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ABSTRACT

The present paper is intended to give an introduction and an overview on instability and transi-
tion mechanisms found in generic pressure-induced laminar separation bubbles. These bubbles
have been generated by imposing an external positive stream-wise pressure gradient on a lami-
nar boundary layer 
ow along a smooth 
at plate. Using velocity pro�les extracted at various
streamwise stations for a local stability analysis based on the Orr{Sommerfeld equation it is
shown that linear primary instability is a valid tool to describe the initial disturbance devel-
opment. Then, linear stability theory is used to clarify the competition between the so-called
\Tollmien{Schlichting instability" of the boundary layer and the so-called \Kelvin{Helmholtz
instability" of a mixing layer, followed by a further re�nement of the border between `convective'
and `absolute' instability. Non-linear scenarios are investigated by DNS. They show a dramatic
in
uence of small upstream disturbances on the mean 
ow of the laminar separation bubble.
Next, transition scenarios are investigated, analysed and compared to each other. It turns out
that secondary instability doesn't play the same remarkable role as in an attached boundary
layer. In fact, large-amplitude 2-D 
uctuations can control the re-attachment process to a large
extent. The fastest transition to turbulence is found to occur when moderately oblique waves
interact with each other. This mechanism directly yields to small-scale turbulence, as well as
longitudinal vortices in the re-attachment zone. For large enough laminar separation bubbles a
new instability mechanism has been identi�ed which ampli�es small-amplitude 3-D disturbances
in the re-attachment zone. Finally, the author's view on receptivity, 
apping and the bubble
bursting process is presented. Hence, the present investigations concentrate on di�erent insta-
bility mechanisms and their possible contributions to laminar-turbulent transition in laminar
separation bubbles based on research performed by the author.

1.0 INTRODUCTION

Laminar separation bubbles (LSBs) are a typical phenomenon of low Reynolds number aero-
dynamics. They may appear on aircraft like small unmanned aerial vehicles (UAVs), on the
wings of man-carrying sail planes, on the vanes of turbo-machines, on the blades of wind-energy
converters, and even on the slats of large commercial jet-powered airliners. A prerequisite for
their occurrence is a laminar boundary layer facing a too large pressure rise in streamwise di-
rection (i.e. an adverse pressure gradient), transition to turbulence of the separated shear layer
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Figure 1: Schematic illustration of a transitional laminar separation bubble. S = laminar
separation, R = re-attachment, T = transition, �T = spreading angle of turbulence.

Figure 2: Snapshot visualisation of a laminar separation bubble in the water channel of IAG
(Lang, 2002).

and re-attachment to the wall of the turbulent boundary layer. This is illustrated in Fig. 1. In
such an idealized (or time-averaged) view one observes a separation point (S), a vortex inside
the LSB and a transition point (T) with an ensuing turbulent wedge (�T ) that re-attaches to
the wall at a re-attachment point (R).

An experimental realisation of a LSB is shown in Fig. 2 which has been taken in the so-called
laminar water channel of our institute (IAG), which is a research facility for studying basic 
uid
dynamical problems [18]. Hydrogen bubbles have been generated by an electrically heated wire
close to the wall upstream of separation and a dye called Rhodamin has been introduced into
the separation bubble. With the help of a laser light sheet oriented in streamwise direction
the main features become apparent. They consist of a separating laminar boundary layer1, a
separation zone underneath the detached shear layer, and an almost periodic vortex shedding
at the downstream end of the bubble. Such a snapshot visualisation of the instantaneous 
ow
�eld is in considerable contrast to the picture of the time averaged mean 
ow typically found in
literature (e.g. Fig. 1). Strictly speaking the idealized picture of Fig. 1 never exists. The three
main di�erences between the real 
ow and its idealization are the unsteady vortex shedding
instead of a steady (turbulent) re-attachment, no de�nite transition point, nor a turbulent
wedge, and a series of re-attachment and separation points that move downstream with the
shed vortices which may be called the \coherent structures" of the turbulent boundary layer.

A sketch of the 
ow physics which are supposed to be present in a LSB is given in Fig. 3.
Similar to boundary layer transition one assumes a receptivity process (1) which transforms
free-stream disturbances, sound and roughness into boundary layer disturbances. Once present,
these are ampli�ed by linear stability (2) in the ensuing boundary layer which leaves the wall
at `S'. When they attain �nite amplitudes, non-linear interactions (3) may take place leading to
laminar-turbulent transition and in due course to a turbulent boundary layer after re-attachment.
Due to the reverse 
ow near the wall an upstream feedback (4) of disturbances inside the LSB
can be assumed as well.

1the term \free shear layer" typically found in literature is deliberately avoided here, because of the continuing
in
uence of the wall after separation, see sec. 3.3
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Figure 3: Instability and transition mechanisms in a laminar separation bubble after Dovgal et
al., 1994 [7].

The present paper will present an overview on recent (theoretical) research on laminar sep-
aration bubbles at IAG, University of Stuttgart. Only pressure-induced laminar separation
bubbles that occur on a smooth surface will be treated. The reader who is interested to see
whether similar e�ects occur in roughness-induced laminar separation bubbles (i.e., behind or in
front of steps) may start with reviews like Tani (1964) [38], Dovgal et al. (2001) [7] or Boiko et

al. (2001) [4] and the references therein. Especially the last two reviews contain many references
to experimental work for pressure-induced LSBs, in particular from Russia.

The aim of the present contribution is to shed more light on the largely unknown instabilities
of transitional laminar separation bubbles and their contribution to laminar-turbulent transition.
As a rule, the reader should be aware that \the laminar separation bubble" as a unique or
universal feature does not exist. Rather, each bubble depends on the characteristics of the
arriving laminar boundary layer, the ensuing pressure gradient, and, not to the least, on the
background disturbance level and spectrum of the incoming 
ow, as will be shown further down.
In an attempt to control the in
uence of the disturbance background as far as possible, most
of the present work is based on DNS with carefully selected disturbance combinations with the
intention of isolating and understanding di�erent mechanisms.

