ON INSTABILITIES AND TRANSITION IN LAMINAR
SEPARATION BUBBLES

Ulrich Rist
Institut fur Aerodynamik & Gasdynamik, Universitat Stuttgart
D-70550 Stuttgart, Germany

Abstract

During the past several years we have performed
a considerable amount of investigations of basic
instability mechanisms in various laminar separa-
tion bubbles. Because of the high sensitivity of the
flow with respect to intrusive measurement tech-
niques and the difficulties of computing the flow
field via boundary-layer equations or RANS our re-
search relies primarily on direct numerical simula-
tions (DNS) based on the complete Navier-Stokes
equations, backed by linear stability theory, wind
tunnel and (non-intrusive) water channel experi-
ments. Using LDA and PIV it is now possible to
measure unsteady flow quantities without influenc-
ing the flow. The investigations concentrate on
different instability mechanisms and their possible
contributions to laminar-turbulent transition in lami-
nar separation bubbles. In the present contribution
we shall present an overview on this research.

List of Symbols

amplitude of wall-normal forcing at dis-
turbance strip

¢ phase speed of disturbances
f  nondimensional circular
27 f[Hz] L/ Us

base-flow shape parameter
height of recirculation zone
L  reference length

Reynolds number U, L/v
Reynolds number Uy.6* /v

u  downstream velocity component
free-stream reference velocity

frequency

U mean velocity at y.
ul wall-normal maximum of « disturbance
inviscid (potential) free-stream velocity
maximum of reverse-flow velocity
v wall-normal velocity component
x downstream coordinate
Y wall-normal coordinate
Ye wall distance of the free-stream bound-
ary of the integration domain
z spanwise coordinate
Q; spatial amplification rate
0* displacement thickness
y spanwise wave number
A spanwise wave length
v kinematic viscosity
w; temporal amplification rate
temporal amplification rate of modes with
zero group velocity
) obliqueness angle relative to the free-
stream direction

Introduction

Laminar-turbulent transition is a key area of
aerospace aerodynamics research because of its
influence on fuel consumption via the drag. De-
spite many years of research on the fundamen-
tal mechanisms of the transition process in many
generic configurations relevant for aircrafts, as well
as other applications, there are situations which
are less well understood and hence much more
difficult to predict than certain ‘standard’ cases,
as e.g. zero-pressure gradient flat-plate boundary-
layer transition. Laminar separation bubbles are a
typical example for such a more involved case.

When an adverse streamwise pressure gradient
causes a laminar boundary layer to separate, the
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flow is subject to increased instability with respect
to small-amplitude disturbances present in the
flow. Transition to turbulence will occur and if the
turbulent boundary layer re-attaches a so-called
laminar separation bubble (LSB) will be formed.
So far, laminar separation bubbles were primarily
a concern for small-aircraft aerodynamics because
of their dependence on low to medium Reynolds
numbers. However, in-flight measurements pub-
lished in the 1990’s have shown that they affect
high-lift devices of commercial transport aircraft in
slow flight, as well. This is not too surprising as
the Reynolds number for a deployed slat lies in the
same range as for the wing of a sailplane, for in-
stance.

The present paper will present an overview on re-
cent research on laminar separation bubbles at
IAG, University of Stuttgart. The aim of this re-
search was to shed more light on the largely un-
known instabilities of transitional laminar sepa-
ration bubbles and their contribution to laminar-
turbulent transition. As a rule, the reader should
be aware that “the laminar separation bubble” as a
unique or universal feature does not exist. Rather,
each bubble depends on the characteristics of the
laminar boundary layer, the ensuing pressure gra-
dient, and, not to the least, on the background dis-
turbance level and spectrum of the flow, as will
be shown further down. In an attempt to control
the influence of the disturbance background as far
as possible, most of the present work is based on
DNS with carefully selected disturbance combina-
tions with the intention of isolating and understand-
ing different mechanisms.

More recently, experiments in a laminar-flow wa-
ter channel have been begun and compared with
DNS performed in parallel in order to yield a data
base for subsequent LES-studies with well-defined
inflow conditions.

