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Two-dimensional direct numerical simulations and linear stability theory investigations have been
carried out for a compression ramp at Ma54.8 and compared to earlier results of a laminar boundary
layer with impinging shock wave. The inflow parameters in both flows were identical; the ramp
angle of the compression corner was chosen to cause a separation bubble, which has exactly the
same length compared to the case with impinging shock. It turned out, that the two cases are almost
identical for the base flow properties. This is in accordance with similarity assumptions, e.g., free
interaction theory, which for smaller Reynolds numbers states, that the boundary layer should be
independent of the sort of shock-boundary layer interaction. However, linear stability theory results
differ near the corner and the impinging shock, respectively. Direct numerical simulations of
small-amplitude disturbances, which were introduced into the laminar boundary layer, also behave
in a very similar way. Amplitude distributions exhibit the same characteristics. The according
distributions of the ramp flow have slightly larger amplitudes than the case with impinging shock.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1738414#

I. INTRODUCTION

Shock boundary layer interaction is one major area of
concern in technical applications at trans-, super-, and hyper-
sonic speeds. As discussed in many publications over the last
decades, it can result in high aerodynamic loads, engine inlet
performance loss and increase of drag, to name only a few
examples. The base flow properties of shock-boundary layer
interactions for simple geometries, such as an impinging
shock wave on a flat-plate boundary layer, a forward or rear-
ward facing step and the compression ramp problem have
been thoroughly explained in the many publications. A good
summary can be found in Ref. 1. For a compression ramp the
following physical phenomena occur: The change in direc-
tion of the wall due to the ramp forces the boundary layer to
follow the contour, which causes a pressure gradient yielding
the boundary layer thickness to increase. Depending on such
parameters like the ramp angle, the Reynolds number, the
wall temperature conditions, and the boundary layer thick-
ness, a complicated system of compression waves occurs.
Provided the ramp angle is large enough, the boundary layer
separates. Compression waves form upstream from the cor-
ner, which is caused by an initial turn of the flow at separa-
tion. Well outside the boundary layer, those coalesce to the
separation shock. At reattachment, additional compression
waves are present, which merge with the separation shock.
Another possible scenario is the formation of a reattachment
shock before the compression waves reach the separation
shock. The two shocks will then meet at the so-called triple
or bifurcation point. Although the base flow properties have
been intensively studied, much less is known about the tran-
sitional behavior of such flows with shock-boundary layer
interaction. In one of our recent papers we discussed the

transitional behavior for a Ma54.8 boundary layer with im-
pinging shock and small amplitude disturbances.2 In the
present paper, we will compare the results obtained in Ref. 2
with a compression ramp flow. The flow parameters of the
ramp flow calculations correspond to the parameters used in
Ref. 2. The ramp angle was chosen to induce a separation
bubble which has the same length at the wall compared to
the separation bubble in the case with impinging shock in
Ref. 2. Early experimental results, such as experiments re-
ferred to in Ref. 1 and, more recently in Ref. 3 indicated that
flows with shock-boundary layer interaction do behave in a
similar manner in major parts, independent of the cause of
separation~impinging shock, ramp or step!. This led to the
derivation of some correlation laws, which are known as the
free interaction concept.1 These similarity assumptions were
the motivation for the present investigations. We wanted to
study, whether this also holds for controlled, unsteady distur-
bance behavior, which, if the answer is yes would be helpful
because according results obtained for the flat plate2 could be
applied to the compression corner in a quantitative manner
and vice versa. However, related publications are not known
to the authors. Within this paper, a two-dimensional
compression-ramp boundary layer with small-amplitude dis-
turbances is investigated numerically both with compressible
linear stability theory4 and direct numerical simulation.

II. NUMERICAL SCHEME

A. Governing equations, disrcretization, initial and
boundary conditions

Linear stability theory investigations are based on the
scheme developed by Mack4 using local velocity and tem-
perature profiles extracted from the direct numerical simula-
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tion of the base flow calculation.2 The numerical scheme
used for the direct numerical simulation is based on the com-
plete two-dimensional Navier–Stokes equations in conserva-
tive formulation. The description of the numerical scheme in
this paper will be very limited regarding features already
presented earlier.2,5

For the simulations with a compression corner, a
boundary-fitted grid in the physicalx–y space is needed to
properly represent the geometry, which has to be mapped
onto an equally spaced and equidistant grid in the numerical
j–h space~see Fig. 1!. This has been achieved by an appro-
priate transformation of the Navier–Stokes equations, ac-
cording to the scheme presented in Ref. 6. The derivatives in
the streamwise direction now become
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Second derivatives are implemented by applying the first de-
rivative twice. The transformed flux vectors are then
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in wall-normal direction, respectively.F and G are the flux
vectors of the original, untransformed Navier–Stokes equa-
tions. The transformed, conservative solution vector is given
by
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with Q as the solution vector of the untransformed Navier–
Stokes equations, where
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is the determinant of the Jacobi matrix. The transformed
Navier–Stokes equations in numerical space are then

]Qt

]t
1

]Ft

]j
1

]Gt

]h
50. ~7!

