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Abstract Results of linear stability calculations and direct numerical simulations
for flow-control experiments are presented. Good agreements between measure-
ments and simulations are shown. Furthermore, the linear stability of the flow over
the experimental wing section is investigated. Hereby, also the use of isotropic and
anisotropic compliant materials is assessed. The prevailing surface-based compliant-
wall model of Carpenter was extended to yaw angles, pressuregradients and
oblique-traveling disturbances. The influence of the yaw angle is demonstrated for
an anisotropy angle of 75◦. Also transient-growth of instabilities over the compliant
wall was investigated, since the eigenvalue spectrum of thecompliant-wall problem
turned out to be sensitive to truncation errors. For the parameters investigated, the
maximum transient growth of the compliant-wall case is in the same order as the
growth of the rigid-wall case.

1 Introduction

For flow-control experiments we investigate the flow of a 1.3m long wing section in
a wind tunnel. The experiments are conducted by Pätzold et al. at the ILR of the TU-
Berlin. The aim of the flow-control experiment is to dampen Tollmien-Schlichting
(TS) waves by actively actuating a wall using different control mechanisms. These
experiments are inspired by the use of compliant coatings inorder to dampen or
even inhibit flow instabilities that lead to laminar-turbulent transition. Earlier water
tunnel and towing tank experiments found in literature haveshown that satisfying
transition delays can be achieved. However, since the fluid of the experiment is
air, an adequate compliant material does not exist for this purpose. This can be
pointed out e.g. by the mass ratio of the compliant coating tothe fluid which is in
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the order of one for the common coatings in water. Therefore,the wall of the wing
section is actively actuated in the present experiment to imitate the behavior of a
compliant coating. This has the advantage, that all thinkable material properties can
be investigated.

2 Numerical simulation of the boundary layer over the wing
section

In order to investigate the stability properties of the wingsection in the wind tunnel
a direct numerical simulation (DNS) of the boundary layer flow was carried out. The
key feature of this simulation is that its free-stream and inflow boundary condition
(BC) was chosen using the measured free-stream velocity distribution. Therefore,
the simulation depends on a high quality of the measurements. This distribution was
quantified in one Prandtl tube and two hotwire measurement campaigns. A 9th-order
polynomial was then fitted to have the least squares difference to the measurement
points and applied for the free-stream velocity of the simulation. The respective free-
stream velocities are plotted in Fig. 1 over the downstream coordinate. Furthermore,
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Fig. 1 Comparison of free-stream velocity be-
tween experiment and DNS.

Fig. 2 Comparison of displacement and mo-
mentum thickness between experiment and
DNS.

velocity profiles were measured by Pätzold et al. at different streamwise positions
using a hotwire. The wall-normal spacing of the measurements was 0.1mm. The
inflow velocity profile was chosen such that the momentum thickness matches the
momentum thickness of the measurements and that the shape factor matches the
local pressure gradient.

To cross-check the simulation data with the experiment, thevelocity profiles and
integral quantities of the boundary layer were compared. InFig. 2 the comparison
of the displacement and momentum thickness is plotted versus the streamwise coor-
dinate for the laminar part of the boundary layer. Here, the boundary layer thickness
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is in the order of a millimeter. Keeping in mind that the boundary layer is very thin,
the experimental and numerical data is in good agreement.

To further scrutinize the agreement of experimental measurements and numeri-
cal investigations, a comparison of controlled disturbances was conducted. For this
purpose a two-dimensional TS-wave of 500Hz was forced by a blowing and suc-
tion slot in the front part of the wing section. Downstream the disturbances in the
boundary layer were measured by Pätzold et al. using hotwire anemometry at dif-
ferent streamwise locations and wall-normal positions. The measurement data were
then evaluated by the authors. Since the time signal of the forcing was measured
simultaneously, the phase of different wall-normal measurements could be related.
The voltage fluctuations were converted to velocity fluctuations and then Fourier
transformed. This permits to extract the eigenfunctions ofthe generated TS-wave
as well as the quantification of the background disturbances. According results are
plotted in Fig. 3. The eigenfunctions of the linear stability theory are scaled in their
amplitude to match the experimental curves best.
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Fig. 3 Comparison of disturbance amplitude and phase at different positions as well as the spa-
tial growth of a TS-wave with a frequency of 500Hz between the experiment and linear stability
calculations.
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The amplitude and phase of the forced TS-wave are plotted versus the wall-
normal coordinate in Fig. 3(a) forx= 440mm. The amplitudes of the other resolved
frequencies are plotted in gray as a reference to get an idea of the disturbance back-
ground. The magnitudes of both, the background disturbances and the forced TS-
wave, are of the same order. The amplitude and phase of the forced disturbance do
not match well to the linear stability results.

