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ABSTRACT 

In the present work, a flow field with a free-stream Mach number Ma=6 is computed, where an oblique 
shock entering the integration domain from the free stream hits a two-dimensional laminar boundary 
layer causing a laminar separation bubble.  Then the instability of the flow with respect to small-
amplitude two- and three-dimensional disturbance waves is investigated using linear stability theory 
(LST) and direct numerical simulations (DNS).  In order to get an idea about the contributions of non-
linear disturbances different scenarios with large-amplitude forcing are compared to each other, and their 
effect on the mean-flow is discussed.  In all investigated cases the transition mechanism is found to 
provide initial amplitudes for an ensuing Görtler-type instability in the reattaching boundary layer which 
then grow irrespective of their origin. 

1.0 INTRODUCTION 

Laminar-turbulent transition in super- and hypersonic boundary layers does not only have strong influence 
on wall-shear stresses and heat flux, but also on other flow phenomena like shock-wave/boundary-layer 
interaction and flow separation, and can therefore influence the global flow field and the aerodynamic 
drag substantially.  Shock-wave/boundary-layer interaction itself is one major area of concern in technical 
applications at hypersonic speeds.  It can result in high aerodynamic loads, engine inlet performance loss 
and increase of drag, to name only a few examples [1], [4].  For air-breathing propulsion systems of the 
lower stage of space vehicles a thin laminar boundary layer on the fore body, designed to compress the air 
before the flow enters the engine intake, is clearly favourable. 
 Direct Numerical Simulations (DNS) of high-order accuracy and resolution performed on 
supercomputers can enable new and deep insights into fundamental small-scale or high-frequency flow 
phenomena like the transition process.  An example is the simulation of the physically unstable, dynamical 
processes during laminar-turbulent transition in a shock-induced laminar separation bubble.  However, in 
order to control the process for a better study of its mechanisms and a better understanding, it is necessary 
to trigger laminar-turbulent transition by a well-defined disturbance input.  This mimics so-called 
controlled experiments where the background disturbance level of the experimental facility is extremely 
low and special disturbance devices are used. 

2.0 NUMERICAL METHOD 

The simulations presented here allow the investigation of the spatial instability and the laminar-turbulent 
transition of supersonic boundary-layer flows along a flat plate or a sharp cone, respectively.  Time-wise 
periodic two- and three-dimensional disturbance waves with defined frequency and amplitude are 
triggered in a two-dimensional, laminar and steady-state base flow.  The reactions of the base flow to these 
disturbances, i.e. the downstream evolution of the excited disturbance waves, is simulated within the 
integration domain by numerical solution of the complete, three-dimensional, unsteady, compressible 
Navier-Stokes equations supplemented by the continuity and energy equation: 
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is the viscous stress and 
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is the internal energy per mass unit.  The fluid is considered as a non-reacting, perfect gas, for which the 
equation of state 
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is valid.  The thermodynamic properties of the fluid are approximated as a calorically perfect gas with 
specific heats cP, cV and a Prandtl number Pr=0.71 which are assumed constant with the specific heat ratio 
κ=cP/cV=1.4.  For temperatures above the Sutherland temperature Ts = 110.4 K the dynamic viscosity µ is 
determined from Sutherland’s law and the thermal conductivity ϑ  is set proportional to the viscosity.  For 
lower temperatures µ is set proportional to T. 
 In the following, lengths are non-dimensionalized by a reference length L, which appears in a 
global Reynolds number Re=ρ∞⋅u∞⋅L/µ∞=105.  A second Reynolds number used here is Re⋅= xRx .  
Time t is normalized by L/u∞.  The specific heat cV  is normalized with u2

