Linear-stability investigations for flow-control
experiments related to flow over compliant walls

Marcus Zengl and Ulrich Rist

Abstract Results of linear stability calculations and direct nurc@risimulations
for flow-control experiments are presented. Good agreesneetiveen measure-
ments and simulations are shown. Furthermore, the linahilisy of the flow over
the experimental wing section is investigated. Hereby #ie use of isotropic and
anisotropic compliant materials is assessed. The pregalirface-based compliant-
wall model of Carpenter was extended to yaw angles, presstadients and
oblique-traveling disturbances. The influence of the yagleis demonstrated for
an anisotropy angle of 75Also transient-growth of instabilities over the comptian
wall was investigated, since the eigenvalue spectrum ofahgpliant-wall problem
turned out to be sensitive to truncation errors. For therpatars investigated, the
maximum transient growth of the compliant-wall case is ia §ame order as the
growth of the rigid-wall case.

1 Introduction

For flow-control experiments we investigate the flow of 2nilong wing section in
awind tunnel. The experiments are conducted aig&d et al. at the ILR of the TU-
Berlin. The aim of the flow-control experiment is to dampetimicen-Schlichting
(TS) waves by actively actuating a wall using different cohinechanisms. These
experiments are inspired by the use of compliant coatingsdier to dampen or
even inhibit flow instabilities that lead to laminar-turbnt transition. Earlier water
tunnel and towing tank experiments found in literature hslvewn that satisfying
transition delays can be achieved. However, since the fliihe experiment is
air, an adequate compliant material does not exist for thipgse. This can be
pointed out e.g. by the mass ratio of the compliant coatintpeécfluid which is in
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the order of one for the common coatings in water. Theretbeewall of the wing
section is actively actuated in the present experiment ftatenthe behavior of a
compliant coating. This has the advantage, that all thilekadaterial properties can
be investigated.

2 Numerical simulation of the boundary layer over the wing
section

In order to investigate the stability properties of the wasgtion in the wind tunnel
a direct numerical simulation (DNS) of the boundary layenfigas carried out. The
key feature of this simulation is that its free-stream arfibim boundary condition
(BC) was chosen using the measured free-stream velocitbdigon. Therefore,
the simulation depends on a high quality of the measuremehis distribution was
quantified in one Prandtl tube and two hotwire measuremenpaigns. A §'-order
polynomial was then fitted to have the least squares difterém the measurement
points and applied for the free-stream velocity of the satiah. The respective free-
stream velocities are plotted in Fig. 1 over the downstreaondinate. Furthermore,
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Fig. 1 Comparison of free-stream velocity be- Fig. 2 Comparison of displacement and mo-
tween experiment and DNS. mentum thickness between experiment and
DNS.

velocity profiles were measured byt2old et al. at different streamwise positions
using a hotwire. The wall-normal spacing of the measuresesats 0lmm The
inflow velocity profile was chosen such that the momenturnktiess matches the
momentum thickness of the measurements and that the shetpe ifi@atches the
local pressure gradient.

To cross-check the simulation data with the experimenty#hecity profiles and
integral quantities of the boundary layer were comparedridgn 2 the comparison
of the displacement and momentum thickness is plotted séhgustreamwise coor-
dinate for the laminar part of the boundary layer. Here, thendlary layer thickness
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is in the order of a millimeter. Keeping in mind that the boandlayer is very thin,
the experimental and numerical data is in good agreement.

To further scrutinize the agreement of experimental measants and numeri-
cal investigations, a comparison of controlled disturlesneas conducted. For this
purpose a two-dimensional TS-wave of B0was forced by a blowing and suc-
tion slot in the front part of the wing section. Downstreara thisturbances in the
boundary layer were measured bgt®old et al. using hotwire anemometry at dif-
ferent streamwise locations and wall-normal position® fiieasurement data were
then evaluated by the authors. Since the time signal of treénip was measured
simultaneously, the phase of different wall-normal measwants could be related.
The voltage fluctuations were converted to velocity fludaret and then Fourier
transformed. This permits to extract the eigenfunctionthefgenerated TS-wave
as well as the quantification of the background disturbansesording results are
plotted in Fig. 3. The eigenfunctions of the linear stapitiieory are scaled in their
amplitude to match the experimental curves best.
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Fig. 3 Comparison of disturbance amplitude and phase at different positis well as the spa-
tial growth of a TS-wave with a frequency of 389 between the experiment and linear stability
calculations.
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The amplitude and phase of the forced TS-wave are plottesusethe wall-
normal coordinate in Fig. 3(a) for= 440mm The amplitudes of the other resolved
frequencies are plotted in gray as a reference to get an fdba disturbance back-
ground. The magnitudes of both, the background disturlsaand the forced TS-
wave, are of the same order. The amplitude and phase of tbedfalisturbance do
not match well to the linear stability results.