At x= 480mmthe agreement between experiment and LST is much better. This is
plotted in Fig. 3(b). Here the background disturbances are amagnitude smaller than
the forced TS-wave. The amplitude only deviates at the points closest to the wall.
The region closest to the wall is very sensitive to small vibrations of the hotwire,
because here the velocity gradient is highest. Also the meanvelocity is very low
so that free convection could deteriorate the results. In the region of the phase shift,
small differences in the phase can be ascribed to the low amplitude ratio with respect
to the background noise in this region.

In Fig. 3(c) is the comparison forx= 520mm. The amplitude of the forced wave
is further increased with respect to the background disturbances. In the outer re-
gion amplitude and phase are in good agreement with the eigenfunction of the LST.
In the inner region the amplitude distribution is different. This is a sign for three-
dimensionality. The two-dimensional wave is unstable to three-dimensional distur-
bances and deforms. Shortly downstream of this location, the laminar flow breaks
down making comparisons to the linear theory futile.

In Fig. 3(d) a comparison of the streamwise disturbance-amplitude development
between the measured disturbance, DNS and LST is shown. Two criteria were used
to define the amplitude. One is the inner maximum of the amplitude distribution, and
the other is the outer maximum. The amplitudes of the LST and DNS were scaled to
match at the point where the eigenfunctions matched best. Small deviations between
LST and DNS are due to nonparallel effects.

The comparison of the controlled disturbance shows that a qualitative compari-
son is feasible. Keeping in mind that the presented disturbance measurements are in
the order of 0.03% of the free-stream velocity, while the displacement thickness is
in the order of 0.6mm the comparison to the experiment is satisfactory. The base-
flow of the DNS can be used to calibrate and design flow control algorithms. Also
it enables us to investigate the potential of different compliant-wall parameters.

3 Extended Anisotropic Wall Model

Inspired by the compliant skin of delphinidae a surface-based model of a compli-
ant wall is implemented in the linear stability theory. Pavlov[6] investigated the
skin of harbor porpoise and came to the result that its compliant skin not only be-
haves anisotropic but also its dermal ridges make an angle tothe surface stream
line. Carpenter et al. developed an anisotropic compliant wall model[3], and imple-
mented it in a framework for two-dimensional disturbances.In our implementation
the anisotropic wall model of Carpenter is extended to account for three-dimensional
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disturbances and a yaw angle of the material. Furthermore, our implementation is
suited for flows with pressure gradients, because an inflection point of the stream-
wise velocity is not assumed at the wall.

The solution of the linear stability equations—the Orr-Sommerfeld and the
Squire equation—using our extended anisotropic wall model differs from the so-
lution for a rigid wall. The boundary condition of the Orr-Sommerfeld equation
contains the variable of the Squire equation. Therefore, the classic way of solving
the Orr-Sommerfeld equation first and then solving the Squire equation to obtain
the eigenfunction is not feasible. Both equations are coupled and have to be solved
in combination.

In Fig. 4 is a sketch of the extended anisotropic compliant wall model. A flexible
plate is bound to a rigid base with stiffeners. Springs and dampers are attached to the
stiffeners. These form an angleθ to the base and an angleψ to the flow direction.
A sectional sketch of the deformed wall is shown in Fig. 5. Thecross section has
the angleψ to the flow direction. Note the longitudinal stretch of the flexible plate
which is visible by varying distances between its attachment points to the stiffeners.
This stretch is induced by the differential motion of the swivel arms, leading to a
restoring force to the original form.
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Fig. 4 Sketch of the compliant-wall model. Fig. 5 Sectional view of the wall model.