∞/T∞.  Flow quantities with 
subscript ∞ denote free-stream values.  Density, temperature and viscosity are also non-dimensionalized 
with their respective free-stream values. 
 We assume a numerical grid with N⋅M grid points in streamwise (x) and wall-normal direction (y), 
as well as K harmonics in spanwise direction (z).  In streamwise direction the solution has a wave 
character in the presence of disturbance waves, which are either amplified or damped.  Compact finite 
differences are able to resolve this kind of solution in an appropriate manner.  They are applied here in a 
split-type form [8].  This form has some damping characteristics with respect to small-scale oscillations. In 
wall-normal direction standard finite differences of fourth-order accuracy are used.  Split-type differences 
are used to calculate convective terms, while viscous terms are computed by central differences.  In 
spanwise direction periodic boundaries allow a spectral approximation with Fourier expansion.  Time 
integration is performed with a standard 4-step Runge-Kutta scheme of fourth-order accuracy.  
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 The numerical simulation starts with computing a laminar base flow which satisfies the basic 
equations in steady, two-dimensional form, using pseudo time-stepping for integrating the time-dependent 
equations to a steady state.  This base flow constitutes the initial condition for the disturbance calculation 
at t=0.  Then, for t>0, disturbances are introduced, and the real-time downstream development of the 
disturbance waves is calculated solving the full equations.  For this purpose the method of disturbance 
flow formulation is used, i.e. each flow quantity is decomposed into its base flow and disturbance part 
( 'φφφ += B ).  It is assumed that there is no alteration of the base flow in time.  Note that any change of 
the time-mean of the flow is represented by 0' ≠φ , thus there is no linearization. 
 The inflow variables result from calculations of the compressible boundary layer equations [1], [5] 
and are held constant during simulation, i.e. disturbances are zero at the inflow boundary for all time.  At 
the outflow boundary, base-flow field variables are calculated neglecting second streamwise derivatives.  
Disturbance values are treated using a buffer domain [9] where all values are smoothly damped to zero in 
order to avoid reflections from the boundary. 
 At the wall, the no-slip condition and vanishing normal velocity component are assumed.  
Disturbances are introduced within a disturbance strip located at the wall by varying the wall-normal 
momentum disturbance (ρv)’ simulating periodic blowing and suction.  A thorough description of the 
disturbance function applied can be found in [5] and [12].  The wall-temperature can be modeled as 
constant (TB = const, T’ = 0), adiabatic (∂T/∂y=0) or radiation-adiabatic (see [5]). 
 At the free-stream boundary, the shock is prescribed using flow variables computed form the 
Rankine-Hugoniot relations for a chosen shock angle.  Thus, for several grid-points up- and downstream 
of the shock the flow variables are held constant.  For the remaining boundary points a characteristic 
boundary condition [5] is applied for the base flow calculation.  As a result, a steady shock establishes 
itself within the flow field during calculation of the base flow (see next section). 
 For the disturbance calculations, a non-reflecting boundary condition according to [15] is used at 
the free-stream boundary.  For a more thorough description of the numerical scheme see [5].  All 
simulations have been performed on the supercomputers NEC SX-4 and SX-5 of the high performance 
computing center Stuttgart, HLRS, which are perfectly capable of dealing with the complex and 
challenging computations. 

3.0 RESULTS 

3.1 Base Flow Properties 
In the following, laminar boundary layers at a free-stream Mach number Ma = 6.0, free stream 
temperature T∞ = 78 K and two different wall-boundary conditions are considered: an isothermal one 
where the wall temperature is held constant at Tw = 300 K, and the adiabatic condition, respectively.  In 
the latter case the wall temperature establishes itself between 547 and 560 K.  Thus, compared to the 
adiabatic case, the isothermal wall is cooler.  Later, this will have some consequences on the instability of 
the boundary layer.  The oblique shock enters the domain through the free-stream boundary at an angle 
with respect to the wall of σ = 12o. 
 The density field for the case with adiabatic wall is shown in Fig. 1 together with some selected 
streamlines in the central region of the flow field.  The latter visualize the flow directions in the free 
stream and inside the boundary layer, where a rather large separation bubble can be observed.  The 
pressure gradient of the impinging shock thickens the boundary layer such that, due to the displacement of 
the flow, compression waves are formed up- and downstream of shock-impingement.  Provided the shock 
is strong enough, the boundary layer separates.  Further away from the boundary layer, the compression 
waves near separation and reattachment will merge into the separation- and reattachment-shock, 
respectively, but this region lies outside of the present domain.  On its way into the boundary layer, the 
impinging oblique shock steepens until it reaches the sonic line from where it reflects as an expansion fan. 
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Figure 1:  Density field (top) and streamlines (bottom) of the base flow.  Rx = (100000 x)1/2.  Note: 

the angle of the impinging shock with respect to the horizontal is σ = 12o 

 In Fig. 2 the skin friction coefficients for both cases with different wall boundary conditions are 
compared to each other.  Separation and reattachment are characterized by zero wall friction and inside the 
separation bubble the wall friction is negative.  The separation bubble of the adiabatic case turns out to be 
twice as large as in the wall-cooling case.  Additional simulations with halved step-sizes in x or y direction 
prove the grid-independence of these results. 
 