At x=480mmthe agreement between experiment and LST is much betterisThi
plotted in Fig. 3(b). Here the background disturbances anagnitude smaller than
the forced TS-wave. The amplitude only deviates at the pailusest to the wall.
The region closest to the wall is very sensitive to small ations of the hotwire,
because here the velocity gradient is highest. Also the mekotity is very low
so that free convection could deteriorate the results.drrelgion of the phase shift,
small differences in the phase can be ascribed to the lowitudelratio with respect
to the background noise in this region.

In Fig. 3(c) is the comparison for= 520mm The amplitude of the forced wave
is further increased with respect to the background disturbs. In the outer re-
gion amplitude and phase are in good agreement with thefeigeton of the LST.
In the inner region the amplitude distribution is differefhis is a sign for three-
dimensionality. The two-dimensional wave is unstable ted¢hdimensional distur-
bances and deforms. Shortly downstream of this locatian|aminar flow breaks
down making comparisons to the linear theory futile.

In Fig. 3(d) a comparison of the streamwise disturbancek&ump development
between the measured disturbance, DNS and LST is shown. fTiwdawere used
to define the amplitude. One is the inner maximum of the aogididistribution, and
the other is the outer maximum. The amplitudes of the LST aN& Were scaled to
match at the point where the eigenfunctions matched bestll 8aviations between
LST and DNS are due to nonparallel effects.

The comparison of the controlled disturbance shows thaiditgtive compari-
son is feasible. Keeping in mind that the presented distudaneasurements are in
the order of 003% of the free-stream velocity, while the displacementkhess is
in the order of Gmmthe comparison to the experiment is satisfactory. The base-
flow of the DNS can be used to calibrate and design flow contgardhms. Also
it enables us to investigate the potential of different cihamp-wall parameters.

3 Extended Anisotropic Wall Model

Inspired by the compliant skin of delphinidae a surfacesdamodel of a compli-
ant wall is implemented in the linear stability theory. Ray6] investigated the
skin of harbor porpoise and came to the result that its canpkkin not only be-
haves anisotropic but also its dermal ridges make an andleetsurface stream
line. Carpenter et al. developed an anisotropic compliaiit nvodel[3], and imple-
mented it in a framework for two-dimensional disturbandeour implementation
the anisotropic wall model of Carpenter is extended to actiou three-dimensional
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disturbances and a yaw angle of the material. Furthermareingplementation is
suited for flows with pressure gradients, because an irdlegtoint of the stream-
wise velocity is not assumed at the wall.

The solution of the linear stability equations—the Orr-Scenfeld and the
Squire equation—using our extended anisotropic wall modtdrd from the so-
lution for a rigid wall. The boundary condition of the Orri8merfeld equation
contains the variable of the Squire equation. Therefore cthssic way of solving
the Orr-Sommerfeld equation first and then solving the ®geguation to obtain
the eigenfunction is not feasible. Both equations are axiphd have to be solved
in combination.

In Fig. 4 is a sketch of the extended anisotropic compliaritnvadel. A flexible
plate is bound to a rigid base with stiffeners. Springs amdps are attached to the
stiffeners. These form an angfeto the base and an angleto the flow direction.
A sectional sketch of the deformed wall is shown in Fig. 5. Thass section has
the angley to the flow direction. Note the longitudinal stretch of theitde plate
which is visible by varying distances between its attachrpeints to the stiffeners.
This stretch is induced by the differential motion of the wliarms, leading to a
restoring force to the original form.

00
&
’\\O\N//')V y\ flow
y " A _—— J—
\ ‘ -l X / -
; \ b ‘a \ri id base )
> SO o 9

Fig. 4 Sketch of the compliant-wall model. Fig. 5 Sectional view of the wall model.