The wall parameters can be reduced to the non-dimensional quantities

C(ν)
m = ρmbmU∞

ρν ; C(ν)
k = Kmν

ρU3
∞

; C(ν)
b = Emb3

mU∞
12(1−ν2

m)ρν3 ; C(ν)
i = Embm

ρνU∞
. (1)

These coefficients account for themass ratio Cm, spring stiffness Ck, flexural rigid-
ity Cb, and theinduced tension Ci in the plate, caused by the differential motion of
the swivel arms. The wall parameters are reflected byYoung’s modulus Em, Pois-
son’s ratio νm, plate densityρm, plate thickness bm, and thespring stiffness Km.
The flow parameters are reflected byfluid densityρ , kinematic viscosityν and the
reference velocity U∞. The parameters for the calculations presented in this paper
are listed in Table 1. Since there is an abundance of possibleparameters the present
wall parameters were taken from Carpenter[3]. They were optimized to reduce the
amplification of TS-waves, while flow-induced surface instabilities (FISI) are kept
stable.
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Table 1 Compliant wall parameters of the investigated compliant materials.

material θ ψ C(ν)
m C(ν)

k C(ν)
b C(ν)

i

1 0◦ 0◦ 1.464×104 4.443×10−5 1.208×1012 —
2 60◦ 0◦ 2.211×103 7.405×10−6 1.529×109 2.814×103

3 75◦ 0◦ 5.777×102 1.983×10−6 2.281×107 6.152×102

4 75◦ 36◦ 5.777×102 1.983×10−6 2.281×107 6.152×102

5 75◦ 54◦ 5.777×102 1.983×10−6 2.281×107 6.152×102

6 75◦ 90◦ 5.777×102 1.983×10−6 2.281×107 6.152×102

4 Numerical Implementation of the Linear Stability Equations

For the solution of the Orr-Sommerfeld and Squire-equationwe use two numeri-
cal schemes. One scheme formulates the equations as a boundary value problem.
These are then solved with ashooting method. The other scheme formulated the
equations as an eigenvalue problem. Here the eigenvalues ofa matrix are solved, so
we will refer to it asmatrix method. Both schemes have their specific advantages
and disadvantages. The shooting method solves for one eigenvalue/mode using an
initial guess. Its computational expense is proportional to the number of used dis-
cretization points. It suits well to calculate eigenvaluesand eigenfunctions with a
high accuracy. Also it can be used to calculate “three-dimensional” stability dia-
grams, i.e. diagrams with varying parametersstreamwise wavenumberα, spanwise
wavenumberβ and streamwise locationx in a matter of minutes to high accuracy.
The matrix method solves for all eigenvalues at the same time. This ensures that
no instability mode can be missed. Its computational expense is proportional to the
number of discretization points to the power of three. It suits well to calculate tran-
sient growth of disturbances. Also its eigenvalues can be used as an initial guess of
the shooting method.

The “shooting-method” The stability equations are formulated as in [5, sect.
2.5.2]. This has the advantage that the baseflow appears in the equations only with
its first derivative. In the free-stream the three base solutions of parallel flow which
decay towards infinity are prescribed. The six first-order equations are then inte-
grated from the free-stream to the wall using a standard Runge-Kutta scheme. The
baseflow of the semi-steps is interpolated using a cubic spline. Hence the baseflow
can also be non-equidistant. Since the three integrated base solutions grow towards
the plate with different growth rates, truncation errors ofthe slower growing solution
grow with higher rates and pose a numerical problem. This problem is overcome by
a technique proposed by[4]. After a given number of Runge-Kutta steps the three
base solutions are orthonormalized to eliminate the numerical errors. At the wall
the base solutions are then combined to fulfill two of the three boundary conditions.
The residual of the third boundary condition is then minimized using common root-
finding techniques, such as the Newton-Raphson or the Müller method. Note that
for these two methods the residual of the boundary conditionmust be an analytic
function of the eigenvalueα or ω that is solved for, but the phase of this complex
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quantity can be arbitrary if no special precautions are taken. Therefore, we scale the
phase of the residual with the phase of the disturbance pressure at the wall. This
creates a very good convergence behavior. The trade-off is that the shooting method
does not converge to Squire-modes, because their disturbance pressure is zero at the
wall. Using the shooting method one can solve for both, the spatial amplification or
the temporal amplification using the same algorithms.

The “matrix method” For the matrix method the stability equations are posed
as an eigenvalue problem. The equations are formulated inv and ωy constitut-
ing the Orr-Sommerfeld and Squire-equation. We use a pseudospectral colloca-
tion method for discretization, using Chebyshev-Gauss-Lobatto points. Special at-
tention has been paid to the calculation of the differentiation matrices. Since the
equations contain the fourth derivative, truncation errors have to be avoided wher-
ever possible. The differentiation matrices were set up using the recursion formula
of Welfert[10, eq. 7] for the off-diagonal elements, and the“negative sum trick”
of Baltensperger[1] for the diagonal elements. The differentiation matrices are af-
terwards transformed using the rational mapping that is described in Schmid &
Henningson[8, sect. A.4]. Currently, incorporating the compliant wall only the tem-
poral model is implemented in the matrix scheme. Even thoughthe temporal prob-
lem states a linear generalized eigenvalue problem, the eigenvalue appears in the
compliant-wall BC quadratically. Therefore, we linearizethe boundary condition,
e.g.[9]. The resulting generalized eigenvalue problem is then solved using the QZ-
algorithm.