 
Figure 2:  Comparison of skin friction coefficients for the computations with constant wall 

temperature (—   —) and adiabatic wall boundary condition (——) 

 The different wall-pressure distributions are compared in Fig. 3 confirming the wall-temperature 
dependent bubble lengths.  The pressure rise imposed by the shock splits into an ‘upstream’ and a 
‘downstream’ region (relative to shock impingement), a typical feature of shock/boundary-layer 
interaction.  Downstream of the interaction zone the wall pressure remains somewhat lower in the 
adiabatic case. 
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Figure 3:  Comparison of wall pressures for the computations with constant wall temperature 

and adiabatic wall boundary condition 

 Although the base flow properties have been intensively studied, much less is known about the 
transitional behavior of such flows with shock-wave/boundary-layer interaction.  Transition to turbulence 
is of high significance in practical hypersonic flows.  Depending on the flight state, the transition zone can 
have a comparable length with respect to the fully turbulent flow on the body of a vessel [1].  Also, 
temperature disturbance peaks can reach even higher values than in turbulent flow, which has to be 
considered in structural design.  Therefore, we will investigate the instability and amplification with 
respect to small-amplitude disturbances in the next section. 

3.2 Small-Amplitude Disturbance Behavior 
We now compare compressible linear stability theory results (for two-dimensional disturbances only) 
obtained from investigations of both above base-flow configurations first without, then with the impinging 
shock.  Our linear stability theory results are based on the scheme developed by Mack [7].  Non-parallel 
base-flow effects are not taken into account here.  The stream-wise velocity and temperature profiles, 
which are used by linear stability theory, were extracted locally from the direct numerical simulations of 
the base flow.  Figure 4 compares the stability diagrams of the hypersonic boundary layers without shock 
impingement but otherwise the same boundary conditions as specified above.  The normalized frequency 
F is defined by 

 F = (2 ⋅π⋅f*⋅L)/(u*∞⋅Re), (7) 

and the amplification rates by 

 xAxAi ∂−∂= /))/)(ln(( 0α , (8) 

where A(x)/A0 refers to an amplitude ratio with respect to an initial amplitude of an arbitrary flow variable.  
The dimensional disturbance frequency is denoted by f*.  All variables with an asterisk * and the reference 
length L are dimensional. 
 As it can be seen, the cooled wall (Tw = 300 K) has a narrower domain of instability (with respect 
to frequency) but considerably larger amplification rates.  The according disturbances are of the so-called 
second mode kind (according to Mack [7]).  Hence the instability region at low frequencies in the 
adiabatic case belongs to the first mode, whose according three-dimensional disturbances are more 
amplified than the two-dimensional ones in the present figure.  Changes due to the impinging shock 
become apparent in Fig. 5.  Darker gray levels in comparison with the previous figure indicate that the 
amplification rates have increased.  However, the influence of the oblique shock on the stability diagrams 
is rather local.  For instance, the first-mode instability is completely suppressed in the region of 
shock/boundary-layer interaction in the adiabatic case.  Two other apparent features are the shift of the 
unstable modes towards lower frequency and the simultaneous appearance of higher modes.  The latter 
have been identified as such by additional zeros in the corresponding eigenfunctions [11]. 
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Figure 4:  Stability diagrams (amplification rates) of LST for the two flat-plate boundary layers 
without shock/boundary-layer interaction 

 

 

Figure 5:  Stability diagrams (amplification rates) of LST for the flat-plate boundary layers with 
impinging shock 
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 The overall amplification of disturbances at some selected frequencies can be judged from the so-
called “N-factors”, i.e. 

 ∫ ⋅−==
x

x i dxAxAxN
0

0/)(ln)( α  (8) 

These are shown first for the isothermal and the adiabatic boundary layers without shock interaction in 
Fig. 6, then for those with shock/boundary-layer interaction in Fig. 7.  In the no-shock case the largest 
integral amplification occurs for the frequency F=10-4.  It amounts to e2.5 ≈ 12 which is not exceedingly 
large what in turn confirms the higher linear stability of the hypersonic boundary layer compared to flows 
at lower Mach numbers.  However, in the case of the shock-induced separation the maximal amplification 
rises to e4-e6 ≈ 55 - 400 which is quite remarkable.  But strong amplification is confined to a narrow range 
of frequencies, and most of it occurs well after the shock/boundary-layer interaction region because of the 
increased second-mode instability there, especially for the isothermal wall, cf. Fig. 5.  Compared to the no-
interaction cases the amplification is much more frequency dependent such that curves for nearby 
frequencies can exhibit considerable qualitative differences.  In the adiabatic case, where the larger 
separation bubble has been found above, the most amplified frequency remains closer to the one in the no-
interaction case.  For the following comparisons with DNS we have selected this frequency F = 10-4 as a 
basis. 

