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Abstract

In the present investigation, the scalar quantity Az
was used to extract regions (A2 < () of concen-
trated vorticity where the velocity field is mostly of
arotational nature in a particular frame of reference.
Further data reduction was achieved by extracting
the vortex core lines, serving as a skeletonization of
the regions. The extracted vortex regions and core
lines are then used as basis for probing the flow, e.g.
investigating flow quantities such as vorticity along
the core line, and investigating vortex dynamics.

1 Introduction

Steady improvements in measurement techniques
and computing power are allowing, respectively,
experimentally measured and numerically simu-
lated flow fields to be resolved in space and time
with ever increasing accuracy. That one obtains
concomitantly an improved description and under-
standing of complicated flow fields does not nec-
essarily follow, as the fluid physics is more often
hidden, than evident, in the large data sets pro-
duced. A good example of this is shown in fig-
ure 1, which is an instantaneous depiction of fluid
vortices in a flat-plate boundary layer undergoing
laminar-turbulent transition computed by Meyer [7]
using Direct Numerical Simulation (DNS) of the
incompressible Navier-Stokes equations. The vor-
tices are visualized as isosurfaces of the scalar Ao,
a quantity which was introduced by [5]. Upstream
of x = 3.2, the flow is still relatively simple, and
three ring-like vortices centered at z = 0 are easily
recognized upon inspection. Downstream of this lo-
cation, the flow complexity increases rapidly, plac-
ing a large burden on the investigator who must
mentally recognize, separate, and group the individ-
ual structures in his attempt to understand the flow
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physics through visualization.

[

Figure 1: Fluid vortices in the transitional flow over
a flat plate visualized using isosurfaces of ;. Data
from [7].

In the present article, methods are presented that
should ease this burden through enhanced visualiza-
tion that identifies, extracts, and, at a higher abstrac-
tion level, analyzes important characteristic features
in digital fluid-flow data.

2 Feature Extraction

Features, loosely defined, are the interesting objects
of a data set, and are often taken to be regions which
satisfy certain constraints, e.g. low pressure, high
vorticity magnitude, and so forth. Important fea-
tures in fluid dynamics include “boundary layers”,
“high shear-layers” (regions of high shear stress),
and ‘vortices’, for instance. The latter are consid-
ered to be important for the role they play in under-
standing and predicting the behavior of complicated
fluid flows, turbulent flows in particular [3].
Despite some controversy with respect to how
a ‘vortex’ should be properly defined for visual-
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ization, several plausible methods have evolved re-
cently [5, 8, 13]. Regardless of the method used,
once the flow becomes complicated enough, e.g. be-
cause turbulent eddies are resolved as in the present
DNS data set, the flow field becomes visually clut-
tered by the sheer amount of interesting features.
This is illustrated in figure | using the so-called Ax-
method of [5].

To reduce such visual clutter and to make a con-
tribution towards a better understanding of the in-
volved dynamics, researchers have introduced the
visualization techniques “feature extraction™ and
‘tracking’ [15, 16, 10], which allows the researcher
to concentrate on those features which appear ‘in-
teresting’ to him, according to some criterion or cri-
teria.

As a first attemipt at visually simplifying the flow
field shown in figure 1, a seed-growing technique
[16] using a simple recursive flood-fill algorithm
was implemented. Earlier work applying this tech-
nique to separate vortices in transitional flows had
been shown to be successful [12]. Using this tech-
nique, vortices are separated as follows:

1. Select an isosurface level A3 such that Ay <

A5 defines the vortex structures. Note that
A2 < 0 defines a vortex, and that isosurfaces
A2 = ¢ are completely contained inside of
isosurfaces Ay = ¢1 if c2 < 1.

2. Select a seed point xs = (s, ys, zs) such that
A2(xs) < A2(x) for all x, i.e. find the mini-
mum of A2 over the whole field.

3. Starting from the seed point, recursively test
neighbors for inclusion. Neighboring points
satisfying A2 < A3 are included in the struc-
ture.