A comparison of the current implementation to Carpenters results[3] is shown
in Fig. 6. The neutral stability curve is plotted versus the Reynolds number based
on displacement thicknessReδ1

. Results for a rigid wall, an anisotropic compliant
material, i.e.θ = 0, and two anisotropic compliant materials are presented. The neu-
tral stability curves are in very good agreement, and validate the present numerical
scheme. Note that not only the area encircled by the neutral stability line is reduced,
the maximum amplification rate is also smaller. Using anisotropic materials the am-
plification of TS waves can be reduced even more than using isotropic materials. A
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typical eigenvalue spectrum incorporating the compliant wall is shown in Fig.7. The
open and filled symbols denote eigenvalues of the matrix method. The filled symbols
are eigenvalues found by the shooting method. Note that the shooting method does
not converge for the continuous spectrum, since there the residual of the boundary
condition is not zero at a discrete location.

5 Further stability investigations of the experimental setup

Stability calculations of the experimental flow were carried out to investigate how
far a compliant wall would be able to delay or even inhibit laminar-turbulent tran-
sition. Here, again the optimized parameters of Carpenter were used. Note that
Pätzold et al. actuate the wall in a small region, and that the following diagrams
apply to the case where the surface of the whole wing section is actively actuated.
Hence they are somewhat idealized. Values ofU∞ = 24.5m

s andν = 1.54×10−5 m2

s
were used for the non-dimensionalization of the wall parameters.

Since the Squire-theorem does not apply for growing boundary layers over com-
pliant walls, we have to account for three-dimensional disturbances as well. The
maximum spatial amplification rate and theN-factor (i.e.−

∫

αidx) is given in Ta-
ble 2 for the calculations of the different materials. Considerable reduction of both
the maximum growth rate as well as theN-factor are achieved by applying the com-
pliant surfaces.

Table 2 Maximum spatial amplification rate andN-factor for the experimental setup.

material θ ψ max(−αi) [m−1] N

rigid — — 9.66×10−2 6.6
1 0◦ 0◦ 9.14×10−2 5.4
2 60◦ 0◦ 4.31×10−2 2.1
3 75◦ 0◦ 4.21×10−2 2.0

Fig. 8 shows a “three-dimensional” spatial stability diagram of the flow in the
present experiment. In the spatial model, we prescribe theangular frequencyω and
thespanwise wavenumberβ for a given velocity profile at the streamwise locationx
and solve for the complexstreamwise wavenumberα. The three quantitiesx, α and
β form the coordinates of the stability diagram. Contours of thespatial amplification
rateαi are shown for different slices of the unstable region. The neutral stability
surface is pictured with lines of constant spanwise wavenumberβ . Since wall and
flow are symmetric the stability diagram is also symmetric. It can be seen, that
the maximum amplification rate is located atβ = 0. The unstable region is closed
at largex, due to the favorable pressure gradient in the rear of the wing section.
However, in the wind tunnel experiment the flow becomes turbulent before the end
of the unstable region.
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Fig. 8 Spatial stability diagram for the experimental setup with rigid wall. Fig. 9 Spatial stability diagram for the experimental setup with material 1.

Fig. 10 Spatial stability diagram for the experimental setup with material 2. Fig. 11 Spatial stability diagram for the experimental setup with material 3.



10 M. Zengl, U. Rist

Fig. 9 shows a stability diagram for the isotropic material.The unstable region
is hardly reduced with respect to the rigid case and the maximum amplification rate
is slightly lower. However, the maximumN-factor is reduced from 6.6 down to 5.4.
Depending on the disturbance level of the wind tunnel, this reduction could already
inhibit the breakdown to turbulence.

When using an anisotropic compliant material, the TS-instability could be fur-
ther reduced. The stability diagrams forθ = 60◦ and θ = 75◦ are shown in Fig.
10 and 11 respectively. Here, the unstable region and the amplification rate for
two-dimensional waves is significantly reduced. The unstable region for oblique-
traveling waves is larger than the one for two-dimensional waves and the maximum
amplification rate is located atβ 6= 0. TheN-factor is reduced to 2.1 and 2.0 re-
spectively. In the wind tunnel of P̈atzold et al. thisN-factor leads to inhibition of
laminar-turbulent transition. In cases of high free-stream disturbances the break-
down scenario will be different to the rigid-wall case.