The present paper consists of three sections. The
first of these introduces the numerical method
used, the second discusses several key results,
such as investigations on the linear (primary) in-
stability of some flows, absolute vs. convective
instability, on the influence of disturbance ampli-
tudes on bubble size, on secondary instability,
on 3-D disturbance amplification due to oblique
breakdown, and on a newly found instability mech-
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Figure 1: Integration domain for the DNS of a lam-
inar separation bubble.

anism. The third section is devoted to direct com-
parisons between water channel experiments and
DNS which corroborate part of the present numer-
ical results and the paper ends with conclusions.

Numerical Method

We consider the incompressible flow over a por-
tion of a flat plate with a free-stream pressure gra-
dient specified at the upper boundary of the ac-
cording integration domain (y = y. see Fig 1). The
coordinate system is chosen such that the coordi-
nate x corresponds to the free-stream flow direc-
tion (along the flat plate), y is the direction normal
to the plate, and = the spanwise direction. The
method described in (Ref 5, 24) and (Ref 18, 23)
is used. It is based on a vorticity-velocity formu-
lation of the Navier-Stokes equations, discretised
by fourth-order accurate finite differences in z- and
y-direction and a Fourier ansatz in z, i.e. periodic-
ity with a prescribed wavelength )\, is assumed in
z. Time integration of the three vorticity transport
equations is performed via an explicit Runge-Kutta
scheme of fourth-order accuracy.

For the computation of a boundary layer that in-
cludes a laminar separation bubble a steady lami-
nar boundary layer is specified at the inflow bound-
ary of the integration domain together with a func-
tion U,(x) at the free-stream boundary. Typically,
the latter contains a region of local adverse pres-
sure gradient that causes the laminar boundary
layer to separate and to re-attach a short distance
further downstream. In such a case, a steady
two-dimensional base flow can be computed inde-
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pendently from the investigation of disturbances,
as in (Ref 24) and (Ref 26). However, for suf-
ficiently large streamwise pressure gradients or
high enough Reynolds numbers the flow becomes
unsteady and splitting into a steady base flow and
an unsteady disturbance flow is no longer possi-
ble. But this causes no severe problem since the
computations are performed in an unsteady total-
flow formulation then.

Wall boundary conditions as in (Ref 24) and out-
flow conditions which contain the buffer domain of
(Ref 12) complement the specification of the prob-
lem. The boundary conditions at the wall include
the possibility to introduce disturbances via blow-
ing and suction in a disturbance strip placed up-
stream of the bubble.

In the present numerical method the v-Poisson
equation plays the most significant role for sev-
eral physical and numerical reasons. Firstly,
it is through its free-stream boundary condition
(dV/dy = —dU,/dz) that the adverse pressure
gradient is imposed on the flow. Secondly, this
equation directly reflects the elliptical nature of the
incompressible flow, because any velocity fluctu-
ation in the downstream part of the domain can
be immediately felt upstream. Thirdly, because
its solution needs the largest computational re-
sources compared to all other parts of the nu-
merical scheme. In order to reduce the memory
requirements for large-scale computations, it was
decided to solve the v-Poisson equation in an it-
erative manner using a multi-grid procedure on
four different grids and several V-cycles for con-
vergence acceleration, cf. (Ref 22).

Results

In the following subsections the influence of the nu-
merical error (residual) on the results will be pre-
sented, followed by comparisons of DNS results
with linear stability theory (LST), several investi-
gations based on LST related to the influence of
the wall on the free shear-layer instability and on
the possible occurrence of an absolute instability.
Then, DNS will show the non-linear influence of
the disturbances on the mean flow and compare
several mechanisms associated with the question
of how can turbulence (which is inherently three-
dimensional) arise in a flow that is dominated by

two-dimensional instabilities.

The following examples are presented for Re =
U - L/v = 100000, where L is an arbitrary ref-
erence length used for normalisation of the co-
ordinates. For a Blasius boundary layer the z-
coordinate can be converted to the Reynolds num-
ber based on the displacement thickness §* via
Re* = 1.72077 vz - Re. This is always possible
at the inflow boundary of the integration domain
because all flows start with the Blasius boundary
layer at inflow. Further downstream Re* increases
much faster than Blasius due to the displacement
effects of the flow with laminar separation bubble.
The complete set of parameters for each of the
simulations presented in this paper can be found
in the according references for each example pre-
sented here.