4. Once all of the points inside the isosurface
Az < A5 containing the seed point found in
step 2 have been found, the structure is ex-
tracted, and the process can start anew from
step 2 to extract the remaining vortices. At this
point, of course, the new seed point would not
be located inside a vortex that has already been
extracted.

In terms of simplification, the seed-growing strat-
egy was found to be less successful in the present
case. In figure 2, a sampling of vortices extracted
from the data set of figure 1 is presented. Corre-
sponding to this figure, figure 3 depicts the value
of A2 at a seed point versus the cumulative num-
ber of structures found. Upstream of x = 3.2, the

666

0'10.2 2.8

Figure 2: A sampling of vortices extracted from fig-
ure 1.

individual vortices are spatially quite distinct, and
can be easily extracted using the seed-growing al-
gorithm. Downstream of this location, however, the
flow complexity increases rapidly. Vortices tend to
merge spatially at the given threshold A3, with the
result that the extraction technique produces a large
tangle of twisted vortices. Though the extraction
technique considers such a tangle of vortices to be
one structure, it is visually clear that several vor-
tices are present. An example of this is seen near
(z,z) = (3.8,0.1) and (z,2z) = (3.6,—0.1) in
figure 2. As discussed by [16], several additional
strategies, such as multidimensional thresholding
(i.e. using more than one criterion), are available
in cases such as these for further separation. Ad-
ditionally, one might try a local scaling of As, for
example by dividing it by vorticity magnitude. For
the present investigation, it was decided that a bet-
ter approach would be to separate vortices by ex-
tracting their core lines (or axes). This strategy is
discussed in the following section.

3 Defining Vortex Core Lines

In fluid dynamics textbooks one often makes the ap-
proximation that all of the vorticity associated with
a vortex is concentrated along a “vortex core line”,
e.g. [14]. This then leads to the singular distribu-
tion of vorticity w = I'6(n)&(b)s where s is a unit
vector tangent to the vortex core line, n and b are
coordinates in the normal and binormal directions,
and I is the vortex circulation. Intuitively (and im-
plicitly), one selects the vortex core line so that it is
located at the geometric center of the vorticity dis-
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Figure 3: Value of A, at a seed point versus cumu-
lative number of structures found for vortex extrac-
tion shown in figure 2. The threshold for the extrac-
tion was A5 = —250, and the total number of found
structures was approximately 5500.

tribution in a plane perpendicular to the vortex axis.
However, there are other possibilities, as compiled
by Roth [13], for instance. One could also use the
predictor-corrector technique [1], the “parallel vec-
tors approach” [9] or extremum lines [8] of some
scalar quantity to find vortex core lines.

Looking at the data of some classical examples
for vortex flows, i.e. the so-called “Rankine Vor-
tex”, the “Oseen (or Lamb) Vortex”, and the “Burg-
ers Vortex”, it is observed that not only vorticity,
but also pressure and A2 have a local extremum at
r = (. As a pressure minimum is in general neither
sufficient nor necessary for the existence of a vortex
[51, this criterion will not be used to define the vor-
tex core line here. One might consider using local
maxima of vorticity with the added constraint that
X2 < 0." For the present work we choose to work
directly with A2 and define core lines as the set of
points S in space where A2 has a local minimum
(“valley lines” of A2 in the sense of [8]). The vortex
core line is then defined as a one-parameter, three-
dimensional space curve x(s) = (z(s), y(s), z(s))
that fulfills the above constraint.

Thus, we are looking for continuous curves in
space connecting those points, where, in a plane that
contains one point ¢ € S, and which is perpendic-
ular to the curve’s tangent vector, a local minimum

!This consideration motivated us to replace pressure by Az in
the Banks & Singer predictor-corrector method [18].
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of A2 occurs at ¢. This set S is determined as
S={x:(H -VX2) xVx2=0An>0} (1)

where H is the Hessian matrix of A2, i.e. (H);; =
0?(Xe)/0x:0x;, and n3 < m2 < 11 are the eigen-
values of H. Equation (1) indicates that, if Vg #
0 at ¢, then it is an eigenvector of H.

It should be noted here that we expect to en-
counter several core lines in a data set like the one
shown in figure 1. The according individual core
lines connect only subsets of the points in S, but this
will be handled by appropriate end and start condi-
tions, as specified further down.