The stability diagrams impressively demonstrate that anisotropic compliant walls
have a higher potential than isotropic compliant walls to delay or even inhibit
laminar-turbulent transition. In case one could actuate the wall of the whole sing
section, it would be possible to keep the flow laminar over theentire wing section.

6 Effect of yawing the anisotropic material

It is still not verified if the compliant skin of delphinidae really helps to delay
laminar-turbulent transition. Inspired by the work of Pavlov[6] we investigated the
effect of yawing the anisotropic material with respect to the flow direction. Pavlov
found out that the structures in the epidermis—so-called dermal ridges—make an
angle to the flow direction. The effect of this angle was previously unclear. Starting
from the materials 2 and 3 we investigated the influence of theyaw angle on the
stability properties of the Blasius boundary layer. The results of yawing the material
2 can be viewed in [11]. In this case, the TS-wave with the highest amplification
moves from a two-dimensional wave to an oblique-traveling wave. The higher the
yaw angle, the higher its spanwise wavenumber. At some yawing angle a FISI be-
comes unstable traveling in the opposing direction of the TS-wave.

Here we want to show different stages of turning material 3 inmore detail. In Fig.
12 a temporal “three-dimensional” stability diagram of theBlasius boundary layer is
shown. The neutral stability surface is displayed by lines of constantβ . The neutral
stability line forβ = 0 is drawn thicker to get an impression how two-dimensional
disturbances are affected. Sections of constantα are shaded with contours of the
temporal amplification rate. The stability diagram is symmetric with the maximum
amplification rate located atβ = 0.

For a yaw angleψ = 36◦ the stability diagram is plotted in Fig. 13 The dia-
gram is clearly asymmetric with highest amplification for right-traveling waves. The
maximum amplification rate is slightly higher than in the unyawed case. However,
two-dimensional waves are more stable.
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Fig. 12 Stability diagram for Blasius boundary layer over material 3. Fig. 13 Stability diagram for Blasius boundary layer over material 4.

Fig. 14 Stability diagram for Blasius boundary layer over material 5. Fig. 15 Stability diagram for Blasius boundary layer over material 6.
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With a yaw angle ofψ = 54◦ two-dimensional waves are significantly more sta-
ble. This can be viewed in Fig. 14. Now left-traveling waves are about as amplified
as right-traveling waves. The stability diagram has a “symmetry-like” appearance.

Increasing the yaw angle further leads to a destabilizationof a FISI-mode. A sec-
ond unstable region caused by the FISI develops forθ = 60◦ as well as forθ = 75◦.
This can be observed in Fig. 15 forψ = 90◦. Here the FISI mode become unstable
for two-dimensional waves first. Note that the FISI can become absolutely unstable.
It is sufficient to make sure that it is temporally stable at all times to prevent this
case which leads to premature transition. For material 6 theamplification rates are
significantly higher than for material 3. While turning of thematerial first promoted
right-traveling TS-instabilities, it now promotes left-traveling TS-instabilities.

We conclude that the behavior of the instabilities when yawing the anisotropic
material is case dependent. There seems to be no general rulehow the single modes
are affected. Note that the TS-mode for material 5 and 6 is a formidable example
of the invalid Squire-theorem, because it first becomes unstable for oblique waves.
It becomes clear that oblique-traveling waves must be takeninto account for all
stability investigations of compliant walls.

7 Transient growth of disturbances over compliant walls

One distinguishes between the asymptotic stability for long times and the transient
stability for short times[7]. Disturbances which are asymptotically stable do not
necessarily have to be monotonically stable. Thus, one can imagine disturbances
that are asymptotically stable, but growtransientlyto high amplitudes which cause
laminar-turbulent transition. When using the compliant wall model in the LST we
encountered a high sensitivity of the eigenvalues to truncation errors. It was previ-
ously unclear if this high sensitivity is due to the numerical scheme, discretization
or a matter of the physical problem. If the high sensitivity of the problem is caused
by the physics, this will be a sign of a high transient growth.