Residual Influence

Compared to earlier investigations with attached
boundary layers a much stricter residual (almost
machine accuracy) is required for flows with LSBs.
This has been demonstrated by Maucher (Ref 15,
27). Figure 2 compares results of two 2-D simu-
lations which differ only in the number of V-cycles
used for iterating the v-Poisson equation. In both
cases no disturbances are introduced via suc-
tion and blowing at the wall, i.e. the unsteadiness
arises from the initial conditions, numerical resid-
ual, numerical round-off, some kind of instability,
and possible reflections from the boundaries of
the integration domain. Interestingly, the case with
larger residual (due to less V-cycles for the solution
of the v-Poisson equation) produces a much more
regular flow field with a steady point of separation
and (the well-known) periodical vortex shedding at
re-attachment.

Once the residual is reduced (to its limit) not only
the position of the bubble changes, but also the
disturbances in its wake. A frequency analysis re-
veals that the dynamics of the better-converged re-
sult is dominated by an unstable frequency band
instead of a single frequency as in the first case.
So the second realisation is not only better con-
verged but also in better agreement with distur-
bance amplification according to hydrodynamic in-
stability (based on the Orr-Sommerfeld equation),
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Figure 2: Comparison of instantaneous velocity
contours from two simulations with different num-
ber of iterations. a) 4 V-cycles; b) 8 V-cycles.

because linear stability never predicts a single un-
stable frequency. This expectation is usually ig-
nored in literature where single-frequency distur-
bances are more the rule than the exception. A
possible explanation for the discrepancy is that se-
lection of a single frequency can occur as a conse-
quence of two effects: upstream feedback of fluc-
tuations by insufficient resolution in a simulation or
by reflection of sound from the domain boundaries
(or tunnel walls in an experiment), and their ampli-
fication by the linear instability of the flow. In light
of the present numerical results observations like
a “universal Strouhal number” for the high-shear
layer instability must be viewed with care.

Primary Instability

Our present knowledge of the primary instabil-
ity of laminar separation bubbles stems mainly
from some theoretical investigations based on hy-
pothetical, free shear-layer like base-flow profiles
or modifications thereof (Ref 2, 4, 8, 9, 20, 21).
These have the advantage that the influence of
parameter variations can be easily studied. But
such profiles do not correspond to an actual flow
field that fulfils the Navier-Stokes equations. In
addition, a local analysis neglects the stream-
wise structure of the flow (so-called nonparallel ef-
fects). However, in direct quantitative comparisons
of DNS results with linear stability theory based
on base- or mean-flow profiles of the simulations
we have shown that small-amplitude disturbances
evolve in an extremely good agreement with lin-
ear stability theory despite its approximate man-
ner. This is shown in Fig 3 where the normal-to-
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Figure 3: Comparison of ' disturbance maxima
with results of linear stability theory (---). S = sep-
aration; R = re-attachment; === = location of distur-
bance strip.

the wall maxima of the streamwise velocity fluctu-
ation ' for Tollmien-Schlichting waves with differ-
ent propagation angle relative to the base flow are
displayed. In contrast to Fig 2 the present flow is
much closer to the leading edge of the flat plate
such that Reynolds number and pressure gradient
are not large enough to cause a similar unsteadi-
ness. A more complete description of this case
can be found in (Ref 25) and (Ref 26), for instance.

These results also show that the disturbance
growth with downstream coordinate x increases in
a very gradual way already well upstream of the
separation point (S). In consequence, there is no
reason to distinguish between a free shear layer or
‘Kelvin-Helmholtz’ instability and the TS-instability
of a boundary layer.

Influence of the Wall

A quantitative investigation of the influence of the
wall on linear stability theory results has been per-
formed (Ref 23, 26). Figure 4 illustrates the find-
ings of that research for two different wall dis-
tances of the “free shear layer’. The dashed
curves correspond to a boundary layer profile
taken from the previous example at x = 2.0, where
the separation bubble exhibits the strongest re-
verse flow. This profile was then modified, first
by a small shift in u-direction by the amount of
maximal reverse flow in order to make that zero
(curve (1)), then by different shifts away from the
wall, padded with zero velocity (curve (2)). In any
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case, a viscid investigation was performed for fi-
nite Reynolds number. The results for the largest
wall distance in Fig 4 (b) and (d) agree extremely
well with the spatial instability of an inviscid shear
layer, cf. (Ref 19, Fig 2)). Only for the smallest
frequencies, there is an influence of the wall that
can be seen in the difference of the phase speed
from the theoretical value of 1. The instability and
the eigenfunctions of the profile extracted from the
DNS-bubble are really far away from the inviscid
free shear-layer instability.