The wall parameters can be reduced to the non-dimensionalitjes
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These coefficients account for theass ratio G, spring stiffness  flexural rigid-

ity Cp, and theinduced tension dn the plate, caused by the differential motion of
the swivel arms. The wall parameters are reflectedvtmyng’s modulus & Pois-
son’s ratio vy, plate densitypm,, plate thickness B, and thespring stiffness K.
The flow parameters are reflected flyid densityp, kinematic viscosity and the
reference velocity LJ. The parameters for the calculations presented in thisrpape
are listed in Table 1. Since there is an abundance of pogsibéameters the present
wall parameters were taken from Carpenter[3]. They weraropéd to reduce the
amplification of TS-waves, while flow-induced surface ihdities (FISI) are kept
stable.
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Table 1 Compliant wall parameters of the investigated compliant mdseria

material 8 W c c” cl” c

1 (g 0° 1.464x 100  4.443x10°° 1.208x102 —

2 60° 0° 2.211x 10° 7.405x 108 1529x10° 2.814x10°
3 75 0° 5.777x 10? 1.983x 106 2281x10"  6.152x 1%
4 75 36 5.777x 10? 1.983x 106 2281x10"  6.152x 1%
5 75 54 5.777x 107 1.983x 106 2281x10"  6.152x 1%
6 75 o 5.777x 107 1.983x 106 2281x10"  6.152x 1%

4 Numerical Implementation of the Linear Stability Equations

For the solution of the Orr-Sommerfeld and Squire-equatienuse two numeri-
cal schemes. One scheme formulates the equations as a bpuatle problem.
These are then solved withshooting methadThe other scheme formulated the
equations as an eigenvalue problem. Here the eigenval@esafrix are solved, so
we will refer to it asmatrix method Both schemes have their specific advantages
and disadvantages. The shooting method solves for onevaigefmode using an
initial guess. Its computational expense is proportiongdhe number of used dis-
cretization points. It suits well to calculate eigenvalaesl eigenfunctions with a
high accuracy. Also it can be used to calculate “three-dsiweral” stability dia-
grams, i.e. diagrams with varying parametgreamwise wavenumbaer, spanwise
wavenumbe and streamwise locatianin a matter of minutes to high accuracy.
The matrix method solves for all eigenvalues at the same. fithiss ensures that
no instability mode can be missed. Its computational exp&proportional to the
number of discretization points to the power of three. Itsuiell to calculate tran-
sient growth of disturbances. Also its eigenvalues can bd as an initial guess of
the shooting method.

The “shooting-method” The stability equations are formulated as in [5, sect.
2.5.2]. This has the advantage that the baseflow appears eqgtiations only with
its first derivative. In the free-stream the three base swiatof parallel flow which
decay towards infinity are prescribed. The six first-ordaragigns are then inte-
grated from the free-stream to the wall using a standard &#agta scheme. The
baseflow of the semi-steps is interpolated using a cubiosphence the baseflow
can also be non-equidistant. Since the three integratezdumdistions grow towards
the plate with different growth rates, truncation errorthef slower growing solution
grow with higher rates and pose a numerical problem. Thiblpro is overcome by

a technique proposed by[4]. After a given number of Rung#steps the three
base solutions are orthonormalized to eliminate the nwakerrors. At the wall
the base solutions are then combined to fulfill two of theehreundary conditions.
The residual of the third boundary condition is then miniedizising common root-
finding techniques, such as the Newton-Raphson or ti#eMmethod. Note that
for these two methods the residual of the boundary conditiost be an analytic
function of the eigenvalue or w that is solved for, but the phase of this complex
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quantity can be arbitrary if no special precautions arertakberefore, we scale the
phase of the residual with the phase of the disturbance yness the wall. This
creates a very good convergence behavior. The trade-tifighiie shooting method
does not converge to Squire-modes, because their distelpaassure is zero at the
wall. Using the shooting method one can solve for both, tlagialbamplification or
the temporal amplification using the same algorithms.