High-order compact finite differences in split-type for-
mulation are used for streamwise derivatives, while in wall-
normal direction high-order finite differences are applied for
convective and central differences for viscous terms. Time
integration is performed with a standard fourth-order accu-
rate Runge–Kutta scheme. In contrast to the simulations with
impinging shock in Ref. 2 it was not necessary to apply a
filter7 in the ramp case. Because a shock wave impinging on
the boundary layer is not present, gradients of the flow quan-
tities in the streamwise direction are not as high as in Ref. 2.
The inflow boundary variables and the wall temperature are
held constant. In the untransformed scheme, the wall pres-

FIG. 1. Physical~upper figure! and
numerical grid~lower figure! typically
used in our simulations.
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sure is calculated from thev-momentum equation.8 In the
transformed case, derivatives in both thej and h direction
are present in thev-momentum equation,

J
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In the general case, the wall pressure has to be calculated
implicitly, because derivatives in both thej andh direction
are present, as it can be seen in Eq.~8!. However, a grid with
the metric coefficient]x/]h50 simplifies the wall-pressure
calculation, so it can be calculated in an analogous manner as
in the untransformed case. Therefore, the grids used for cal-
culations presented within this paper are generated accord-
ingly.

The boundary layer is perturbed by simulated blowing
and suction at a disturbance strip on the wall. At the outflow
boundary, flow variables are calculated with the Navier–
Stokes equations neglecting second derivatives. First deriva-
tives are obtained by a second-order backward difference. At
the beginning of the simulation, a laminar flow obtained by
the compressible boundary layer equations is specified

within the whole integration domain. Velocities, energy, vis-
cosity, density, and the temperature are normalized with their
respective free stream values, the pressure and energy by the
dynamic pressurer *̀ u*̀ 2, specific heat coefficientscv andcp

with u*̀ 2/T*̀ . Dimensional variables are labeled with an as-
terisk. In the streamwise direction, the square root of the
local Reynolds numberRx5Ax Re is used as a measure for
the streamwise location on the body, with the global Rey-
nolds number Re5100 000. From this global Reynolds num-
ber Re5r*̀u*̀L/m*̀ a length scaleL is obtained.L normalizes
lengths such as the streamwise and wall-normal coordinates
x5x* /L and y5y* /L. For temperatures above the Suther-
land temperature viscositym5m* /m *̀ is calculated by Suth-
erland’s law, below the relationm* /m *̀ 5T* /T*̀ is used.

B. Computation of the grid

Our formulation of the grid is based on the analytical
function presented in Ref. 9. We have

y5a•S x1
ln@cosh~c~x2xc!!#

c
2

ln@cosh~c•xc!#

c D1Y, ~9!

with Y50 at the wall andY5y1 for y5` at the inflow
boundary.xc is the streamwise coordinate of the corner, and
c describes the magnitude of the radius at the corner and at
the free stream, respectively. For a ramp anglef,

tan~f!5
y~x5Lgr!

Lgr2xc
, ~10!

a is given by the relation

a52
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2c•Lgr2 ln$cosh@c~Lgr2xc!#%1 ln$cosh@c•xc#%
.

~11!

FIG. 2. Density fields for the case
with impinging shock wave~upper
figure! and the compression ramp
~lower figure!. Darker shadings indi-
cate higher density. Note that figures
are stretched in they direction.

TABLE I. Relevant grid parameters used in simulations.

Case M3N Dy Dx

Standard 30131201 0.005 25 0.035 6999
Finer Dx 30132401 0.005 25 0.017 849 95
Finer Dy 60131201 0.002 625 0.035 6999
Higher domain 60131201 0.005 25 0.035 6999
Impinging shock,s514° 3013 801 0.005 25 0.035 6999
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Lgr is the length of the integration domain. In streamwise
direction, we have

x5x01j. ~12!