The paper is organized as follows. Section 2 introduces the numerical methods used, direct
numerical simulation (DNS) and linear stability theory (LST). Key results are presented in
section 3, starting with investigations of the linear (primary) instability of separation bubble

ows, which also include the in
uence of the wall and an investigation of the border between
absolute and convective instability. Using DNS the in
uence of disturbance amplitudes on bubble
size is illustrated, followed by a comparison of di�erent generic secondary instability scenarios,
direct 3-D disturbance ampli�cation due to oblique breakdown, and a newly found absolutely
unstable secondary instability mechanism. The fourth section presents some LSB related aspects
which have not yet been treated to the same depth as the previous ones. These are receptivity
issues of a laminar separation bubble, `
apping', and the issue of \bubble bursting". The �fth
section presents the conclusions and an outlook.

2.0 METHODS OF INVESTIGATION

Because of the high sensitivity of the 
ow with respect to intrusive measurement techniques
and the diÆculties of computing the 
ow �eld via boundary-layer or Reynolds-averaged Navier{
Stokes (RANS) equations, our research relies primarily on direct numerical simulations (DNS)
based on the complete Navier{Stokes equations, backed by linear stability theory, wind tunnel
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Figure 4: Integration domain for the DNS of instability and transition in a laminar separation
bubble.

and (non-intrusive) water channel experiments. Using Laser-Doppler Anemometry (LDA) and
Particle-Image Velocimetry (PIV) it is now possible to measure unsteady 
ow quantities without
in
uencing the 
ow, but this will not be discussed further here. Other numerical methods, like
RANS or Large-Eddy Simulation (LES) are not covered here, either. The �rst because it doesn't
cover the unsteady 
ow physics, the second because it is not yet well proven for transitional

ows.

2.1 DNS Method

We consider the incompressible 
ow over a portion of a 
at plate with a free-stream pressure
gradient speci�ed at the upper boundary of the according integration domain (y = ye, see
Fig. 4). The coordinate system is chosen such that the coordinate x corresponds to the free-
stream 
ow direction (along the 
at plate), y is the direction normal to the plate, and z the
spanwise direction. The according velocity components are called u, v, and w. The method
described in [8, 32] and [23, 30] is used. It is based on a vorticity-velocity formulation of the
Navier{Stokes equations, discretised by fourth-order accurate �nite di�erences in x- and y-
direction and a Fourier ansatz in z, i.e. periodicity with a prescribed wavelength �z is assumed
in z. Time integration of the vorticity transport equation is performed via an explicit Runge-
Kutta scheme of fourth-order accuracy. Here, DNS is used for two purposes: (i) to calculate a
steady two-dimensional base 
ow that can be used for linear stability (cf. section 2.2), and (ii)
to compute the unsteady three-dimensional disturbance 
ow that results from unsteady forcing
at the boundaries of the integration domain.

To create a laminar separation bubble a steady laminar boundary layer is speci�ed at the
in
ow boundary of the integration domain together with a function Up(x) at the free-stream
boundary y = ye. Typically, the latter contains a region of local adverse pressure gradient
that causes the laminar boundary layer to separate and to re-attach a short distance further
downstream (see Fig. 5 further down). In such a case, a steady two-dimensional base 
ow can
be computed independently from the investigation of disturbances, as in [32] and [35]. However,
for suÆciently large streamwise pressure gradients or high enough Reynolds numbers the 
ow
becomes unsteady and splitting into a steady base 
ow and an unsteady disturbance 
ow is no
longer possible. But this causes no severe problem since the computations are performed in an
unsteady total-
ow formulation then. Large displacements of the laminar separation bubble will
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cause changes in the free-stream velocity at y = ye. Based on the viscous-inviscid interaction
model of Veldman [40], Maucher [23] has constructed a procedure to update Up(x) which allows
to compute 
ow �elds that are basically independent from ye [23]. However, this feature is not
used in the following computations.

Wall boundary conditions as in [32] and out
ow conditions which contain the bu�er domain
of [17] complement the speci�cation of the problem. The boundary conditions at the wall include
the possibility to introduce disturbances via blowing and suction in a narrow disturbance strip
placed upstream of the bubble. Within the strip the v0-velocity component is prescribed as a
function of x, z, and t. This constitutes an elegant method to introduce any kind of unsteady,
steady, two- or three-dimensional disturbances, or any combinations thereof [32]. Because of the
assumption of spanwise symmetry any single harmonic, three-dimensional forcing will generate
a pair of oblique waves.

2.2 Linear Stability Theory

In linear stability theory (LST) one works with a local and linearized version of the Navier{Stokes
equations, the so-called Orr{Sommerfeld equation (cf. White [42] or Schlichting [36])

(U � !=�)
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!
= 0 : (1)

This is based on the assumptions of an incompressible 
uid, the so-called parallel-
ow ap-
proximation (i.e. only wall-parallel 
ow U(y), no base-
ow gradients in x), small disturbance
amplitudes and normal disturbance modes of the kind

v(x; y; z; t) = � ~v(y) expi(�x+
z�!t)+ c:c: ; (2)

� =
q
�2 + 
2 Re =

�

�
Re ; (3)

where Re is the Reynolds number, � is an amplitude, ~v(y) stands for the (complex) disturbance
eigenfunction, i is the imaginary unit, � a streamwise wave number, 
 a spanwise wave number,
! the circular frequency, and c:c: denotes the complex conjugate. The normalized frequency !
of LST is related to the physical frequency f [Hz] via

! = 2� f L=U1 ; (4)

where L is the reference length in Re = U1L=�. Two-dimensional disturbances are obtained
for 
 = 0 and three-dimensional modes 
 6= 0 travel in oblique directions with an angle of

 = atan(
=�) (5)

relative to the x-axis.
The solution of equation (1) consists of solving an eigenvalue problem either for � or for !