The “matrix method” For the matrix method the stability equations are posed
as an eigenvalue problem. The equations are formulatedand w, constitut-
ing the Orr-Sommerfeld and Squire-equation. We use a pspedtral colloca-
tion method for discretization, using Chebyshev-Gaudsaltio points. Special at-
tention has been paid to the calculation of the differeistiamatrices. Since the
equations contain the fourth derivative, truncation extteave to be avoided wher-
ever possible. The differentiation matrices were set upgugie recursion formula
of Welfert[10, eq. 7] for the off-diagonal elements, and thegative sum trick”
of Baltensperger[1] for the diagonal elements. The difitiegion matrices are af-
terwards transformed using the rational mapping that i€riesd in Schmid &
Henningson[8, sect. A.4]. Currently, incorporating thengdiant wall only the tem-
poral model is implemented in the matrix scheme. Even thahghemporal prob-
lem states a linear generalized eigenvalue problem, treneddue appears in the
compliant-wall BC quadratically. Therefore, we linearthe boundary condition,
e.g.[9]. The resulting generalized eigenvalue problerhés tsolved using the QZ-
algorithm.

A comparison of the current implementation to Carpentessits{3] is shown
in Fig. 6. The neutral stability curve is plotted versus theyRolds number based
on displacement thickne$s, . Results for a rigid wall, an anisotropic compliant
material, i.e8 = 0, and two anisotropic compliant materials are presentied neu-
tral stability curves are in very good agreement, and viditlae present numerical
scheme. Note that not only the area encircled by the nediatailisy line is reduced,
the maximum amplification rate is also smaller. Using amggot materials the am-
plification of TS waves can be reduced even more than usitigpEo materials. A
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typical eigenvalue spectrum incorporating the compliaait i8 shown in Fig.7. The
open and filled symbols denote eigenvalues of the matrix ogefrhe filled symbols
are eigenvalues found by the shooting method. Note thattbeting method does
not converge for the continuous spectrum, since there gidual of the boundary
condition is not zero at a discrete location.

5 Further stability investigations of the experimental setip

Stability calculations of the experimental flow were catr@ut to investigate how
far a compliant wall would be able to delay or even inhibit laan-turbulent tran-
sition. Here, again the optimized parameters of Carpentrewsed. Note that
Patzold et al. actuate the wall in a small region, and that dlleving diagrams
apply to the case where the surface of the whole wing sediactively actuated.
Hence they are somewhat idealized. Valuegot= 2457 andv = 1.54 x 1(T5§
were used for the non-dimensionalization of the wall patanse

Since the Squire-theorem does not apply for growing boynldaers over com-
pliant walls, we have to account for three-dimensionalulisinces as well. The
maximum spatial amplification rate and tNefactor (i.e.— [ ajdx) is given in Ta-
ble 2 for the calculations of the different materials. Cdesable reduction of both
the maximum growth rate as well as tNefactor are achieved by applying the com-
pliant surfaces.

Table 2 Maximum spatial amplification rate amdtfactor for the experimental setup.

material 8 ¢ max(—a)[mY N

rigid — — 9.66x102 6.6
1 0 0° 914x10°72 5.4
2 60 0° 4.31x10°?2 2.1
3 75 0° 421x10°? 2.0

Fig. 8 shows a “three-dimensional” spatial stability deagrof the flow in the
present experiment. In the spatial model, we prescribarigelar frequencyo and
thespanwise wavenumbgrfor a given velocity profile at the streamwise location
and solve for the complestreamwise wavenumber. The three quantitieg o and
B form the coordinates of the stability diagram. Contourdefpatial amplification
rate a; are shown for different slices of the unstable region. Thetnaé stability
surface is pictured with lines of constant spanwise wavéyanfi. Since wall and
flow are symmetric the stability diagram is also symmetriccdn be seen, that
the maximum amplification rate is locatedfat= 0. The unstable region is closed
at largex, due to the favorable pressure gradient in the rear of thg wection.
However, in the wind tunnel experiment the flow becomes teriitbefore the end
of the unstable region.
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Fig. 9 shows a stability diagram for the isotropic materide unstable region
is hardly reduced with respect to the rigid case and the maximmplification rate
is slightly lower. However, the maximuid-factor is reduced from.6 down to 54.
Depending on the disturbance level of the wind tunnel, taikiction could already
inhibit the breakdown to turbulence.

When using an anisotropic compliant material, the TS-inktalzould be fur-
ther reduced. The stability diagrams fér= 60° and 6 = 75° are shown in Fig.
10 and 11 respectively. Here, the unstable region and thdifaragion rate for
two-dimensional waves is significantly reduced. The uristaegion for oblique-
traveling waves is larger than the one for two-dimensioraleg and the maximum
amplification rate is located @& =# 0. The N-factor is reduced to.2 and 20 re-
spectively. In the wind tunnel ofd@zold et al. thisN-factor leads to inhibition of
laminar-turbulent transition. In cases of high free-stiedisturbances the break-
down scenario will be different to the rigid-wall case.