Because we deal with snapshots of an unsteady
flow we preferred to use a Galilean invariant vor-
tex criterion over others proposed in the literature,
cf. [9, 6]. For us, this aspect is crucial because a
non-Galilean invariant method will not be able to
detect those vortices which pass by the observer,
nor will it show these independent of the local flow
speed [S].

3.1 Locating Vortex Cores

In this section, the algorithm selected for determin-
ing vortex core lines is described. One possibility
investigated was to search for zeros of the quan-
tity (H - VAz2) x V2. But this is critical because
of the differentiation involved in computing A, and
Eq. (1), despite the fact that we use high-resolution
DNS (direct numerical simulation) data and fourth-
order central finite differences on a regular grid. So
this approach was quickly dismissed, as noise lev-
els, even in filtered numerical data, considerably un-
dermined the resulting accuracy and the following
two-pass strategy was used.

A set of points S, approximating the location of
the vortex cores was first obtained. For an arbitrary
point X, the following strategy was used to test for
the existence of a vortex axis in its neighborhood.
Using a Taylor series, the scalar field f(z,y,z) =
A2(z, y, z) was expanded about xg

f=fo+Ax~Vf+%Ax-H-Ax. 2)

The distance Ax and the gradient Vf can be
rewritten in terms of the eigenvectors a; of H

Ax = ar1a; + azas + azas 3)
Vf = piai + Baas + Bsaz 4



so that the Taylor expansion becomes

f=fo+ (a1f1 + a2f2 + asfs)

1
+§(af771 + asn + adns) (5
or, upon manipulation,
1 3
f=Ffotgd mloi—c)’ ()
i=1

where 7; are the eigenvalues of H, ns < 12 < 1,
and ¢; = —f;/n;. Centering the eigenvector-based
coordinate system at point X, = Xg+c1a1+ceaz+
csas, if g2 > 0, then f will take on a local mini-
mum in any plane spanned by as and a; containing
a point on the a3 axis (see figure 4). A good ap-
proximation x, for the location of the vortex axis,
then, is x, = Xo + c1a1 + ca2a2, if the correspond-
ing |Ax| is not too large to render the Taylor se-
ries approximation inaccurate. We note that a sim-
ilar strategy for locating vortex core lines was used
by [8] in their sectionally minimal pressure method,
where they take f(z,y,z) = p(z,y, 2), the fluid
pressure.

Using the above method, the set .S, is determined
by visiting every grid-point X in the discrete nu-
merical data, and if A2 < 0 at this point

1. finding the approximate distance Ax

c1a1 + czaz (o the nearest vortex core line lo-
cated at x, = xg + Ax, and
. if |Ax]| < h, where h is a measure of the lo-
cal grid step-size (grids were not necessarily
equidistant), adding the point x, to the set S,.
Next, the points in the set S, are refined by doing
a local minimization of A2 in planes spanned by
eigenvectors a; and ag of its Hessian. Starting at
the point x* = x, € S,, the algorithm iteratively

1. computes the eigenvectors a; and a» of the
Hessian of A2 at xi, and
minimizes Az in the plane spanned by a; and
as to determine guess x* T,
until convergence, defined as the iteration ¢ at which
x" no longer changes significantly. The minimiza-
tion was accomplished using the NEWUOA uncon-
strained minimization software from [11].

Once the set of points lying on the vortex axes has
been determined, they are linked together to trace
out the vortex axis. For this purpose, a line-linking
algorithm similar to that described in [17] has been
implemented. Starting from a given point xg in S,

2.
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Figure 4: Finding the approximate location x,, of a
vortex axis: contours of the approximation given in
Eq. (6) with s < 0.

a search is performed for the next closest point in S
which minimizes the function g = |Ax|/h+260/7,
where 6 is the angle between eigenvector ag at this
point and point xo, |Ax] is the distance between
the two points, and & is a measure of the local grid
step-size.