(depending on the choice which of the two is prescribed by the user). Complex � means spatial
ampli�cation if �i is negative, and complex ! stands for temporal ampli�cation if !i > 0. Dif-
ferent methods to solve the Orr{Sommerfeld equation are available (e.g., Alam & Sandham [1],
or Allen & Riley [2], Gaster [11], Michalke [25]). Basically a so-called \shooting method" which
solves for the most unstable eigenvalue can be constructed or a \matrix method" which com-
putes every eigenvalue of the discretised equation (including the so-called discrete spectrum).
We have chosen a discretisation of the y-derivatives using sixth-order accurate �nite di�erences
on a �ne grid and EISPACK routines to solve the eigenvalue problem. The computer codes
have been veri�ed by comparisons with results published in literature, DNS and by comparing
results of the two methods.
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3.0 RESULTS

In the following subsections we present comparisons of DNS results with linear stability theory
(LST), several investigations based on LST related to the in
uence of the wall on the free
shear-layer instability and on the possible occurrence of an absolute instability. Then, DNS
will show the non-linear in
uence of the disturbances on the mean 
ow and we shall compare
several mechanisms associated with the question of how can turbulence (which is inherently
three-dimensional) arise in a 
ow that is dominated by two-dimensional instabilities.

3.1 Base Flow

The subsequent examples are all presented for Re = U1 �L=� = 100000, where L is an arbitrary
reference length used for normalisation of the coordinates. For a Blasius boundary layer the
x-coordinate can be converted to the Reynolds number based on the displacement thickness Æ�

via Re� = 1:72077
p
x �Re. This is always possible at the in
ow boundary of the integration

domain because all 
ows start with the Blasius boundary layer at in
ow. Further downstream
Re� increases much faster than for the Blasius boundary layer due to the displacement e�ects
of the 
ow with laminar separation bubble.

The streamwise velocity Up(x) used to create a LSB for the subsequent investigations is
compared to many classical boundary layer parameters in Fig. 5. The wall pressure rises in
accordance with the Bernoulli equation so that the laminar boundary layer separates near the
centre of the adverse pressure gradient region. A constant pressure plateau after separation in
1� pw is not observed, however. The wall shear becomes negative inside the bubble and asymp-
totically recovers towards the Blasius value downstream of the LSB. The separation streamline
of the bubble exhibits a quasi-symmetrical lens-like shape. The displacement thickness Æ� and
the shape factor H = Æ�=� (� = momentum thickness) increase considerably around the bub-
ble. Separation and re-attachment occur around H � 3:8 � 3:9, i.e. at somewhat lower values
than for a Falkner{Skan boundary layer at separation. Accordingly, the shape parameter Æ��=�
(Æ�� = energy thickness) at (S) and (R) is also di�erent from Æ��=� = 1:515 because the present
results are from a full Navier{Stokes simulation and not from a similarity solution.

An illustration of the complete 
ow �eld is given in Fig. 6 using streamlines, some charac-
teristic velocity pro�les and vorticity contours. The reverse 
ow in the present bubble is rather
small with accordingly small negative vorticity inside it. The vorticity maximum of the bound-
ary layer leaves the wall already well upstream of separation. After re-attachment the vorticity
close to the wall becomes rather constant in agreement with Fig. 5 a).

3.2 Primary Instability

Classical linear stability theory (cf. subsection 2.2) considers the instability of a velocity pro�le
with respect to small two- or three-dimensional disturbances. Since this is the �rst instability
in a sequence leading to turbulence, it is also called \primary instability".

Our present knowledge of the primary instability of laminar separation bubbles stems mainly
from some theoretical investigations based on hypothetical, free shear-layer like base-
ow pro�les
or modi�cations thereof [2, 7, 11, 13, 26, 27]. These have the advantage that the in
uence of
parameter variations can be easily studied. But such pro�les do not correspond to an actual 
ow
�eld that ful�ls the Navier-Stokes equations. In addition, a local analysis neglects the streamwise
structure of the 
ow (so-called nonparallel e�ects). However, in direct quantitative comparisons
of DNS results with linear stability theory based on base- or mean-
ow pro�les of the simulations
we have already shown that small-amplitude disturbances evolve in an extremely good agreement
with linear stability theory despite its approximate manner. This is con�rmed in Fig. 7 where
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the normal-to-the wall maxima of the streamwise velocity 
uctuation u0 for Tollmien-Schlichting
waves with di�erent propagation angle relative to the base 
ow are displayed. A more complete
description of these results can be found in [33] and [35], for instance.

These results also show that the disturbance growth with downstream coordinate x increases
in a very gradual way already well upstream of the separation point (S). In consequence, there
is no reason to distinguish between a free shear layer or `Kelvin-Helmholtz' instability and the
TS-instability of a boundary layer.

The complete stability diagram (for 2-D disturbances only) of the present LSB is displayed
in Fig. 8 in comparison with the one for the Blasius boundary layer (dp=dx = 0) at in
ow.
For the bubble a much wider region of unstable frequencies appears together with much larger
(about 16-fold) ampli�cation rates in the centre of the bubble. Downstream of the laminar
separation bubble the instability returns to that of a Blasius boundary layer in accordance with
the relaxation of the base 
ow shown in Fig. 5.

3.3 In
uence of the Wall

A quantitative investigation of the in
uence of the wall on linear stability theory results has
been performed [30, 35]. Figure 9 illustrates the �ndings of that research for two di�erent wall
distances of the \free shear layer". The dashed curves correspond to a boundary layer pro�le
taken from the previous example at x = 2:0, where the separation bubble exhibits the strongest
reverse 
ow. This pro�le was then modi�ed, �rst by a small shift in u-direction by the amount
of maximal reverse 
ow in order to make that zero [curve (1)], then by di�erent shifts away
from the wall, padded with zero velocity [curve (2)]. In any case, a viscid investigation was
performed for �nite Reynolds number. The results for the largest wall distance in Fig. 9 b)
and d) agree extremely well with the spatial instability of an inviscid shear layer, the so-called
\Kelvin{Helmholtz" instability, cf. [25, Fig. 2]). However, for small frequencies, there is an
in
uence of the wall that can be seen in the di�erence of the phase speed from the theoretical
value of 1 in Fig. 9 c). Thus, the instability and the eigenfunctions of the pro�le extracted
from the DNS-bubble are really far away from an inviscid free shear-layer instability. They
belong to the \Tollmien{Schlichting" instability, which is of viscid nature (because it vanishes
at Re!1).