Equation~9! is solved both at the wall (yw) and at the
free-stream boundary (y`). Values are then interpolated be-
tween the upper and lower boundary for the whole field,

x~j,h!5~12r ~h!!•xw~j!1r ~h!•x`~j! , ~13!

y~j,h!5~12r ~h!!•yw~j!1r ~h!•y`~j! . ~14!

Interpolation in the wall-normal direction is calculated expo-
nentially,

r ~h!5
e~d•h8!21

ed21
, h85

h

~M21!Dh
. ~15!

The variabled specifies the magnitude of stretching in
the wall-normal direction. Within the simulations presented

here, an equidistant grid in both streamwise and wall-normal
direction has been chosen (d→0), which is shown in Fig. 1.
Therefore,Dx5Dj andDy5Dh. In our simulations, we use
f56°, xc518.33, at the wallcw510, at y5` c`50.5, d
50.05. Other relevant parameters of our simulations are
given in Table I.M /Dy and N/Dx are the number of grid
points/step sizes in theh andj direction, respectively.

III. RESULTS

A. Base flow

In the following, results for the compression ramp will
be shown and compared to the flat-plate boundary layer with
impinging shock. In both cases, the free stream Mach num-
ber is Ma54.8, free-stream temperatureT`555.4 K and the
wall temperature is held constant atTw5270 K. For the case
with impinging shock on the flat plate the shock angle with
respect to the wall iss514°. For this case results were al-

FIG. 3. Comparison of the density
fields of the case with impinging
shock in physical space to the com-
pression corner in computational
space.

FIG. 4. Skin friction coefficient distri-
bution cf versus square root of local
Reynolds numberRx . Comparison of
case with impinging shock~solid line!
and compression corner~dotted lines!.
Also given are results of grid-
refinement/enlargement studies of the
ramp flow~dotted lines with symbols!.
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ready published in Ref. 2. The ramp angle with respect to the
horizontal direction isf56°. As a first approximation for
turbulent boundary layers a corner angle, half the angle of
the impinging shock, gives a similar wall-pressure distribu-
tion in both cases, according to Ref. 3. The ramp angle of
f56° was obtained by iteratively changing the wedge angle
until maximum agreement with respect to the skin friction
distribution. In Fig. 2 the density field for both cases is
given. Also shown are selected streamlines, which visualize
the flow in the free stream and in the boundary layer, where
a separation bubble can be observed in both cases. It will be
shown in the following, that the two flows are very similar.

When the flow field in the ramp case downstream of the
corner is mapped on the flat plate, which means a rotation
with its negative ramp angle the resulting flow field matches
with the case with impinging shock. In Fig. 3 such a con-
struction is given for the two density fields. As it can be seen,
the two density fields look very similar except for the im-
pinging shock and its reflection as an expansion wave at the
sonic line, which is not present in the compression corner.
The contour levels of both configurations agree quantita-
tively. For all other flow variables the results compare
equally well.

We now take a closer look at the skin friction distribu-
tions, which are given in Fig. 4. It can be seen, that the skin

friction of the compression ramp perfectly matches the skin
friction of the case with impinging shock. Also shown in Fig.
4 are results of grid-refinement/enlargement studies~dotted
lines with symbols, according to the legend!. They prove the
grid independency of our simulations. According results for
the case with impinging shock can be found in Ref. 2.

In Fig. 5 u-velocity profiles at three locationsRx are
compared for the ramp and the case with impinging shock.
Profiles forRx51000 are identical. Near and at the wall the
other velocity profiles agree very well with each other, even
inside the separation bubble atRx51350. However, farther
from the wall the profile atRx51700 has slightly lower ve-
locity in the case of the impinging shock, while atRx

51350 it is the opposite.
Figure 6 compares the wall-pressure distribution of both

cases. As for the skin-friction distribution, the wall pressure
is identical for both types of shock-boundary layer interac-
tion.

Thus the base flow calculations presented here are in full
agreement with free-interaction theory, which says, that the
boundary layer behavior in shock-boundary layer interaction
should be largely independent of its origin. This holds even
quantitatively, as it can be seen in the present comparisons.

FIG. 5. Streamwise velocity components of base flow
at three consecutive locationsRx51000,Rx51350, and
Rx51700. Here, the wall is aty50.

FIG. 6. Wall-pressure distribution ver-
sus square root of local Reynolds
numberRx . Comparison of case with
impinging shock~solid line! and com-
pression corner~dotted lines with
symbols!.
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FIG. 7. Linear stability theory results.
Disturbance frequencyF versus local
Reynolds numberRx . Darker shad-
ings indicate larger amplification rates
a i . White represents negative/neutral
amplification.