Verifications of the algorithm have been per-
formed with cartesian three-dimensional scalar
fields that contained a straight tubular structure or a
torus-like ‘vortex’, both oriented at an arbitrary an-
gle with respect to the grid. The results (not shown
here) indicated that the method was able to cor-
rectly locate the “vortex axis™ of these structures.
An evaluation of the errors and a grid refinement
study revealed that the error decreases according to
the second-order central finite-difference discretiza-
tion used for spatial derivatives.



4 Results

4.1 Vortex Core Line Extraction

The vortex core extraction algorithm described
above was applied to the data set shown in figure 1.
Only part of the domain, = [3.2, 3.5], is consid-
ered so that more detail can be seen in the result-
ing figures. Figure 5 depicts the vortex structures
using isosurfaces of As. Core lines extracted from
these structures are shown in figure 6. By reducing
the vortices to their core lines, the amount of data
required to represent the vortices has been drasti-
cally reduced. In figure 7, these core lines have
been thickened for improved visualization by giv-
ing them a constant, finite radius. Although this has
not yet been investigated, one could consider bas-
ing the radius on a physically meaningful quantity
such as that which yields a constant vortex circula-
tion ' = f u - dx in a plane perpendicular to the
vortex axis.

Figure 5: Zoom-in of the region z = [3.2,3.5] in
figure 1.

Unlike the seed-growing strategy discussed ear-
lier, core line extraction allows individual vortices
to be easily separated. An example is shown in fig-
ure 8. Here, random vortices from figure 7 have
been selected and highlighted so that they are now
more easily distinguished, in contrast to their neigh-
bors. Of course, the random part of the selection
process could be replaced by physically-based cri-
teria specified by the user. The strongest, largest, or
otherwise “most interesting” vortices are then high-
lighted as shown, and tracked in time so that the in-
vestigator can observe their time-dependent behav-
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Figure 6: Extracted core lines of vortices shown in
figure 5.

Figure 7: Vortices reconstructed from core lines
shown in figure 6.

ior.

Figure 9 depicts selected core lines from figure 8
along with eigenvector as along the core line. As
far as this is possible to visually confirm in the
graphical representation, the eigenvector az appears
to be tangent to the extracted core line, indicat-
ing that approximately the same core line would
have been extracted had a space-marching proce-
dure been used to extract the core line. In such a
scheme, one finds a point on the core line, then steps
in space a small distance Ax in the direction of a3
at the found point. This new point is used as guess
for finding the next point on the core line as the min-
imum of X\, in a plane spanned by a; and a». Thus



Figure 8: Arbitrarily chosen vortices from figure 7
emphasized.

Figure 9: Selected core lines from figure 6 along
with eigenvector az of H(\2) at selected points
along the core line.

our method is comparable to Banks & Singer [1]
with the exception that it uses only A2 data.

In figure 10, several vortex core lines (denoted
by the symbol e) have been selected, and one point
on each core line taken as a starting point for inte-
grating the vorticity field w to compute vortex lines.
Vortex lines (not to be confused with vortex core
lines) have the property that they are everywhere
tangent to the vorticity vector w (Wa, Wy, ws ).
They are the solution families of the differential
equations [14]

do _

dy _

dz

Wz

(N

We Wy

The accuracy of the streamtrace integration was
checked by decreasing the integration step-size,
and confirming that the same vortex line was ob-
tained. The computed vortex lines appear to cor-
respond fairly well with the extracted vortex core
lines which indicates that minimum lines of Ao are
physically meaningful to trace vortex cores. Note
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that using vortex lines is not appropriate in a bound-
ary layer (i.e. close to a wall) because vorticity
doesn’t distinguish between shear layers and vor-
tices. This is why the vortex lines in Fig. 10 extend
beyond the vortices and follow the shear layer at the
wall in Z-direction for small Y.

Figure 10: Vortex lines computed by integrating the
vorticity field w forwards and backwards starting
from a point on the vortex core lines. Location of
the vortex core lines indicated with the symbol e.

4.2 Higher Level Analysis:
namics

Vortex Dy-

In [3], the statement is made that “vortex dynam-
ics is the missing mathematical framework for the
study of coherent structures”. Through vortex dy-
namics, the evolution and interaction of the coher-
ent structures is directly connected to their topology
and strength.