As already shown above, the shift-over from TS- to KH-instability is a very smooth process.
This leads to an accordingly smooth evolution of the eigenfunctions of the disturbances: for
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Figure 8: Stability diagrams for the Blasius boundary layer (top) and for the LSB in Figs. 5
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a TS-wave the disturbance maximum is close to the wall followed by a phase jump, a second
maximum, and exponential decay further away, while for a KH-mode there is a maximum exactly
at the in
ection point of the base-
ow pro�le followed by a sharp phase jump towards the low
speed side of the 
ow and exponential decay in both directions after a certain distance from the
high-shear region. Therefore, the pro�les in the changeover region which are characteristic for
LSBs have three distinct maxima. For practical purposes their relative magnitude can be used to
assess the amount of contribution of the KH-instability to the TS-instability: a large shear-layer
maximum would indicate more contribution of the shear-layer instability, and vice versa. Since
the wall distance of the separated shear layer in a pressure-induced laminar separation bubble (in
contrast to a laminar separation bubble behind a step) increases steadily the initial instability
is of TS-type in any case. In conclusion of this little exercise, one may say that a contribution
from a KH-instability can be expected only for accordingly large shear-layer distances from the
wall (i.e., in the rear part of the bubble close to transition, or for LSBs behind steps).

3.4 Absolute vs. Convective Instability

A long-standing question among many researchers has been the issue whether transition in a
laminar separation bubble occurs due to an absolute instability of the 
ow. The concepts of
absolute and convective instability are decisive for a number of reasons. Let us therefore �rst
look at the basic ideas and at their consequences for 
ow prediction and control, and then
address the question of �nding conditions for their occurrence in a laminar separation bubble.
An introduction to the concepts of absolute and convective instabilities can be found in Huerre
& Monkewitz (1985) [15], for instance, from which the present �gure 10 is adopted. This �gure
sketches the spatio-temporal evolution of a small pulse-like disturbance in a laminar 
ow. If the
disturbance is swept away from the source while it ampli�es as in Fig. 10 a), one speaks of a
\convective instability". One characteristic feature of this is that the 
ow will return to its initial
undisturbed state when the wave packet has moved by or when the forcing is stopped. Another
feature of this situation is that the local 
ow (i.e. for a certain x) will depend on what happened
upstream. Thus, the boundary layer merely acts as a disturbance ampli�er. In consequence of
this a convectively unstable 
ow is controllable.
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(1985) [15]
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velocity
cg = @!=@� (6)

must be considered. According to Gaster [10] the possibility of a true time-growing instability
needs modes with zero group velocity, because then the energy is not convected away from the
source anymore. For the present investigations this means

cg = 0 and !i > 0 : (7)

The Orr{Sommerfeld solver described in subsection 2.2 has been adapted for the present
investigations. Starting from a known eigenvalue (or close to it) the 4-D space which is spanned
by �r, �i, !r, and !i is investigated for a certain base-
ow pro�le U(y) and Reynolds num-
ber Re�. Once a few eigenvalues are known, the group velocity can be easily computed by
(�nite-di�erence) di�erentiation of the eigenvalues. The code then automatically searches for
the eigenvalues with zero group velocity. As already shown above, the mean-
ow pro�les are
characterized by the height of the reverse 
ow region hR and its intensity UR.

From the work of Gaster (1991) [11] it is known that a reverse-
ow pro�le with UR = 14:5%
is at the edge of absolute instability. His results have been compared with the present research
in Rist & Maucher (2002) [34], and a good agreement has been found.

All present results for UR = 0:20 and various reverse 
ow heights hR are shown in Fig. 122.
Apparently, the in
uence of the Reynolds number on the eigenvalues is con�ned to Re� < 5000
and hR < 0:5 Æ� which means that a large portion of the instability is inviscid. Generally,
larger wall distances lead to smaller streamwise scales (i.e., larger wave number �r), higher
frequency !r, as well as larger spatial and temporal ampli�cation. Note that all eigenvalues
shown exhibit rather large spatial downstream growth because �i < 0. However, a time-growing
instability (!i > 0) can only be expected for the two pro�les with the largest wall distance of
the shear layer (i.e., hR=Æ

� = 0:65 and 0:70) despite the fact that UR = 0:2 is larger than the
limit UR = 0:145 for absolute instability found by Gaster [11]. Since the maximum shear in the
corresponding base-
ow pro�les is largest, this could also be understood as an e�ect of increasing
shear-layer strength. In any case, the present results demonstrate that more parameters than
the maximum reverse 
ow strength and Reynolds number must be considered to adequately
describe the problem. The complete set of diagrams for other reverse-
ow intensities can be
found in Maucher (2001) [20].
From the investigations which have been performed in the region

400 � Re� � 25000 ; 0:1 � UR � 0:3 ; 0:4 � hR=Æ
� � 0:7 (8)

it appears that the general e�ect of reducing the reverse 
ow is to decrease �r and �i, to
increase the frequency !r and to reduce the temporal ampli�cation rate !i. Increasing the back

ow has the contrary e�ect. Figure 13 summarizes these e�ects with respect to the temporal
ampli�cation rate, where !0;i denotes temporal ampli�cation rates of eigenvalues with zero group
velocity. Growth occurs for !0;i > 0, i.e., above the surface !0;i = 0. The reverse-
ow intensity
increases from front to back and its thickness from bottom to top.

The present results indicate that time-growing disturbances can be met not only when the
intensity of reverse 
ow is increased beyond 15% but also when the thickness of the reverse-
ow
zone exceeds hR=Æ

� = 0:5. A weak Reynolds number in
uence is also observed. From Fig. 13
it is clear that the most unstable modes with !i > 0 must be expected in the corner where
all three parameters are largest, and that reducing every one of the three reduces time-growing
instability. Meanwhile, the above theoretical predictions have been validated by comparisons
with two DNS, one in [34], the other unpublished.