 

Figure 6:  Amplification curves according to linear stability theory for selected frequencies for 
the flat-plate boundary layer without shock interaction 

3.3 Larger-Amplitude Disturbance Behavior 
We now turn to the development of larger disturbances yielding non-linear behavior.  In the following 
(h, k) represents a mode of the frequency/spanwise-wave-number spectrum, where h and k denote 
multiples of the fundamental disturbance frequency and spanwise wave number, respectively.  For the 
cases presented here, a fundamental frequency F = 10-4 is chosen and the spanwise wavenumber is set to 
β = 10.4. 
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Figure 7:  Amplification curves according to linear stability theory for selected frequencies in the 
cases with shock/boundary-layer interaction 

 Here, the amplitude of the primary disturbances was set to its maximum possible level (for the 
present implementation of the disturbance strip at the wall) and non-linear generation of higher harmonic 
modes as well as non-linear interactions between different modes are to be expected.  Three basic 
scenarios have been simulated for both base flows introduced above.  In the following, however, results 
for the adiabatic wall boundary condition are shown only, because of the higher disturbance amplification 
for F = 10-4 there, compared to the isothermal case (cf. previous section).  Basic cases have been selected 
in order to have some guidance through the many possible non-linear interactions.  For a hypersonic 
boundary layer two such mechanisms are feasible.  They consist either of interactions of a large-amplitude 
two-dimensional second-mode disturbance with small three-dimensional ones or of the direct interaction 
of a pair of oblique waves.  In the literature the former is called “secondary instability” [6] while the latter 
is called “oblique breakdown” [14].  Two generic cases of secondary instability are considered, one where 
the three-dimensional secondary disturbance has subharmonic frequency (i.e. F/2) with respect to the 
fundamental and one where both have the same frequency (F). 
 The downstream development of the temperature fluctuation maxima for these two cases are 
displayed in Figs. 8 and 9, respectively.  They are a characteristic measure for the disturbance 
amplification A/A0 [12].  The boundary layer without shock/boundary-layer interaction is always given for 
reference, its results are marked with symbols in the following figures.  By definition, the dominant 
disturbance for these two scenarios is always the fundamental two-dimensional mode (1, 0).  Followed by 
(1/2, 1) or (1, 1) in one or the other.  A sudden growth of these modes due to a non-linear interaction with 
the fundamental can only be observed at the very downstream end of the integration domain, i.e. 
downstream of the shock/boundary-layer interaction zone.  Apparently, the two-dimensional disturbance 
amplitude is not large enough inside the bubble and the conditions for resonance are only met after the 
additional growth that appears when the primary disturbance enters the instability region behind the 
bubble (cf. Fig. 7).  Compared to the subharmonic case the fundamental three-dimensional disturbance 
grows earlier but not necessarily to a higher level. 
 Higher-harmonic modes which are non-linear products of the initial disturbances are also shown.  
They exhibit the largest differences with respect to the reference cases without shock.  The according 
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steady three-dimensional temperature disturbances of modes (0, 2) or (0, 1) grow to two orders of 
magnitude larger values!  Without shock/boundary-layer interaction this is clearly not the case.  Further 
down we will look at these steady three-dimensional disturbances in more detail. 

 

Figure 8:  Comparison of amplitude growth of selected modes (h, k) for the adiabatic boundary 
layers with shock/boundary-layer interaction and without (lines with symbols) in the case of 

subharmonic secondary instability 

 

Figure 9:  Comparison of amplitude growth of selected modes (h, k) for the adiabatic boundary 
layers with shock/boundary-layer interaction and without (lines with symbols) in the case of 

fundamental secondary instability 
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 Results of the third non-linear basic scenario, the “oblique breakdown”, are displayed in Fig. 10.  
Now, two oblique waves (1, 1) and (1, -1) interact with each other.  Because of symmetry, it is sufficient 
to display modes (h, +k) i.e. without their symmetric counterparts (h, -k).  The fundamental mode (1, 1) is 
represented by a solid line, the directly generated modes (0, 2) and (1, 3) by dashed and dash-dotted lines, 
respectively.  Again, the reference case without shock is represented by the according lines with squares. 