As already shown, the shift-over from boundary-
layer instability to free shear-layer instability is a
very smooth process. This leads to a character-
istic evolution of the eigenfunctions of the distur-
bances: for a boundary-layer TS-wave the distur-
bance maximum is close to the wall followed by
a phase jump, a second maximum, and exponen-
tial decay further away, while for a free shear-layer
mode there is a maximum exactly at the inflection
point of the base-flow profile followed by a sharp
phase jump towards the low speed side of the
flow and exponential decay in both directions af-
ter a certain distance from the high-shear region.
Therefore, the profiles in the changeover region
which are characteristic for LSBs have three dis-
tinct maxima. For practical purposes their relative
magnitude can be used to assess the amount of
contribution of the free shear-layer instability to the
TS-instability: a large shear-layer maximum would
indicate more contribution of the shear-layer insta-
bility, and vice versa. Since the wall distance of
the separated shear layer in a pressure-induced
laminar separation bubble (in contrast to a laminar
separation bubble found behind a step) increases
steadily the initial instability is of TS-type in any
case. Only for very large bubbles (and hence
shortly before transition) a contribution from a free
shear-layer type of instability can be expected.

Absolute vs. Convective Instability

A long-standing question among many re-
searchers has been the issue whether transition
in a laminar separation bubble occurs due to an
absolute instability of the flow. Several authors
(Ref 1, 2, 8, 9) have shown that a 2-D absolute in-
stability can only be expected once the base flow
exhibits 15% reverse-flow intensity in the bubble.
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Figure 4: Investigations on the influence of the
wall on the instability of the separated shear layer.
Note: the y coordinate is stretched by v/ Re, Re =
100000. a) base flow; b) amplification rates «;;
¢) phase velocities; d) eigenfunctions for the fre-
quency f =2r f[Hz] L/Us = 20.
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Figure 5: Iso-surfaces of constant temporal ampli-
fication.

Maucher (Ref 15, 27) has tried to refine the bound-
ary between absolute and convective instability by
considering two additional parameters, Reynolds
number and the (nondimensional) height of the
reverse-flow zone. His results are summarized
in Fig 5 which shows iso-surfaces of the tempo-
ral amplification rate found by a shooting method
for complex spatial wavenumber and complex fre-
quency. Here wy ; stands for the temporal ampilifi-
cation rate of eigenvalues with zero group velocity.
Growth occurs for wy ; > 0, i.e., above the surface
wo,; = 0, the reverse-flow intensity increases from
front to back and its thickness from bottom to top.
Because the solutions correspond to zero group
velocity there is a true chance for temporal growth
according to Gaster (Ref 7) without checking for a
pinching of eigenvalues (which is not possible us-
ing a shooting method that yields only one eigen-
value at a time).

The present results indicate that time-growing dis-
turbances can be met not only when the inten-
sity of reverse flow is increased beyond 15% but
also when the thickness of the reverse-flow zone
exceeds hr/é* = 0.5. A weak Reynolds num-
ber influence is also observed. Meanwhile, the
above theoretical predictions have been validated
by comparisons with two DNS, one in (Ref 27), the
other unpublished.

Influence of Disturbance Amplitude on Bubble Size

In a LSB instability and base flow are coupled
much closer than in an attached boundary layer.
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Figure 6:
tudes for different forcing at the wall:

Comparison of disturbance ampli-
Ay
107%,107°,10% (top to bottom). S = separation;
R = re-attachment; === = |ocation of disturbance
strip.

Due to large amplification rates and various in-
stabilities, disturbances can reach a non-linear
regime within the bubble even if their initial am-
plitude is ‘negligibly’ small. Once they are large
enough they impose changes on the mean flow
in a non-linear manner (that is difficult to predict).
Changes of the mean flow can alter the instabil-
ity and hence the growth of disturbances that fol-
low. An example for such a case where the lam-
inar separation bubble exhibits a low-frequency
change of its stability characteristics is described
in (Ref 15) and (Ref 27).