2double indices (0; r=i) are used to remind the reader that only modes with cg = 0 are considered
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3.5 In
uence of Disturbance Amplitude on Bubble Size

In a LSB instability and base 
ow are coupled much closer than in an attached boundary layer.
Due to large ampli�cation rates and various instabilities, disturbances can reach a non-linear
regime within the bubble even if their initial amplitude is `negligibly' small. Once they are large
enough they impose changes on the mean 
ow in a non-linear manner (that is diÆcult to predict).
Changes of the mean 
ow can alter the instability and hence the growth of disturbances that
follow. An example for such a case where the laminar separation bubble exhibits a low-frequency
change of its stability characteristics is described in [20] and [34].

Now we consider a simulation with larger Re� at in
ow and hence larger Re� at separation
(1722 and 2700, respectively), because the observed e�ect is more pronounced for larger Re�.
Upstream forcing is applied with ! = 5 and three di�erent disturbance amplitudes for the
wall-normal velocity component are used: 10�4, 10�5, and 10�6, respectively. The according
maxima of the streamwise velocity disturbance u0 are shown in Fig. 14 and the points of non-
linear saturation of each case are marked by three arrows that touch the respective curve. The
results are as expected: For larger forcing transition (in the present simulations, the point of
non-linear saturation of the disturbances) occurs further upstream than for small disturbance
amplitudes. Since earlier transition means earlier re-attachment, it can be expected that the
bubble becomes shorter from its rearward end, a fact that is actually observed in the streamline
plots of Fig. 15. However, this is not the only e�ect of the disturbances, since the separation
point moves downstream an equally large distance at the same time. A further remarkable e�ect
is that the mean-
ow pro�les (Fig. 16) exhibit a rather unexpected strong dependence on the
disturbance amplitudes, as well. Thus, the di�erence between two pro�les is orders of magnitude
larger than the local disturbance amplitude (compare Fig. 14 and Fig. 16). A very similar e�ect
has also been discovered in wind-tunnel experiments by Dovgal et al. [7].

Further analysis of the DNS data has shown that this coupling of transition, re-attachment,
and separation is related to subtle changes in the streamwise pressure gradient along the wall.
In a pressure-induced separation bubble, (S) is not �xed by some surface irregularity and hence
highly sensitive to small changes in pressure. Thus, it turns out that a pressure-induced LSB
is very sensitive to background disturbances and that these should be taken into account when
comparing simulation results with experiments.
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transition); = location of disturbance strip.
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10�6; 10�5; 10�4 (from top to bottom). S = separation; R = re-attachment; = location of
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3.6 Secondary Instability

In a two-dimensional boundary layer, three-dimensional disturbances become strongly ampli�ed
by a parametric resonance once two-dimensional primary disturbances have attained suÆciently
large amplitudes [14]. Characteristically, this kind of secondary instability ampli�es distur-
bances with subharmonic or fundamental frequency with respect to the two-dimensional one,
and its ampli�cation rates are typically one order of magnitude larger than that provided by
primary instability. Due to non-linear interactions the wavenumber-frequency spectrum �lls up
very rapidly which indicates a breakdown of the 
ow into small-scale unsteady structures. For
many laminar separation bubbles, however, our simulations show that such an instability is
only marginally relevant because it is restricted to a very narrow streamwise region. Two typ-
ical results are illustrated in Figs. 17 through 19 for subharmonic and fundamental secondary
instability, respectively. More information can be found in [30, 33, 35].

In Fig. 17 the fundamental (! = 18) two-dimensional disturbance is forced at x � 0:65
together with a pair of subharmonic (! = 9) three-dimensional disturbances at small amplitude
(u0max � 10�9 in contrast to u0max � 10�4 for the fundamental). For comparison, results of
primary instability (LST) and of secondary instability theory (SST) [14] are also included (with
their initial amplitudes adjusted to the DNS). Due to the presence of the laminar separation
bubble, the ampli�cation rate for the primary instability is now one order of magnitude larger
than in a Blasius boundary layer and an additional ampli�cation of 3-D disturbances due to
secondary instability that starts around x = 1:8 as the 2-D disturbance passes 1% is not as
dramatic as might be expected. In addition, once the 2-D disturbance saturates at u0 � 20% the
secondary ampli�cation is greatly reduced such that, for the present choice of initial amplitudes,
the 3-D disturbances do not reach a saturation level within the integration domain.

Flow visualisations have shown that the 3-D disturbances of the SST get destroyed by the
2-D ones in the saturated regime, see Fig. 18. 3-D vorticity is redistributed and convected
away by the large-amplitude 2-D rollers that develop downstream of the bubble. The higher
harmonic wave components which are also included in Fig. 17 con�rm this process by their large
amplitudes. In fact, large-amplitude 2-D forcing can control the 
ow by delaying transition, a
detail that has independently been observed in experiments by Dovgal et al., for instance.

At this point, a subharmonic scenario (that would lead to so-called H-type transition in a
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separation; R = re-attachment.
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Figure 19: Ampli�cation curves u0max of two- and three-dimensional disturbance components for
fundamental resonance. Comparison with LST (� � �). S = separation; R = re-attachment.

Blasius boundary layer) has been studied. An according investigation for fundamental reso-
nance (K-type) is discussed next in connection with Fig. 19. Mixed scenarios, for the base 
ow
considered here, as well as for the one presented in Fig. 15 have been investigated as well, they
can be found in [30, 33, 35].

The two-dimensional disturbance development for the fundamental scenario is the same as
that in the subharmonic one, because the three-dimensional disturbance level is kept so low
that no non-linear reaction of the 3-D on the 2-D modes occurs. The initial three-dimensional
disturbance (dash-dotted line in Fig. 19) results from an interaction of the 2-D fundamental
with a steady 3-D disturbance at the disturbance strip (upstream of x = 1:0). In consequence,
only integer multiples of the fundamental frequency ! appear now for the 3-D modes. Both
fundamental waves (2-D as well as the 3-D) amplify according to LST until transition. In
contrast to the subharmonic case there is no additional ampli�cation due to secondary instability.
Here, the 3-D disturbances are picked up at non-linear saturation of the 2-D wave, as in the
previous case shown in Fig. 18. Because of this failure of the secondary instability mechanism
to bring arbitrarily small 3-D disturbances directly to non-linear saturation, an alternative has
been searched for. This is shown in the next subsection.