In comparison to the rigid-wall case, a compliant wall causes additional instabil-
ity modes. In Fig. 7 a typical eigenvalue spectrum of the Blasius boundary layer is
plotted forReδ1

= 1000,α = 30×10−5U∞
ν andβ = 65×10−5U∞

ν and the compliant
material 2. One can see two additional modes, which we name “downstream” and
“upstream” FISI-mode. These modes have a high wall deformation with respect to
their amplitudes, and can have negative phase speeds or phase speeds that are faster
than the free-stream velocity. Furthermore, one can see Squire-modes in the spec-
trum since we solve the Squire-equation in combination withthe Orr-Sommerfeld-
equation. These also exist for the rigid wall case, but are mostly not solved for,
because it can be shown that they are always stable.

To investigate the transient growth of disturbances over compliant walls, we use
the method in Schmid and Henningson[8, sect. 4.4]. By superimposing the calcu-
lated instability modes we can determine the transient energy of arbitrary distur-
bances. We use an energy norm that also incorporates the energy of the moving
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wall. With some linear algebra, we can optimize disturbances to have the maximum
growth within a certain time spanτ. Transient energy developments are plotted ex-
emplarily in Fig. 16 forReδ1

= 1000,α = 30×10−5U∞
ν , β = 65×10−5U∞

ν , and a rigid
wall. For the three time transients the energy grows highly in magnitude. At the time
τ where the initial disturbance was optimized for, the curvestouch the curveG(t)
tangentially. The curveG(t) is the envelope of all curves. Its maximum exhibits the
maximal possible transient growth.
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Fig. 17 Time transients of optimal disturbances
for Blasius flow over material 2 withReδ1
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In Fig. 17 three transient energy developments are shown forthe material
2. The transient behavior has changed dramatically. The envelopeG(t) features
strong oscillations in wide parts. The curve forτ = 0.72× 105 ν

U2
∞

shows a simi-
lar development as in the rigid-wall case except for a waviness of the curve. For
τ = 1.14×105 ν

U2
∞

the transient of the energy shows high oscillations and the curve
is very close to the envelope in large parts. The frequency ofthis oscillation corre-
lates with the beat frequency of the two FISI-modes. Since the two modes have a
very similar eigenfunction—having their energy in the same wall-normal region—
they are non-orthogonal with respect to the energy norm.

This shows that there exists another mechanism for the transient growth of distur-
bances. Both mechanisms coexist; in different regions either one of them prevails.
In Fig. 18(a) contours of the maximum ofG(t) are plotted versusα andβ for the
rigid wall. This plot is in excellent agreement with Schmid &Henningson[8]. The
maximum energy growth and its location is listed in Table 3 for the cases we present
here. These values for the rigid wall are accurate to 0.2% with respect to the values
of Butler and Farrell[2].

In Fig. 18(b) contours of the maximum ofG(t) are plotted versusα andβ for
the anisotropic material 2. The contour plot has changed slightly with respect to the
rigid wall case. The location of the maximum transient growth and its magnitude are
hardly effected. For large streamwise and spanwise wavenumbers the mechanism of
the two interfering FISI prevails. However, the magnitude of this mechanism is in
the same order as the classic one. This leads to the conclusion, that the described
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Fig. 18 Comparison of the maximum transient growth in the Blasius boundarylayer atReδ1
=

1000 for rigid wall and material 2.

Table 3 Maximum transient growth and its location.

material Gmax α (Gmax)
[U∞

ν
]

β (Gmax)
[U∞

ν
]

rigid 1515 0 6.51×10−4

2 1521 0 6.53×10−4

sensitivity of the eigenvalues to truncation errors is a numerical problem rather than
a physical phenomenon. In cases the asymptotic stability can be reduced to low
N-Factors by using compliant walls, the effect of transientgrowth can become an
important factor.

8 Conclusion

We have simulated the boundary layer flow over the wing section of the current
experiment using direct numerical simulation. The quantitative comparison of the
integral quantities of the boundary layer and the comparison of the disturbance de-
velopment of a forced Tollmien-Schlichting wave has been successful. An extension
of Carpenters anisotropic compliant-wall model has been devised and the current
numerical schemes are in perfect agreement to results in literature. Investigations
of the stability of the flow in the experiment show that if it was possible to actuate
the wall of the whole wing imitating the behavior of a compliant coating, laminar-
turbulent transition could be inhibited. The introduced yawing of the material with
respect to the fluid direction has the effect that the different instability modes are af-
fected in their promoted propagation direction. The results of the calculations show
that the Squire theorem isnot satisfied. Also the the most unstable wave can be a
three-dimensional one. We conclude that in-depth stability investigations of compli-
ant walls must take three-dimensional instabilities into account. Though we found
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an additional mechanism of transient growth for compliant walls, we have only en-
countered cases where the energy growth is in the same order as for the rigid wall.
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