Here we consider a simulation with large Re* at
inflow and hence much larger Re* at separation
(Re* = 1722 and 2700, respectively). Upstream
forcing is applied with f = 5 and three different
disturbance amplitudes for the wall-normal veloc-
ity component: A, = 1074, 107°, and 1075. The
according maxima of ' are shown in Fig 6 and
the points of nonlinear saturation of each case are
marked by three arrows that touch the respective
curve. The results are as expected: for larger forc-
ing transition (in the present simulations, the point
of non-linear saturation of the disturbances) oc-
curs further upstream than for small disturbance
amplitudes. Since earlier transition means earlier
re-attachment, it can be expected that the bubble
becomes shorter from its rearward end, a fact that
is actually observed in the streamline plots of Fig 7.
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Figure 7: Mean-flow streamlines for simulations
with three different forcing amplitudes: A, =
107%,107%,10~* (from top to bottom). S = sepa-
ration; R = re-attachment; === = location of distur-
bance strip.

However, this is not the only effect of the distur-
bances, since the separation point moves down-
stream an equally large distance at the same time.
A further remarkable effect is that the mean-flow
profiles (Fig 8) exhibit a rather unexpected strong
dependence on the disturbance amplitudes, as
well. Thus, the difference between two profiles is
orders of magnitude larger than the local distur-
bance amplitude (compare Fig 6 and Fig 8). A very
similar effect has also been discovered in wind-
tunnel experiments by Dovgal et al. (Ref 4).

Further analysis of the DNS data has shown
that this coupling of transition, reattachment, and
separation is related to subtle changes in the
streamwise pressure gradient along the wall. In
a pressure-induced separation bubble, (S) is not
fixed by some surface irregularity and hence highly
sensitive to small changes in pressure. Thus, it
turns out that a pressure-induced LSB is very sen-
sitive to background disturbances and that these
should be taken into account when comparing sim-
ulation results with experiments. This is why we
have started the work described in the third section
in a controlled environment by carefully validating
the initial disturbance spectrum.

0.095 -

0.063

0.032

0 0204060810°

Figure 8: Comparison of mean-flow profiles at z =
12.76 for different forcing at the wall.

Secondary Instability

In a two-dimensional boundary layer, three-
dimensional disturbances become strongly am-
plified by a parametric resonance once two-
dimensional primary disturbances have attained
sufficiently large amplitudes (Ref 10). Typically,
this kind of secondary instability amplifies dis-
turbances with subharmonic or fundamental fre-
quency with respect to the two-dimensional one,
and its amplification rates are characteristically
one order of magnitude larger than that provided
by primary instability. Due to non-linear inter-
actions the wavenumber-frequency spectrum fills
up very rapidly which indicates a breakdown of
the flow into small-scale unsteady structures. For
many laminar separation bubbles, however, our
simulations show that such an instability is only
marginally relevant because it is restricted to a
very narrow streamwise region.

One typical result taken from (Ref 23, 25, 26)
is illustrated in Fig 9 for a case where a funda-
mental two-dimensional disturbance with «/,,., ~
1075, f = 18 is forced at = ~ 0.65 together with
a subharmonic (f = 9) three-dimensional one at
ul, .. =~ 107°. For comparison, results of primary
instability (LST) and of secondary instability the-
ory (SST) are also included (with their initial ampli-
tudes adjusted to the DNS). Due to the presence
of the laminar separation bubble, the amplification
rate for the primary instability is now one order of
magnitude larger than in a Blasius boundary layer

and an additional amplification of 3-D disturbances
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Figure 9: Amplification curves u!,,, of two- and

three-dimensional disturbance components for the
case with subharmonic resonance. Comparison
with LST (---) and SST (- - -). S = separation; R =
re-attachment.

due to secondary instability that starts around =
1.8 as the 2-D disturbance passes 1% is not as
dramatic as might be expected. In addition, once
the 2-D disturbance saturates at v’ ~ 20% the sec-
ondary amplification is greatly reduced such that,
for the present scenario, the 3-D disturbances do
not reach a saturation level within the integration
domain. Flow visualisations have shown that the
3-D disturbances of the SST get destroyed by the
2-D ones in the saturated regime: 3-D vorticity
is redistributed and convected away by the large-
amplitude 2-D rollers that develop downstream of
the bubble. The higher harmonic wave compo-
nents which are also included in Fig 9 confirm this
process by their large amplitudes. In fact, large-
amplitude 2-D forcing can control the flow by de-
laying transition, a detail that has independently
been observed in experiments by Dovgal et al., for
instance.