The stability diagrams impressively demonstrate thatrapic compliant walls
have a higher potential than isotropic compliant walls téageor even inhibit
laminar-turbulent transition. In case one could actuagevall of the whole sing
section, it would be possible to keep the flow laminar overdtigre wing section.

6 Effect of yawing the anisotropic material

It is still not verified if the compliant skin of delphinidaeally helps to delay
laminar-turbulent transition. Inspired by the work of Rafb] we investigated the
effect of yawing the anisotropic material with respect te tlow direction. Pavlov
found out that the structures in the epidermis—so-callechderidges—make an
angle to the flow direction. The effect of this angle was prasly unclear. Starting
from the materials 2 and 3 we investigated the influence ofyive angle on the
stability properties of the Blasius boundary layer. Theiltsf yawing the material
2 can be viewed in [11]. In this case, the TS-wave with the &sglamplification
moves from a two-dimensional wave to an oblique-traveliraysv The higher the
yaw angle, the higher its spanwise wavenumber. At some ypaigle a FISI be-
comes unstable traveling in the opposing direction of thevESe.

Here we want to show different stages of turning materialr@ame detail. In Fig.
12 atemporal “three-dimensional” stability diagram of Biasius boundary layer is
shown. The neutral stability surface is displayed by linesomstant3. The neutral
stability line for 8 = 0 is drawn thicker to get an impression how two-dimensional
disturbances are affected. Sections of constaatre shaded with contours of the
temporal amplification rate. The stability diagram is synmievith the maximum
amplification rate located & = 0.

For a yaw anglep = 36° the stability diagram is plotted in Fig. 13 The dia-
gram is clearly asymmetric with highest amplification fght-traveling waves. The
maximum amplification rate is slightly higher than in the amgd case. However,
two-dimensional waves are more stable.
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With a yaw angle ofy = 54° two-dimensional waves are significantly more sta-
ble. This can be viewed in Fig. 14. Now left-traveling waves about as amplified
as right-traveling waves. The stability diagram has a “sytiglike” appearance.

Increasing the yaw angle further leads to a destabilizati@F1SI-mode. A sec-
ond unstable region caused by the FISI develop®fer60® as well as fo8 = 75°.
This can be observed in Fig. 15 fgr= 90°. Here the FISI mode become unstable
for two-dimensional waves first. Note that the FISI can beeaimsolutely unstable.
It is sufficient to make sure that it is temporally stable atiates to prevent this
case which leads to premature transition. For material Gthglification rates are
significantly higher than for material 3. While turning of timaterial first promoted
right-traveling TS-instabilities, it now promotes lefaveling TS-instabilities.

We conclude that the behavior of the instabilities when yamthe anisotropic
material is case dependent. There seems to be no generabmilbe single modes
are affected. Note that the TS-mode for material 5 and 6 igraiftable example
of the invalid Squire-theorem, because it first becomesabiestfor oblique waves.

It becomes clear that oblique-traveling waves must be tak&naccount for all
stability investigations of compliant walls.

7 Transient growth of disturbances over compliant walls

One distinguishes between the asymptotic stability fogltmes and the transient
stability for short times[7]. Disturbances which are asymtipally stable do not
necessarily have to be monotonically stable. Thus, one magine disturbances
that are asymptotically stable, but grésansientlyto high amplitudes which cause
laminar-turbulent transition. When using the compliantlwabdel in the LST we
encountered a high sensitivity of the eigenvalues to triimigarrors. It was previ-
ously unclear if this high sensitivity is due to the numergmeheme, discretization
or a matter of the physical problem. If the high sensitivifytee problem is caused
by the physics, this will be a sign of a high transient growth.

In comparison to the rigid-wall case, a compliant wall causgditional instabil-
ity modes. In Fig. 7 a typical eigenvalue spectrum of the Bboundary layer is
plotted forRes, = 1000, = 30x107°%= andB = 65x10-°%= and the compliant
material 2. One can see two additional modes, which we nameristream” and
“upstream” FISI-mode. These modes have a high wall defoaomatith respect to
their amplitudes, and can have negative phase speeds @ gbeeds that are faster
than the free-stream velocity. Furthermore, one can segesquodes in the spec-
trum since we solve the Squire-equation in combination withOrr-Sommerfeld-
equation. These also exist for the rigid wall case, but arstipamot solved for,
because it can be shown that they are always stable.