3.7 Oblique Breakdown

As an alternative to classical secondary instability scenarios, a mechanism which was �rst dis-
covered for transonic 
ow and termed \oblique transition", because of its dependence on the
non-linear interaction of oblique waves, was investigated as well [29].

Figure 20 depicts the evolution of the spectral amplitudes of this case in the same base 
ow as
before. Here, the �rst index for a frequency-spanwise-wavenumber mode means multiples of the
fundamental frequency and the second multiples of the basic spanwise wavenumber 
 = 2�=�z .
Now, the primary disturbance (identi�ed as mode (1, �1) consists of a pair of oblique Tollmien-
Schlichting waves (! = 18) with an initial angle of  � 28o relative to the x-axis and an
initial amplitude u0max � 10�4. Clearly, the dominant mode follows linear stability theory
rather closely. All other modes arise due to non-linearity which leads to a rapid �ll-up of the
spectrum at x � 2:0. Since the largest of the non-linearly generated modes is mode (0,2) the re-
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Figure 20: Ampli�cation of individual spectral modes for large 3-D disturbance amplitude.

attachment, as well as the ensuing boundary layer, exhibit longitudinal streaks in the temporal
mean. Occasionally, such streaks have already been observed in experiments, e.g. [3]. Inger
has tried to relate them to a G�ortler instability [16]. However, for the present case it is clear
that they arise from transition, since they are an inherent property of the so-called \oblique
breakdown" scenario.

Further studies of this kind of mechanism showed that the optimal growth of the streak
modes appears when oblique waves with an obliqueness angle of  � 20o are forced. This occurs
because the growth of the primary modes due to LST is reduced for larger angles and because
no oblique breakdown is possible for  ! 0.

A direct comparison of instantaneous vorticity contours from the (hindered) subharmonic
scenario in Fig. 17 with those belonging to Fig. 20 is shown in Fig. 21. This illustrates the
interpretation given above, that the 
ow is controlled by spanwise oriented `rollers' in the �rst
case, and that a rapid breakdown into small-scale structures appears in the second. Such small-
scale 3-D structures are necessary for the rapid development of a turbulent boundary layer in a
laminar separation bubble. Thus, it appears that the mechanism studied here can be relevant
for production of turbulence in a LSB. This has also been veri�ed in mixed secondary-oblique
scenarios in [33].

3.8 A New Type of Instability

When the Reynolds number at separation is increased, a hitherto unknown kind of secondary
instability mechanism is observed which leads to temporal ampli�cation of small-scale three-
dimensional disturbances that are trapped in the separation bubble. More information on this
case can be found in [20] and [22]. In contrast to above Re� at separation is now approx. 2400
instead of 1250.

Figure 22 displays amplitudes of selected modes from a fundamental resonance scenario for
two time intervals. A large-amplitude 2-D TS-wave has been forced at x � 8 together with very
small 3-D disturbances. Since the 2-D disturbances are periodic they do not di�er for a later
time compared to the earlier one. This is in clear contrast to the 3-D disturbances which are
two orders of magnitude larger for the second time interval shown in the �gure. The arrow *
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Figure 22: Disturbance amplitudes of 2-D (solid) and 3-D (dashed) waves in the vicinity of
the bubble. Dotted lines: higher harmonics; arrow: 3-D temporal growth; S - separation, R -
re-attachment.

points to the temporal growth present in the curves for the 3-D disturbances at di�erent time.
It turned out that permanent forcing of the 3-D disturbances is not necessary because a

one-instant 3-D time impulse at the wall is suÆcient to initiate their growth. A quanti�cation
of the temporal growth initiated by a short-time pulse leads to the results presented in Fig. 23,
where the dependence of the temporal growth rate !i on the spanwise wave number is shown.
Alternating regions of subharmonic and fundamental disturbance ampli�cation appear, which
indicates that the mechanism found is related to the secondary instability discovered by Her-
bert [14]. The main di�erence is their temporal growth in the sense of an `absolute' secondary
instability and their alternating occurrence with increasing spanwise wavenumber.

More investigations with an additional bu�er domain applied in the upstream part of the
integration domain which a�ected the 3-D modes only indicated that the responsible area for
their ampli�cation is the re-attachment region. By comparing the development of the 3-D
disturbances with the dynamics of the 2-D high-shear layer Maucher et al. [20, 21, 22] identi�ed
the reason for the instability as the entrainment of three-dimensionality by the upstream motion
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Figure 23: Secondary temporal ampli�cation rate !i versus spanwise wave number 
 = 2�=�z
for di�erent discretisations.

in the laminar separation bubble that includes an uplift of 3-D motion into the initially two-
dimensional shear layer. Since this process is repeated periodically, the 3-D amplitudes can grow
from cycle to cycle until they reach a level with non-linear saturation. Once this level is reached,
the process just described is still operative in order to destroy the 2-D shear layer repeatedly.
This is visualised by iso-surfaces of spanwise vorticity in Fig. 24. The dynamics of this kind of
laminar separation bubble transition resembles the breaking of waves which approach a shore
line. An interesting aspect of the scenario shown is that it is very eÆcient for small obliqueness
angles of the involved primary disturbances, i.e. it is not restricted to a strictly two-dimensional
disturbance. The lower picture in Fig. 24 shows this for the transition process triggered by a
pair of weakly oblique waves [20]. Interestingly, weakly oblique disturbances have been already
observed to dominate in several free-
ight measurements of the natural disturbance spectra in
airfoil boundary layers. Another fact that should be mentioned is that structures which are very
similar to those observed in Fig. 24 have been found in hydrogen-bubble visualisations in our
water channel, Lang et al. (2002) [19]. Thus, it can be expected that the present e�ect takes
place in several real-life applications.