Here, a subharmonic scenario (that would lead to
so-called H-type transition in a Blasius boundary
layer) has been studied. But similar investigations
have been performed for fundamental resonance
(K-type) and mixed scenarios, for the base flow
considered here, as well as for the one presented
in Fig 7 (Ref 23, 26).

Oblique Breakdown

As an alternative to classical secondary instabil-
ity scenarios, a mechanism which was first discov-
ered for transonic flow and termed “oblique transi-
tion”, because of its dependence on the non-linear
interaction of oblique waves, was investigated as
well.

Figure 10 depicts the evolution of the spectral am-
plitudes of this case in the same base flow as
before. Throughout the paper, the first index for
a frequency-spanwise-wavenumber mode means
multiples of the fundamental frequency and the
second multiples of the basic spanwise wavenum-
ber v = 2n/),. Now, the primary disturbance
(identified as mode (1, pm1) consists of a pair of
oblique Tollmien-Schlichting waves (f = 18) with
an initial angle of ¢y ~ 28° relative to the z-axis
and an initial amplitude «/,,,, ~ 10~%. Clearly, the
dominant mode follows linear stability theory rather
closely. All other modes arise due to non-linearity
which leads to a rapid fill-up of the spectrum at
x = 2.0. Since the largest of the non-linearly gen-
erated modes is mode (0,2) the re-attachment, as
well as the ensuing boundary layer, exhibit longitu-
dinal streaks in the temporal mean. Occasionally,
such streaks have already been observed in ex-
periments, e.g. (Ref 3). Inger has tried to relate
them to a Gortler instability (Ref 11). However,
for the present case it is clear that they arise from
transition, since they are an inherent property of
the so-called “oblique breakdown” scenario.

Further studies of this kind of mechanism showed
that the optimal growth of the streak modes ap-
pears when oblique waves with an obliqueness an-
gle of ¢ ~ 20° are forced. This occurs because
the growth of the primary modes due to LST is re-
duced for larger angles and because no oblique
breakdown is possible for ¢ — 0.

A direct comparison of instantaneous vorticity con-
tours from the (hindered) subharmonic scenario in
Fig 9 with those from Fig 10 is shown in Fig 11.
This illustrates the interpretation given above, that
the flow is controlled by spanwise oriented ‘rollers’
in the first case, and that a rapid breakdown
into small-scale structures appears in the second.
Such small-scale 3-D structures are necessary
for the rapid development of a turbulent boundary
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modes for large 3-D disturbance amplitude.
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Figure 11: Comparison of instantaneous vortic-
ity contours for subharmonic resonance (a) and
“oblique breakdown” (b).

layer in a laminar separation bubble. Thus, it ap-
pears that the mechanism studied here can be rel-
evant for production of turbulence in a LSB. This
has also been verified in mixed secondary-oblique
scenarios in (Ref 25).

A New Type of Instability

When the Reynolds number at separation is in-
creased, a new kind of secondary instability mech-
anism is observed which leads to temporal am-
plification of small-scale three-dimensional distur-
bances that are trapped in the separation bubble.
More information on this case can be found in
(Ref 15) and (Ref 17). In contrast to above Re*
at separation is now approx. 2400 instead of 1250.

Figure 12 displays amplitudes of selected modes
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Figure 12: Disturbance amplitudes of 2-D (solid)
and 3-D (dashed) waves in the vicinity of the bub-
ble. Dotted lines: higher harmonics; arrow: 3-D

temporal growth; S - separation, R - re-attachment.

for two time intervals. A large-amplitude 2-D TS-
wave has been forced at © =~ 8 together with
very small 3-D disturbances. Since the 2-D dis-
turbances are periodic they do not differ for a later
time compared to the earlier one. This is in clear
contrast to the 3-D disturbances which are two or-
ders of magnitude larger for the second time inter-
val shown in the figure. An arrow is used to high-
light the temporal growth of the 3-D disturbances.

