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Abstract Linear stability investigations are presented for flows over anisotropic
compliant walls. Hereby, a surface-based anisotropic model is incorporated, featur-
ing stiffeners making an angle to the surface plane as well asan angle to the plane
which is wall-normal and in flow direction. Results are shownfor Blasius flow us-
ing compliant-wall parameters found in literature, demonstrating the effect of the
yawing angle on linear stability. It is concluded that the propagation direction of the
most amplified instabilities can be altered.

1 Introduction

Pavlov[5] investigated the skin properties of the dorsal finof harbor porpoises,
showing that dermal ridges—which are comparable to stiffeners of an anisotropic
material—are aligned in lines making an angle to the flow direction (yawing). To in-
vestigate the effects of a yawed anisotropic compliant coating the wall model used in
[1] was extended (section 2), the boundary condition incorporating this wall model
was derived and validated for an Orr–Sommerfeld–Squire solver (section 3), and the
effect of yawing of the material was investigated (section 4).

2 Theoretical Model of the Yawed Anisotropic Wall

The compliant wall is modeled as an elastic plate bound to a rigid base by stiff
swivel arms. These arms are connected to the rigid base by springs and dampers.
An illustration of the wall model is shown in figure 1. The armsmake the angleθ
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to the surface plane and the yaw angleψ to the wall-normal plane aligned with the
flow direction.

The boundary condition at the wall is established by performing a Taylor series of
the fluid velocities and the fluid pressure. At the location ofthe elongated surface the
velocities and stresses of fluid and wall are matched to obtain an expression for the
quantities at the wall-neutral position. Nonlinear terms of the disturbance quantities
and terms in which only base-flow quantities appear are then dropped. Using the
momentum equation of the wall we obtain three boundary conditions at the wall,
linking the disturbance velocities and pressure. In contrast to common surface-based
models found in literature, the Orr–Sommerfeld and the Squire equation are coupled
by the boundary condition at the wall and must to be solved in combination.

The wall parameters can be reduced to the non-dimensional quantities
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These coefficients account for the mass ratioCm, spring stiffnessCk, flexural rigidity
Cb, and the induced tension in the plate caused by the differential motion of the
swivel armsCi . The wall parameters are reflected by Young’s modulusEm, Poisson’s
ratio νm, wall densityρm, plate thicknessbm, and the spring stiffnessKm.

3 Numerical Method and Code Validation

The coupled Orr–Sommerfeld and Squire equations are solvedusing a shooting
method. The equations are formulated as in [4] (eqn. 2.45 and2.46). Starting from
the free-stream, the system of equations is integrated using a standard 4th order
Runge–Kutta scheme. Linear independence of the integratedbase-solutions is en-
sured using Godunov’s orthonormalization technique described in [2]. The base so-
lutions are added so that two of the three boundary conditions at the wall are met.
To track eigenvalues, the residualε of the third equation is then minimized us-
ing common root-finding methods starting from an initial guess. Using a technique
used in [3] the eigenvalue spectrum is obtained by plotting lines ofRe(ε) = 0 and
Im(ε) = 0 in the complex phase-speed plane. Their intersection points are either
poles or roots of the residual and are evaluated using them asinitial guess of the
root-finding method.

A comparison of the marginal-stability curves (forβ = 0) for Blasius flow over
walls with the parameters listed in table 1 is shown in figure 2. Symbols denote the
results of [1]. Lines denote the results of the current method. The results are in good
agreement with each other, although different formulations and numerical methods
were used.
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Table 1 Parameters for the cases in figure 2

case θ ψ C(ν)
m C(ν)

k C(ν)
b C(ν)

i

1a — — — — — —
2b 0◦ 0◦ 1.464×104 4.443×10−5 1.208×1012 —
3 60◦ 0◦ 2.211×103 7.405×10−6 1.529×109 2.814×103

4 75◦ 0◦ 5.777×102 1.983×10−6 2.281×107 6.152×102

a rigid wall case;b isotropic wall case

4 Results

Due to the abundance of possible wall parameters it was chosen to investigate the
effect of yawing using the parameters found in [1]. These parameters have been
optimized for Blasius flow using asymptotic theory. A stability diagram for case 3
(θ = 60◦) is shown in figure 3. Lines denote marginal stability for different constant
spanwise wavenumbersβ , while the line forβ = 0 is drawn thicker. Contours of the
temporal amplification rate are shown in slices for constantstreamwise wavenum-
bersα. The maximum amplification rate is for a wave of the spanwise wavenumber
β = 0 and the diagram is symmetric w. r. t.β = 0.

Starting from the parameters in case 3 the yaw angle was modified. In fig-
ures 4, 5, and 6 the anisotropic material was yawed with the angles, ψ = 18◦,
ψ = 36◦ andψ = 54◦, respectively. Forψ 6= 0◦ the wave of the maximum amplifi-
cation rate is a sideways propagating wave. The higher the yaw angle, the higher is
its spanwise wavenumber. Forβ = 0, the unstable region is successively reduced in
size and magnitude. Increasing the yaw angle, a reduction ofthe maximum ampli-
fication rate of the TS instability can be barely noticed. However, the Flow Induced
Surface Instability (FISI) is destabilized and eventuallybecomes unstable for large
yaw angles. Its propagation direction is in opposite direction to the TS instability,
and can exhibit considerably higher amplification rates.

5 Conclusions

We have presented a viable method to study the influence of a yaw angle for
anisotropic compliant walls. Increasing the yaw angle of the anisotropic material
alters the propagation direction of the least stable TS waves to oblique-travelling
waves and the least stable FISI towards oblique-travellingwaves in the opposite
spanwise direction. The maximum growth rate of TS waves is marginally reduced.
However, FISI become less damped and eventually unstable.
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Fig. 1 Sketch of the compliant-wall model Fig. 2 Comparison of marginal-stability curves
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Fig. 3 Stability diagram forθ = 60◦,ψ = 0◦ Fig. 4 Stability diagram forθ = 60◦,ψ = 18◦
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Fig. 5 Stability diagram forθ = 60◦,ψ = 36◦ Fig. 6 Stability diagram forθ = 60◦,ψ = 54◦