FIG. 8. Eigenfunctions of the primi-
tive flow variables atRx51350. Dis-
turbance frequencyF50.0001.

FIG. 9. Wall-normal phase distribu-
tionsF of the primitive flow variables
at Rx51350. Disturbance frequency
F50.0001.
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B. Linear stability theory

We now compare compressible linear stability theory re-
sults obtained from investigations of the impinging shock
with the compression ramp. Our linear stability theory results
are based on the scheme developed by Mack.4 Nonparallel
effects are not taken into account here. The streamwise ve-
locity and temperature profiles, which are used by linear sta-
bility theory, were extracted locally from the direct numeri-
cal simulations of the base flow as those shown in Fig. 5.
Figure 7 compares the stability diagrams obtained by linear
stability theory for the two cases.F5(2p f * L)/(u*̀ Re) is
the disturbance frequency, darker shadings indicate larger
amplification ratesa i5(2] ln(A(x)/A0))/]x. As it can be
seen, the two figures are virtually identical. Due to the influ-
ence of the shock, the first instability mode4 is stabilized and

the second mode4 is destabilized and locally shifted to lower
frequencies. New instabilities at higher frequencies are
formed, nearRx51350 andF50.000 12.

Some differences in Fig. 7 are present aroundRx

'1350, which is very close to the location of the corner and
shock impingement on the boundary layer, respectively. To
take a closer look at the disturbance behavior there, eigen-
functions and phase distributions atRx51350 are compared
in Figs. 8, 9, 10, and 11 at three disturbance frequenciesF
50.0001,F50.000 05, andF50.000 12, respectively. Here,
h5y Re/Rx represents the wall normal coordinate. From the
pressure eigenfunction and its corresponding phase distribu-
tion for F50.0001 in Figs. 8 and 9, respectively, it can be
seen that the stability regime atRx51350 with F50.0001
belongs to a second mode, because the pressure eigenfunc-

FIG. 10. Pressure, temperature eigenfunction and cor-
responding phase distribution atRx51350. Disturbance
frequencyF50.000 05.

FIG. 11. Pressure eigenfunction and phase distribution
at Rx51350. Disturbance frequencyF50.000 12.
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tion has one zero4 in both cases. Eigenfunctions for the ve-
locity componentsu andv and the pressurep quantitatively
match. In the case with the compression ramp, the distribu-
tions for the temperatureT and densityr have larger absolute
maxima compared to the case with impinging shock. How-
ever, the characteristics of the eigenfunctions are identical, as
well.

The phase distributions in Fig. 9 all show very good
quantitative agreement.

In both the cases with compression ramp and impinging
shock we have a second mode-type disturbance atRx

'1350 andF50.0001. However, in the case with shock it is
damped, while in the case of the compression corner it is
amplified. The impinging shock seems to stabilize the flow in
this regime.

Eigenfunctions and phase distributions for the pressure
and temperature disturbances atF50.000 05 are given in
Fig. 10. Qualitatively, the characteristics of the curves for the
compression corner match the case with impinging shock.
However, quantitative agreement is worse than forF
50.0001 in Figs. 8 and 9. The pressure eigenfunctions and
phase distributions indicate, thatF50.000 05 atRx51350
belongs to a second-mode instability like in the case with
F50.0001.

The newly formed disturbances, caused by the shock-
boundary layer interaction at higher frequencies are of third-
mode type. This can be inferred from the pressure eigenfunc-
tion, which has two zeros, and its corresponding phase
distribution in Fig. 11. Higher mode instabilities, such as
second and third modes, can be characterized as acoustic
waves.4 Differences between the ramp flow and the case with

impinging shock are also larger than in Figs. 8 and 9, com-
parable to the case withF50.000 05 in Fig. 10.

C. Direct numerical simulations of small-amplitude
disturbances

We now compare direct numerical simulations of small-
amplitude disturbances. Because the two base flows are not
identical in all aspects, i.e., there is no impinging shock and
reflected expansion wave in the compression corner and cur-
vatures of streamlines in physical space are different~see
Fig. 2!, differences between the two configurations might
exist, which are not taken into account by linear stability
theory. Therefore, a more detailed investigation with direct
numerical simulation is appropriate. Figures 12 and 13 show
the maximum temperature disturbance amplitudes and the
wall pressure amplitudes versus the downstream coordinate,
respectively. For the direct numerical simulations, they were
obtained by a Fourier analysis of the flow variables over one
disturbance period. The wall pressure and temperature were
chosen here because of results obtained in Ref. 2. These two
quantities have the largest and smallest nonparallel effects of
all primitive flow variables in our simulations. Nonparallel
effects highly influence the disturbance behavior, which was
quantified in Ref. 2.