4.0 ADDITIONAL EFFECTS

It appears that many e�ects are interwoven in an LSB, see Fig. 3 and we have so far only
considered instability, non-linear interactions and feedback. Therefore, the so-called `receptivity',
i.e. the generation of initial disturbances, will be addressed in the next subsection. Apart from
the unsteadiness that appears due to instability and transition a low frequency phenomenon
called `
apping' may occur in a laminar separation bubble, this will be touched in subsection 4.2.
The rather old question of \bubble bursting" (cf. Gaster, 1966 [9]) which is important for airfoil
design, is visited in light of the present �ndings in subsection 4.3.

So far, the e�ects of an unsteady free-stream 
ow which is relevant for turbo machines
or 
apping wings are not yet equally well investigated and understood. Hence they are not
considered here. However, the issue of unsteady 
ow control is directly related to the previous
sections. It will be covered in an extra article of this lecture series [31].

4.1 Receptivity

With our �nding that most pressure-induced laminar separation bubbles are governed by a
convective primary instability, initial disturbances are responsible for the transition process
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Figure 24: Breakdown of the shear layer at the end of an LSB into �ne-scale turbulence. Iso-
surfaces of the spanwise vorticity. Top: 2-D primary disturbance, bottom: oblique primary
disturbance. Note: The coordinates in this �gure should be multiplied by 1.5 in order to make
the normalisation consistent with the other �gures.

and hence for overall features of the bubble. This raises the question of where and how these
disturbances are generated. In (incompressible) receptivity theory it is usual to assume two kinds
of free-stream disturbances: sound and vorticity. The �rst has a very high speed compared to
the free-stream velocity and hence a large wave length (in�nity in the truly incompressible
limit), the second has �nite wave lengths but it travels at free-stream speed. It appears that a
transformation into Tollmien-Schlichting-like boundary-layer waves is only possible in connection
with large-enough streamwise gradients in the boundary layer. Such gradients appear at the
leading edge of an airfoil and due to surface roughness, which may be distributed or local. Since
a laminar separation bubble displaces the 
ow like a roughness element, one might think that
a LSB is a direct source of increased receptivity. Experimental investigations of this hypothesis
can be found in Dovgal's work [4, 7].

Here we investigate the problem with theoretical tools. Our discussion is restricted to two-
dimensional acoustical perturbations of the free stream because these produce larger distur-
bances inside the boundary layer than vorticity 
uctuations. In linear receptivity theory (based
on the Orr{Sommerfeld equation or on asymptotic expansions) the source of receptivity can be
attributed to a modi�ed wall boundary condition which considers the local interaction of sound
and wall roughness

u0(y = 0) = H(x)
dU

dy

����
y=0

; (9)

where H(x) describes the shape of the roughness and dU=dy is the velocity gradient of the
boundary layer at the wall (e.g., Crouch, 1992 [6] or Choudhari, 1993 [5]). From eqn. (9) it
follows that receptivity is directly proportional to the wall shear, at least in the linear limit
of small disturbances and small roughness heights. A large wall shear occurs in 
ows with a
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favourable pressure gradient but these are highly stable with respect to LST. Thus it turns out
that receptivity and instability act in an opposite direction to each other such that we must
expect reduced receptivity in the highly unstable LSB, instead of the contrary.

This reasoning is in line with the mentioned experiments of Dovgal et al. who state that
the instability waves found in the bubble originate in the pressure minimum of their airfoil
boundary layer, i.e., where the velocity and hence the wall shear are largest. If one considers
higher order or more non-linear mechanisms, however, streamwise base-
ow gradients should
not be neglected.

Figure 25 presents the outcome of an investigation by Stemmer (1995) [30, 37] where the
receptivity of the bubble from subsection 3.1 with respect to periodical oscillations of the free
stream velocity has been investigated using the complete Navier{Stokes equations in DNS. These
oscillations model a 2-D sound wave with circular frequency !s = 18, i.e. the most unstable
frequency according to LST, and an amplitude of �s = 10�3. The �gure includes the non-linear
production term that arises from the interaction of the sound wave with the base 
ow during
the very �rst disturbance cycle (dashed line). In contrast to our �rst arguments above, the
largest production appears around (S) and (R), i.e., where the streamwise gradients are largest.
The minimum in between is at the maximal height of the bubble where the x-gradient is close
to zero. After 20 disturbance cycles a fundamental disturbance has developed that exceeds the
non-linear forcing inside the bubble and that grows to an amplitude above that of the sound
wave. This disturbance is a Tollmien{Schlichting wave because it evolves according to LST.
Upstream of the intersection with the non-linear forcing term it is hidden by the latter. Its
actual origin is in the region between the in
ow boundary and x = 1. This can be inferred
from a comparison between the non-linear term (dashed line) with the ampli�cation according
to LST: If the forcing term would have been able to directly excite the TS-wave, the latter would
have dominated starting from its source, because the linear growth rate is always much larger
than the streamwise increase of the forcing term.

4.2 Flapping

Low frequency oscillations of the detaching boundary layer and the ensuing shear layer are
called `
apping' in the literature. Unfortunately, their physical reason is somewhat obscure.
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The following mechanisms can be imagined:

Receptivity and instability of the bubble. Sometimes it is argued that a laminar separa-
tion bubble itself may act as a resonator with respect to low frequency, long wave length
disturbances which should be of the size of the bubble length [4, 13, 39]. Wind-tunnel
experiments have shown that such disturbances are responsible for a vortex shedding at
frequencies lower than the instability frequency [4]. For large-enough bubbles it is possible
that such a mechanism leads to a low-frequency oscillation of the separating shear layer,
i.e., its 
apping. In order to investigate this hypothesis we are planning to perform inves-
tigations with low-frequency forcing of the bubble. Unfortunately, according results are
not yet available at present.