It turned out that permanent forcing of the 3-D dis-
turbances is not necessary because a one-instant
3-D time impulse at the wall is sufficient to initi-
ate the growth. A quantification of the temporal
growth initiated by a short-time pulse leads to the
results presented in Fig 13, where the dependence
of the temporal growth rate w; on the spanwise
wave number is shown. It turns out that regions
of subharmonic and fundamental disturbance am-
plification alternate with spanwise wave number.
This indicates that the mechanism found is some-
how related to the secondary instability discovered
by Herbert (Ref 10).

More investigations with an additional buffer do-
main applied in the upstream part of the integra-
tion domain and for the 3-D modes only indicated
that the responsible area for amplification is the re-
attachment region. By comparing the development
of the 3-D disturbances with the dynamics of the
2-D high-shear layer Maucher et al. (Ref 16, 17)
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Figure 13: Secondary temporal amplification rate
w; versus spanwise wave number v = 2z /A, for
different discretisations.

identified the reason for the instability as the en-
trainment of three-dimensionality by the upstream
motion in the laminar separation bubble that in-
cludes an uplift of 3-D motion into the initially two-
dimensional shear layer. Since this process is re-
peated periodically, the 3-D amplitudes can grow
from cycle to cycle until they reach a level with
non-linear saturation. Once this level is reached,
the process just described is still operative in order
to destroy the 2-D shear layer repeatedly. This is
visualised by iso-surfaces of spanwise vorticity in
Fig 14. The dynamics of this kind of laminar sepa-
ration bubble transition resembles the breaking of
waves which approach a shore line.

An interesting aspect of the scenario shown is
that it is very efficient for small obliqueness an-
gles of the involved primary disturbances, i.e. it is
not restricted to a strictly two-dimensional distur-
bance. Interestingly, weakly oblique disturbances
have been already observed in several free-flight
measurements of the natural disturbance spectra
in airfoil boundary layers.

Comparisons with Experiments

Systematic experiments on laminar separation
bubbles have been performed by (Ref 4, 6, 28, 29),
and others. Typically, when comparing simulations
(RANS, LES, DNS) with experiments some ‘typi-
cal’ mean-flow characteristics, like the position of
separation, transition, re-attachment, or the length
of the bubble are used to validate the computa-
tions. However, in light of the results presented in
the previous sections, one should be warned, not
to neglect the influence of the disturbance spec-
trum, regardless of its smallness!

Figure 15: Experimental hydrogen-bubble visuali-
sation of the high-shear layer in a laminar separa-
tion bubble undergoing transition.

The laminar water tunnel at IAG was especially
designed to study transition in Blasius boundary
layers and in separation bubbles. Because of the
large scales in water, this water tunnel is partic-
ularly suitable for flow visualization, as well. A
at first negative, then positive streamwise pres-
sure gradient is imposed on a flat-plate bound-
ary layer (that would otherwise correspond to the
Blasius boundary layer) by a displacement body
mounted opposite to the plate, such that a lam-
inar separation bubble is obtained in the decel-
erated region. The experimental set-up and the
non-intrusive quantitative measurements (using a
Laser-Doppler anemometer, LDA and Particle-
Image Velocimetry, PIV) are described in more de-
tail in (Ref 13, 14). Already before performing a
lot of quantitative measurements it was possible to
find qualitative confirmation of the DNS results of
Maucher by means of flow visualisations. Features
like the spanwise waviness of the oscillating shear
layer shown in Fig 15, as well as its breakdown
compare very favourably with numerical observa-
tions like the one presented in Fig 14.

Additional DNS have been made parallel to the ex-
perimental measurements with base-flow parame-
ters and boundary conditions closely matched to
the experiments. The velocity profile at the in-
flow boundary, for instance, was obtained from
a preceding 2-D DNS of a strongly accelerated
boundary layer (starting from a Blasius solution
well upstream of the displacement body in the ex-
periment) with the favourable pressure gradient
chosen to match the experimental values up to
the narrowest section, since the measured profile
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could not be represented by an analytical (Falkner-
Skan) solution (H;» ~ 1.6 at the inflow). As
can be seen in Fig 16, the u-velocity profile from
measurements and computations at x = 0 mm
turned out to be in excellent agreement. At the
free-stream boundary the potential velocity distri-
bution U, is chosen according to measurements
where separation was suppressed by artificially
causing transition prior to the laminar separation
point (Fig 16). It serves as initial condition at the
free-stream boundary in the DNS and finally the
mean edge-velocity distribution u, almost matches
the experimental measurements with separation
bubble. Since this velocity condition at the upper
boundary is not fixed, but rather comes out of the
boundary-layer interaction model, it can already be
considered a result of the DNS. Good agreement
of DNS data with experiments (Fig 16) therefore
gives a first proof of the comparability of the sep-
aration bubbles observed in the experiment and in
the DNS. Furthermore, it should be emphasized
that the actual velocity prescribed at the upper
boundary is unsteady and the results presented in
the diagram are time-averaged.