The most important mathematical equations gov-
erning vortex dynamics are

/

which, in the absence of boundaries, determines the
velocity field u for a given vorticity field w, and

_ L
T Ax

w(x' t) x (x —x')
=P

u(x7t) dX’

8

Dw

— . 2
D1 =w- -Vu+rvVw

&)

which determines the temporal evolution of the vor-
ticity field. In this equation, D(-)/Dt = 9(-}/0t +



u - V(), and v is the kinematic viscosity of the
fluid. The first equation is often called the Biot-
Savart law, while the second is known as the vortic-
ity transport equation.

Using the Biot-Savart law, one can consider
investigating the interaction of individual vortex
structures by first separating them using feature ex-
traction. The contribution to the induced veloc-
ity field from any given vortex is then defined as
the velocity that results from substituting into equa-
tion (8) only the vorticity w contained within the
vortex itself; outside of the vortex w = 0 in this
integral. A sample visualization is shown in fig-
ure 11. Here, the vortex has been separated us-
ing the region-growing technique. Using the vortic-
ity inside the isosurface Aa < A3, the Biot-Savart
law is numerically integrated over the whole do-
main to compute the induced velocity field shown.
The singularity in the integral has been handled by
a simple cut-off procedure for |x — x'| < ¢, and
the numerical integration itself was computed using
standard midpoint-rule quadrature. More accurate
and efficient methods for computing this integral
include the multipole methods discussed in refer-
ences [2, 4, 19].

Figure 11: Velocity induced via equation (8) by the
vorticity inside a selected vortex.

The induced velocity shown in figure 11 appears
as expected: the flow rotates about the vortex core
line in a sense determined by the locally aligned
vorticity field. This should be compared with the
relative velocity on the surface of the vortex shown
in figure 12. The vortex surfaces shown here were
reconstructed from the vortex core lines as was done
for figure 7, and the relative velocity was obtained
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Figure 12: Velocity on vortex surface relative to ve-
locity at vortex core.

by selecting a point on the vortex core line (1), de-
termining the intersection of a plane perpendicular
to the vortex core line with the vortex surface (2),
and at selected points along the curve forming this
intersection, subtracting from the velocity at these
points the velocity at the point (1) on the vortex core
line. This process was repeated for a regular distri-
bution of points along the vortex core line.

It appears that both techniques present a viable
way to convey the sense of rotation of individual
vortices to the observer. Further work is necessary
to assess possible quantitative differences between
the two. In addition it will be very interesting to try
to identify the mutual interactions between different
vortices using the Biot-Savart law.

5 Conclusions and Future Work

Based on the scalar quantity As vortices have been
identified, visualized, and separated. An algorithm
that traces the spatial minima of A successfully ex-
tracted vortex core lines. Possibly for the first time
it was shown that minimum lines of A, are physi-
cally meaningful to trace vortex cores. The skele-
tonization of vortices was then very helpful to seg-
ment the data, i.e. to separate individual vortices
which would appear connected if a single A, thresh-
old were used. The core lines form an ideal basis
for probing the flow, e.g. investigating flow quanti-
ties such as vorticity or others along the core line, or
for investigating vortex dynamics, as shown in the
examples. Tracking of the observed structures with
respect to time and comparing their evolution with



the predictions using the Biot-Savart law are needed
in order to understand whether the vortex dynamics
can be fully captured based on instantaneous data.

It was also found that the vorticity w, possesses
a local extremum at a point on the vortex core line
and in a plane perpendicular to eigenvector az. An-
other vortex core line extraction method making use
of both As and w was therefore successfully im-
plemented and tested in [18]. As pointed out by
[13], these, and other possible methods define line-
type features by minimizing a scalar quantity s in
a vector field v by finding the set of points where
Vs || v. In the present case, s = A2 and v = ag.

As mentioned earlier, vortices are only one
amongst other coherent structures of importance in
fluid dynamics. Our next step will be to evaluate
methods for shear layer visualization. As in the case
of vortex detection, using vorticity alone to detect
high shear layers would be ambiguous.
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