and third modes, can be characterized as acousfibe strongest nonparallel effects appear in the maximum
waves’ Differences between the ramp flow and the case withpressure disturbance, shown in Fig. 13. Disturbance behavior

We now compare direct numerical simulations of small-
amplitude disturbances. Because the two base flows are not
identical in all aspects, i.e., there is no impinging shock and
reflected expansion wave in the compression corner and cur-
gQ/atures of streamlines in physical space are diffefsee

) F=0.0001
i 5=6°

---8--- o=14° ) )
FIG. 13. Maximum pressure distur-

bance amplitudes of both direct nu-
merical simulations and integrated am-
plification rates from linear stability

_aC g -
——————— 0=6°, linear stability theory versus, .

- PO o=14, linear stability

-8 | ! N 1 N N 1 N 1
10" =500 1200 1400 7600
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R =1350
25

¢=6°, DNS

20: 20

15i
b ) $=6°,LST < |
10 10
5
O(j '1'(]_;/ .’ 2:0 FIG. 14. Comparison of wall-normal amplitude and
u

phase distributions for the ramp with corresponding lin-
ear stability results. Shown are temperature and pres-

25¢ sure distributionsR,= 1350, F=0.0001.
25r =
201 20:-
15f 15
IS = [
10F 10f
ot - NS
R,=1550
25¢
¢=6°, DNS
20F
...................... ¢=6°, LST

0 5., 10 15 0 0 . .

T/u max P, FIG. 15. Comparison of wall-normal amplitude and
phase distributions for the ramp with corresponding lin-
ear stability results. Shown are temperature and pres-
sure distributionsR,= 1550, F = 0.0001.

251 251
20F 20F
15F 15F
o F s .
10F 10
5F 5f
OLL..I O-éA .':.l.l..‘i...‘l
o(p)

o 1”“2[;3_,)4 5 6

Downloaded 24 May 2004 to 129.69.43.206. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 7, July 2004 Numerical investigations of small-amplitude disturbances 2281

of the case with impinging shock and the compression ramjre practically identical. This holds for the base flow, linear
look very similar for both the direct numerical simulation stability theory, and direct numerical simulations of distur-
and linear stability. It is identical until shock impingement at bance amplification with small-amplitude disturbances in
R,~1350. Downstream dR, = 1350 the amplitudes both for two dimensions. Therefore, two-dimensional conclusions
the maximum temperature amplitude and the wall pressurdrawn in Ref. 2 can be applied to the compression ramp, too.
remain smaller in the case with impinging shock. As it wasThese results are in accordance with earlier experimental ob-
already discussed in the linear stability theory section of thiservations and analytical concepts stating that the physics of
paper, amplification rates in the case with impinging shocksuch flows are not determined by the type of shock-boundary
are slightly damped near shock impingement, which resulttayer interaction, but rather determined by the flow-field
in smaller disturbance amplitudes as it can be seen in Figgroperties at the onset of interaction. However, a different
12 and 13 for both the direct numerical simulation and lineaibehavior between the compression ramp and the impinging
stability. However, compared to the nonparallel effectsshock might be expected in three dimensions and the nonlin-
present in the DNS solutions such differences are marginakar cases. In the ramp-flow streamline curvature is different
For instance, the predicted amplification of linear stabilitycompared to the impinging shock. Three-dimensional and
theory betweerR,= 1100 andR,= 1550 would be=7. This  nonlinear simulations could shed some more light on the
is far less than the actually observed amplification of theissue whether two-dimensional higher acoustic modes or
temperature maxima and the wall-pressure fluctuationghree-dimensional waves are the main route of transition in
which are~15 and~68, respectively. AR,=1625 the am- such flows. Such simulations should therefore be included in
plitude of the wall pressure is again very close to linear stafurther studies.
bility theory, because of considerable spatial variations.
For the temperature and the pressure With0.0001 at
R,=1350 wall-normal amplitude and phase distribution ACKNOWLEDGMENT
comparisons of direct numerical simulations of the ramp
flow with corresponding linear stability results are given in ~ The authors would like to thank thBeutsche For-
Fig. 14. The same distributions f&t,= 1550, which is far- schungsgemeinschafor supporting this research within
ther downstream and outside separation is shown in Fig. 1530nderforschungsbereich 238 the University of Stuttgart
For R,= 1350 the agreement of the amplitude and phase diand for computing time provided by the High Performance
tributions is significantly better compared R,=1550. In  Computing Center in Stuttga(HLRS).
the region upstream shock impingement, where disturbance
amplitudes are identical, amplitude and phase distributions
are identical as well and therefore not shown here. 1J. Ddery and J. G. Marvin, “Shock-wave boundary layer interactions,”
As it can be seen, disturbance amplitudes for the tem- AGARDograph 280(1986. ) o o
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