To investigate the transient growth of disturbances overgiant walls, we use
the method in Schmid and Henningson[8, sect. 4.4]. By sogersing the calcu-
lated instability modes we can determine the transientggnef arbitrary distur-
bances. We use an energy norm that also incorporates thgyeofethe moving
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wall. With some linear algebra, we can optimize disturbarioehave the maximum
growth within a certain time span Transient energy developments are plotted ex-
emplarily in Fig. 16 foiRes, = 1000,a = 30x10 9=, B = 65x10 5%, and arigid
wall. For the three time transients the energy grows higinfylagnltude Atthe time

T where the initial disturbance was optimized for, the cuteegh the curves(t)
tangentially. The curvé&(t) is the envelope of all curves. Its maximum exhibits the
maximal possible transient growth.
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In Fig. 17 three transient energy developments are showrthi®rmaterial
2. The transient behavior has changed dramatically. Thele[meG( ) features
strong oscillations in wide parts. The curve foe= 0.72 x 105 shows a simi-
lar development as in the rigid-wall case except for a Wasrm‘ the curve. For
T=114x% 105U2 the transient of the energy shows high oscillations and tineec
is very close to the envelope in large parts. The frequendkisfoscillation corre-
lates with the beat frequency of the two FISI-modes. Sineettio modes have a
very similar eigenfunction—having their energy in the sanadiawormal region—
they are non-orthogonal with respect to the energy norm.

This shows that there exists another mechanism for thei¢ratrgrowth of distur-
bances. Both mechanisms coexist; in different regiongeine of them prevails.
In Fig. 18(a) contours of the maximum Gf(t) are plotted versua andf3 for the
rigid wall. This plot is in excellent agreement with Schmidgznningson[8]. The
maximum energy growth and its location is listed in Tabler2fie cases we present
here. These values for the rigid wall are accurate. 28®with respect to the values
of Butler and Farrell[2].

In Fig. 18(b) contours of the maximum @(t) are plotted versus andf3 for
the anisotropic material 2. The contour plot has changetithyi with respect to the
rigid wall case. The location of the maximum transient gtoaud its magnitude are
hardly effected. For large streamwise and spanwise wavkersithe mechanism of
the two interfering FISI prevails. However, the magnitudehis mechanism is in
the same order as the classic one. This leads to the contlubat the described
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Fig. 18 Comparison of the maximum transient growth in the Blasius bounkegmsr atRes, =
1000 for rigid wall and material 2.

Table 3 Maximum transient growth and its location.

material Gmax @ (Gmad) [%2]  B(Gmax) [%2]
rigid 1515 0 651x 104
2 1521 0 653x 104

sensitivity of the eigenvalues to truncation errors is a edoal problem rather than
a physical phenomenon. In cases the asymptotic stabilitybeareduced to low
N-Factors by using compliant walls, the effect of transigriwth can become an
important factor.

8 Conclusion

We have simulated the boundary layer flow over the wing seatiothe current
experiment using direct numerical simulation. The quatitie comparison of the
integral quantities of the boundary layer and the compargfdhe disturbance de-
velopment of a forced Tollmien-Schlichting wave has beatsessful. An extension
of Carpenters anisotropic compliant-wall model has beefisdd and the current
numerical schemes are in perfect agreement to resultsematitre. Investigations
of the stability of the flow in the experiment show that if it sypossible to actuate
the wall of the whole wing imitating the behavior of a compli@oating, laminar-
turbulent transition could be inhibited. The introducedviyay of the material with
respect to the fluid direction has the effect that the diffenestability modes are af-
fected in their promoted propagation direction. The resoitthe calculations show
that the Squire theorem it satisfied Also the the most unstable wave can be a
three-dimensional one. We conclude that in-depth stghiltestigations of compli-
ant walls must take three-dimensional instabilities intocaunt. Though we found
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an additional mechanism of transient growth for compliaalisy we have only en-
countered cases where the energy growth is in the same arfarthe rigid wall.
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