A two-dimensional TS-wave and a steady three-
dimensional modulation are forced by means of
the classical vibrating ribbon technique and span-
wise spacers on the plate surface.Comparisons
with an undisturbed (experimental) flow indicate
that the features of the forced flow are very sim-
ilar to the “natural case”. The main differences
are slight amplitude variations of the shear-layer
oscillations, some irregularity regarding the pre-
ferred spanwise wave length of the transitional
structures, and the length of the bubble (which is
shorter for lower disturbance amplitude, in agree-
ment with the numerical results presented above).
Only based on periodical forcing it was possible to
trace the complete flow-field using phase-locked
LDA. For comparisons with DNS and linear sta-
bility theory (LST) the LDA measurement results
have been Fourier analysed in time and spanwise
direction with respect to the frequency of the wire
(f = 1.1 Hz, Uy, = 0.125 m/s) and the spanwise
wavenumber according to A, = 58 mm.

The dominant initial disturbance is the 2-D
Tollmien-Schlichting wave forced by the ribbon. Its
downstream development (amplification) is com-
pared with DNS and LST in Fig 17. In the ex-
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Figure 17: Amplitude development of the maxi-
mum 2-D streamwise velocity fluctuations u’

mazx*

periment the TS-wave could only be detected af-
ter it grew to u!,,, > 2-1073. Then, experimen-
tal and numerical results perfectly match from z =
230 mm onwards even shortly beyond saturation.
Good agreement with LST confirms the primary
convective nature of the disturbance. Calculation
and experiment also predict the same amplitude,
growth rate and saturation level for the non-linearly
generated higher harmonic disturbance (2,0).

Unfortunately, the initial disturbance spectrum in
the experiment is not yet completely understood. It
consists of several extra modes (presumably from
some transient growth mechanism) which slowly
decay with x, as can be seen in Fig 17 at z <
230 mm. Also, the largest 3-D disturbance corre-
sponds to mode (0,2) instead of (0,1) which would
exactly match the wavelength introduced by the
spacers. Comparisons with 3-D DNS have shown
that this mode is involved in the transition process
because it helps to generate the unsteady 3-D
modes (1, £2) by interaction with the 2-D TS-wave
(1,0). This explains the quasi-perfect agreement of
the spatial amplification rates between simulation
and experiment in Fig 18 once mode (0,2) is in-
cluded in the simulation. Omitting this disturbance
in the simulation led to another scenario.

Conclusions

Several basic mechanisms related to instability
and transition in laminar separation bubbles have
been isolated and studied. As far as possible, the
present DNS results have been verified by com-
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parisons with LST, experiments and grid refine-
ment studies. Thus, it turned out that extreme
care must be taken to reduce background distur-
bances as far as possible when trying to identify
the mechanisms at hand. Also, the overall size of
the bubble appeared to be very sensitive to small-
amplitude disturbances and its mean-flow param-
eters exhibit large variations which would become
unpredictable if the disturbance amplitudes were
not known. The border between absolute and
convective instability was revisited and further re-
fined in terms of Reynolds number and thickness
of the reverse-flow zone. Secondary instability and
oblique breakdown were compared with the aim to
identify the most relevant mechanism for amplifica-
tion of three-dimensional disturbances. For large
Reynolds numbers a new kind of secondary insta-
bility was found which leads to temporal growth of
3-D disturbances on the basis of a large-amplitude
shear layer oscillation, regardless whether this is
produced by an exactly 2-D TS-wave or by weakly
oblique waves. Comparisons with ongoing exper-
iments indicate good agreement of the unsteady
disturbance development, once the initial ampli-
tudes have been found. Note: these latter cannot
be measured directly due to their small initial am-
plitudes.
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