 

Figure 10:  Comparison of amplitude growth of selected modes (h, k) for the adiabatic boundary 
layers with shock/boundary-layer interaction and without (lines with symbols) in the case of 

oblique wave interaction 

 It turns out that the disturbance amplitudes in case of shock-wave/boundary-layer interaction 
strongly exceed the amplitudes of the clean flat-plate flow.  Compared to the primary two-dimensional 
disturbances in the previous cases the primary amplification of the three-dimensional (also a second mode 
according to Mack) is much weaker now which agrees with linear stability theory (not shown here).  
Increased amplification of mode (1, 1) due to shock/boundary-layer interaction thus becomes much more 
apparent than before.  All higher harmonics grow increasingly faster because they are related to the non-
linear products of the primary disturbances.  The three-dimensional steady disturbance (0, 2) grows by two 
orders of magnitude, as in the other cases above.  Here, however, it grows to larger amplitudes than the 
primary modes (1, 1).  Conversely to further above, mode (0, 2) is a characteristic feature of “oblique 
breakdown” already in the subsonic range [14].  Its initial growth is related to the square of the growth rate 
of the primary disturbance.  Once generated, however, it can overshoot the primary due to a transient 
growth mechanism often associated with a so-called “lift-up effect” of the boundary layer by the wall-
normal velocity disturbance it generates [14].  Here, in the case of the boundary layer without shock this 
does not occur.  Only when shock/boundary-layer interaction is present the three-dimensional steady 
disturbance grows considerably.  Its rather unexpected growth in all cases with shock/boundary-layer 
interaction investigated here, supports earlier speculations that all this is due to a Görtler instability 
because of convex streamline curvature in connection with the shock-induced separation bubble at the 
wall.  Indeed, such streamlines can be found in Fig. 1.   
 The characteristic parameter of the Görtler instability is the Görtler number which is proportional 
to the wall-curvature radius in the original formulation of the problem [13] and the growth of mode (0, 2) 
in all cases compares well with the concave-convex-concave streamline curvatures in Fig. 1, i.e., there is 
growth in the separating flow until Rx ≈ 1260, followed by a decay and additional growth with a maximum 
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near Rx ≈ 1400.  However, since the streamline curvature changes with distance from the wall and the wall 
remains flat in the present case a quantitative estimation of the Görtler number remains somewhat 
ambiguous, despite an effort of Balakumar et al. [3] for a compression ramp flow at Ma=5.37.  Therefore, 
we tried to find further evidence by looking at the DNS data directly. 

 

 

Figure 11:  Comparison of secondary flow with streamwise vorticity in a cross-stream cut at 
Rx=1600 from the oblique breakdown scenario.  Boundary layer with shock/boundary-layer 

interaction (top) and without (bottom). 

 A comparison of the cross flows downstream of shock/boundary-layer interaction in the oblique 
case seems to confirm the Görtler hypothesis because of large and clear-cut longitudinal vortices in the top 
part of the figure which unmistakably don’t appear in the absence of the shock interaction.  For the second 
case it is sufficient to consider the streamwise vorticity of mode (0, 2) because this one dominates the 
time-averaged flow.  A closer look reveals that the vorticity structure is also completely different in the 
two cases.  With shock/boundary-layer interaction there is a concentration in vortex cores while two weak 
regions of opposite sign develop at the boundary-layer edge in the case without shock. 
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Figure 12:  Comparison of amplification rates for mode (0, 2) in all investigated non-linear cases 

 A very convincing support of the above Görtler hypothesis is found when the growth rates of 
mode (0, 2) are extracted from all cases studied and compared to each other.  They turn out to be 
independent of the respective laminar-turbulent transition scenario as well as independent of the primary 
disturbance frequency.  In a pure laminar-turbulent transition scenario, if we select a certain higher 
harmonic, like the one here, its growth will be completely defined by the growth of the primary 
disturbances.  Since different primary disturbances with different growth rates are necessary to produce 
the same (0, 2) in different scenarios, their growth should be completely different (and frequency 
dependent).  Since this is not the case in Fig. 12, we have found another strong evidence for the 
contribution of a local instability provided by the base flow alone, like the already mentioned Görtler 
theory.  The role of different non-linear interactions is then restricted to providing different initial 
conditions (amplitudes) for the ensuing Görtler instability.  The growth of these being independent of their 
amplitude as long as it is not too large. 

4.0 CONCLUSIONS 

The present investigations have shown that laminar shock/boundary-layer interaction contributes to the 
primary amplification of small- and medium-amplitude disturbances in a hypersonic boundary layer.  The 
amplitude increase is not too drastic but ratios of >100 are possible.  The primary instability is dominated 
by increased amplification of the so-called second Mack mode which is two-dimensional.  Different non-
linear interaction scenarios have confirmed earlier hypotheses stating that a Görtler instability leads to 
longitudinal vortices in the re-attachment zone of the shock-induced separation bubble.  In contrast to such 
earlier investigations it seems that the growth rates of such vortices has been quantified for the first time 
here. 
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