The differences between the amplitudes of the direct nu-
merical simulation and linear stability, which can be seen in
Figs. 12 and 13, were identified and quantified as an effect of
nonparallelism for the case with impinging shock in Ref. 2.
The strongest nonparallel effects appear in the maximum
pressure disturbance, shown in Fig. 13. Disturbance behavior

FIG. 12. Maximum temperature dis-
turbance amplitudes of both direct nu-
merical simulations and integrated am-
plification rates from linear stability
theory versusRx .

FIG. 13. Maximum pressure distur-
bance amplitudes of both direct nu-
merical simulations and integrated am-
plification rates from linear stability
theory versusRx .
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FIG. 14. Comparison of wall-normal amplitude and
phase distributions for the ramp with corresponding lin-
ear stability results. Shown are temperature and pres-
sure distributions.Rx51350,F50.0001.

FIG. 15. Comparison of wall-normal amplitude and
phase distributions for the ramp with corresponding lin-
ear stability results. Shown are temperature and pres-
sure distributions.Rx51550,F50.0001.
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of the case with impinging shock and the compression ramp
look very similar for both the direct numerical simulation
and linear stability. It is identical until shock impingement at
Rx'1350. Downstream ofRx51350 the amplitudes both for
the maximum temperature amplitude and the wall pressure
remain smaller in the case with impinging shock. As it was
already discussed in the linear stability theory section of this
paper, amplification rates in the case with impinging shock
are slightly damped near shock impingement, which results
in smaller disturbance amplitudes as it can be seen in Figs.
12 and 13 for both the direct numerical simulation and linear
stability. However, compared to the nonparallel effects
present in the DNS solutions such differences are marginal.
For instance, the predicted amplification of linear stability
theory betweenRx51100 andRx51550 would be'7. This
is far less than the actually observed amplification of the
temperature maxima and the wall-pressure fluctuations,
which are'15 and'68, respectively. AtRx51625 the am-
plitude of the wall pressure is again very close to linear sta-
bility theory, because of considerable spatial variations.

For the temperature and the pressure withF50.0001 at
Rx51350 wall-normal amplitude and phase distribution
comparisons of direct numerical simulations of the ramp
flow with corresponding linear stability results are given in
Fig. 14. The same distributions forRx51550, which is far-
ther downstream and outside separation is shown in Fig. 15.
For Rx51350 the agreement of the amplitude and phase dis-
tributions is significantly better compared toRx51550. In
the region upstream shock impingement, where disturbance
amplitudes are identical, amplitude and phase distributions
are identical as well and therefore not shown here.

As it can be seen, disturbance amplitudes for the tem-
perature and phase distributions for both the temperature and
the pressure show good agreement with linear stability
theory. The pressure eigenfunction, however, has lower
maxima than the corresponding amplitude distribution of the
direct numerical simulation. This apparently is due to non-
parallel effects. It is fully in line with the streamwise ampli-
fications observed in Figs. 12 and 13, since the wall pressure
becomes much larger compared to linear stability theory than
the absolute temperature maximum. Results of the case with
impinging shock are not repeated here, because they behave
in a similar manner like in the linear stability section~see
Figs. 8 and 9! regarding their agreement with the ramp case.

IV. CONCLUSION AND FUTURE POINTS OF
INTEREST

It was shown, that the boundary layer under the influ-
ence of an impinging shock and along a compression ramp

are practically identical. This holds for the base flow, linear
stability theory, and direct numerical simulations of distur-
bance amplification with small-amplitude disturbances in
two dimensions. Therefore, two-dimensional conclusions
drawn in Ref. 2 can be applied to the compression ramp, too.
These results are in accordance with earlier experimental ob-
servations and analytical concepts stating that the physics of
such flows are not determined by the type of shock-boundary
layer interaction, but rather determined by the flow-field
properties at the onset of interaction. However, a different
behavior between the compression ramp and the impinging
shock might be expected in three dimensions and the nonlin-
ear cases. In the ramp-flow streamline curvature is different
compared to the impinging shock. Three-dimensional and
nonlinear simulations could shed some more light on the
issue whether two-dimensional higher acoustic modes or
three-dimensional waves are the main route of transition in
such flows. Such simulations should therefore be included in
further studies.
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