Interactions between transition and the mean 
ow. This idea is very closely related to
our observations in subsection 3.5 above, where we observed that increasingly large dis-
turbance amplitudes make the bubble shrink. A smaller bubble, however, is less unstable
according to LST. Hence, it can be expected that those disturbances which approach the
bubble at a later time will be somewhat less ampli�ed, with the consequence that transi-
tion occurs further downstream. Later transition means a larger bubble, as shown above.
Now the newly approaching disturbances will �nd a more unstable 
ow, stronger ampli-
�cation, and hence earlier transition, i.e., the cycle of bubble growth and reduction will
be closed. Maucher [20] has actually observed such a mechanism in his 2-D DNS (also in
Rist & Maucher, 2002 [34]). In this observation the low frequency motion of the LSB was
about 100 times smaller than the primary instability frequency.

Interactions with far-�eld boundaries. Such interactions can never be fully ruled out in a
restricted environment, either wind tunnel or DNS. In the �rst case there is the possibility
of re
ections at the physical walls in the second at the boundaries of the computational
domain which are arti�cially introduced. In addition to these, the whole wind tunnel,
the test section, or the whole set-up may oscillate because of resonance. Consequently,
existing experimental investigations should be repeated in di�erent facilities and numerical
simulations should be performed using larger integration domains in order to get further
indications for a possible presence or absence of such e�ects.

Careful investigations are needed to �nd the correct answer(s) to these hypothesises.

4.3 Short vs. Long Bubbles (Bubble Bursting)

In early LSB literature two kinds of laminar separation bubbles have been identi�ed, `short'
and `long' bubbles. The main di�erence between the two, apart from their streamwise length, is
their in
uence on the pressure distribution of an airfoil. Short bubbles have a small, i.e., only a
local in
uence, while large bubbles extend over a major part of the airfoil surface with according
large impact mainly on the lift of the airfoil. For varying angle of attack the transition of the
�rst to the second can be found in experimental data, as shown in Fig. 26 which is based on
measurements from McCullough & Gault (1951) [24]. For low angles of attack a short laminar
separation bubble develops very close to the leading edge. This can be detected by looking for

ow separation and re-attachment at the wall and the characteristic short plateau-like pressure
in between. As the angle of attack is increased the separation point (S) moves towards the
nose because the stagnation point moves back on the underside of the section and because
of the increasing pressure gradient. The re-attachment point (R) follows because transition
occurs earlier when dp=dx becomes larger. Then, all of a sudden, as the angle of attack is
increased beyond a certain threshold, (R) moves downstream and the suction peak drops down
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in a dramatic manner, see Fig. 26 b). However, for the present airfoil, lift is not immediately
a�ected, as can be seen in Fig. 26 c) where only a small kink appears at � � 5o. Nevertheless,
the maximal lift is attained when (R) reaches the trailing edge. From the investigations above it
should be clear that an accurate prediction of a \long bubble" is a very diÆcult task because its
length must be highly sensitive to initial disturbances and small errors in predicting transition
and the ensuing 
ow. Typically there is also a hysteresis in such a way as two di�erent bubble
sizes or pressure distributions can be observed for the same angle of attack depending on whether
the angle of attack has been previously increased or decreased. A similar e�ect is known from
active separation control, depending on the fact whether control is used to delay separation or
whether it is used to re-attach an already separated boundary layer.

Gaster [9] has tried to parameterize the occurrence of `short' and `long' bubbles based on
wind-tunnel data. There is a good separation between the two, but it is not clear whether his
empirical condition can be applied to free-
ight conditions. There have been speculations that
the transition from a short to a long bubble, termed \bubble bursting", might be due to an
absolute instability, e.g. [1]. However, in light of the results described above, it is also possible
that this is not necessary, because it suÆces that the turbulent 
ow doesn't reach the surface
due to minor changes in angle of attack or in in
ow disturbance amplitudes. Strictly speaking,
yet, this is only a hypothesis at present that remains to be proven.
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5.0 CONCLUSIONS AND OUTLOOK

Several basic mechanisms related to instability and transition in laminar separation bubbles
have been isolated and studied. As far as possible, the present DNS results have been veri�ed
by comparisons with LST, experiments and grid re�nement studies. Thus, it turned out that
extreme care must be taken to reduce background disturbances because these must be controlled
when trying to identify the mechanisms at hand. Also, the overall size of the bubble appeared
to be very sensitive to small-amplitude disturbances and its mean-
ow parameters exhibit large
variations which would become unpredictable if the disturbance amplitudes were not known.
The border between absolute and convective instability was revisited and further re�ned in
terms of Reynolds number and thickness of the reverse-
ow zone. Secondary instability and
oblique breakdown were compared with the aim to identify the most relevant mechanism for
ampli�cation of three-dimensional disturbances. For large Reynolds numbers a new kind of
secondary instability was found which leads to temporal growth of 3-D disturbances on the
basis of a large-amplitude shear layer oscillation, regardless whether this is produced by an
exactly 2-D TS-wave or by weakly oblique waves.

Many systematic hot-wire measurements of laminar separation bubbles have been performed
by [9, 7, 43, 28, 41, 12], and others in order to identify the instability and transition mechanisms.
However, it is diÆcult to get an equally complete picture of the 
ow physics from these as in
the DNS presented here, because of the limitations of a single probe, the inability to completely
control the disturbance background, and possible in
uences from introducing a probe into the
bubble. A new area of non-intrusive measurement techniques has just begun with the arrival of
LDV (Laser-Doppler Velocimetry) and PIV (Particle Image Velocimetry). These methods have
the potential to yield an equally rich view into 
ow details like the present DNS. Comparisons
of ongoing experiments with the present results indicate good agreement of the unsteady dis-
turbance development, once the initial amplitudes have been found by iteration, because they
cannot be measured directly due to their small initial amplitudes.

Summarizing the results shown above, it appears that the primary instability of most
pressure-induced laminar separation bubbles is of convective nature. As a consequence, one
should be warned, not to neglect the in
uence of the background disturbance spectrum, regard-
less of its smallness and despite additional accuracy improvements of the measurements. The
point is that `typical' mean-
ow characteristics, like the position of separation, transition, re-
attachment, or the length of the bubble are governed by subtle 
ow physics, which are usually
ignored, especially when experiments or computer simulations (e.g. RANS, LES, or DNS) are
performed for mutual validation.
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