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Abstract

In direct numerical simulations (DNS) of the transition in laminar separa-
tion bubbles the definition of a well-posed free-stream boundary condition is
crucial. Different, partially contradicting properties are required: first of all,
separation is forced by prescribing the streamwise velocity component. More-
over, oscillations occur at the free-stream boundary due to disturbance waves,
which extend from the rapidly growing boundary layer far out into the poten-
tial flow. Finally, displacement effects of the separation bubble influence the
surrounding potential flow by the so-called viscous-inviscid boundary-layer
interaction. Usually, either the integration domain has to be sufficiently high
or a state-of-the-art boundary layer interaction model based on the theory
of thin airfoils can be applied. At high Reynolds number, neither of both
possibilities is applicable. Therefore, an improved model for larger Reynolds
numbers has been developed which meets the above mentioned requirements.
The method is validated by variations of the height of the integration domain
and by comparisons with experiments. It is shown, that even if the height of
the integration domain covers only one boundary-layer thickness, the model
works properly.

Nomenclature
c chord length,
¢ blending function in interaction model,

Chu, cuy;  matrix and its coefficients, eqn. (14),(15),
Cy,¢yy;  matrix and its coefficients, eqn. (11),(12),

fe polynomial function (interaction model),

Hy, shape parameter,

1 total number of discrete sources in the model,
L reference length,

Ma Mach number,

ni, no, Annumber of first and last x-station and z-increment
of the source distribution in the model, respectively,

Pw pressure at the wall,

Re Reynolds number,
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Res, Reynolds number based on displacement thickness,

q source distribution in the interaction model,

t time,

Trs forcing cycle of the TS wave,

u,v,w  velocity components in z, y, and z-direction, respectively,
U, first higher harmonic of TS-wave,

Uoo reference velocity,

Y, 2 streamwise, wall-normal, and spanwise coordinate, respectively,
Tia begin of instantaneous update in interaction model,

« streamwise wave number: « = 27/,

Qe assumed streamwise wavenumber at free stream boundary,
o assumed total wavenumber at free stream boundary,

v spanwise wave number: v = 27/,

A modified Laplace operator, eqn. (3),

1 displacement thickness: [j*(1 — *)dy,

0y momentum thickness: [§* 2£(1 — 3£)dy,

€ia, Cinst amplitude limits in interaction model,

&ij streamwise distance to a discrete source,

w vorticity.

Subscripts, superscripts:

e at free-stream boundary,

i x-station of induced velocity,
j x-station of inducing source,
k spanwise spectral mode,

» potential flow,

s at separation,

v due to viscosity,

Capital Fourier transformed variable,
g inverse matrix,
time-averaged variable,
dimensional variable,

~

—

vector.

1 Introduction

A boundary layer subject to a strong adverse pressure gradient is susceptible
to separation. In the separated region, disturbance waves, so-called Tollmien-
Schlichting (TS-) waves, are strongly amplified and transition to turbulence
takes place. The increased dissipation causes momentum transfer towards
the wall and finally forces the boundary layer to re-attach. Beside this more
general understanding, the physics of laminar separation bubbles (LSB) is
still not well understood. Apart from the acceleration of transition and the



according higher skin friction, laminar separation bubbles have strong im-
pact on the aerodynamic properties of airfoils through the interaction of the
boundary layer and the surrounding potential flow, the viscous-inviscid inter-
action. Displacement effects of the boundary layer can change the potential
flow in the separated region or even worse, around the entire airfoil. A typical
pressure plateau is generated near the separated region followed by a sudden
pressure increase at the end of the bubble.

As the computers became more powerful, DNS turned out to be a well
suited tool to investigate the physics of laminar separation bubbles. On the
one hand, DNS can achieve very low (numerical) turbulence to investigate the
self-excited behavior of separation bubbles (Gruber [1, 2], Pauley et al. [3],
Lin & Pauley [4], Ripley & Pauley [5]). On the other hand, the interaction
of special 2D and 3D disturbances is investigated in controlled “numerical
experiments”. Rist [6] and Rist et al. [7, 8] were the first to perform con-
trolled 3D simulations of the transition in a laminar separation bubble. They
continued the work of Gruber which was restricted to 2D. By decelerating a
Blasius boundary layer to ~ 91% of the initial velocity Rist et al. forced the
boundary layer to separate and a separation bubble to form. The Reynolds
number based on displacement thickness at separation in these simulations
was close to Res, = 1250. Rist et al. forced different combinations of 2D
and 3D waves upstream of the separation bubble and obtained a strictly con-
vective behavior of all disturbance waves in the investigated test cases. They
observe that secondary disturbance amplification breaks down as the ampli-
tude of the 2D TS-wave saturates and transition to turbulence seems to be
not due to secondary instability. Since weakly oblique 3D modes are almost
as amplified as clean 2D waves they suggest that an Oblique Breakdown
mechanism is very likely to occur and to provide the three-dimensionality
needed for transition to turbulence. If the Reynolds number is further in-
creased to Res,, = 2400, Maucher et al. [9] found temporal growth of 3D
modes, with the presence of a saturated 2D TS-wave (amplitude &~ 20% )
in the re-attachment region. This temporal growth increases if the separation
bubble is bigger especially in terms of the reverse flow intensity. It finally
causes transition to turbulence even if the flow is purely 2D upstream of the
separation bubble (Maucher et al. [10]).

Wasistho [11], Alam & Sandham [12], and Spalart & Strelets [13] per-
formed DNS focusing on the development of turbulence downstream of the
LSB including, however, the whole separation bubble in the integration do-
main. The Reynolds number in those investigations is Res, < 1000. Wa-
sistho uses a compressible numerical code at Ma = 0.2 and forces a 2D
TS-wave and a pair of 3D waves with an amplitude of 1 percent wu.,, each.
From the observation of a three-dimensionally deformed wave front in terms
of spanwise vorticity, which he denotes as A-shaped, he concludes that A-
vortices are present. Alam & Sandham [12, 14] force a pair of symmetrically
oblique waves with large amplitude. In their simulation transition is charac-
terized by a staggered pattern of A-vortices which might be due to a by-pass
mechanism. Spalart & Strelets [13] use a spectral ansatz in streamwise direc-
tion. Disturbances propagating into the fringe-region are damped to moder-



ate amplitudes and feed arbitrary 2D and 3D disturbances with amplitudes
about 5x 10~* into the Blasius boundary layer upstream of separation. They
observe a flapping of the free shear-layer in the front part of the separation
bubble which dominates by far in comparison with convective disturbance
waves. Whether the flapping or possible large amplitude traveling waves
cause transition remains unclear.

1.1 Free-stream boundary-conditions

There are, in general, two approaches to decelerate the boundary layer and
thus force separation. The first approach prescribes a wall-normal velocity
distribution v, at the free-stream boundary of the integration domain. This is
similar to an experimental apparatus, where transition at a flat plate is forced
by a displacement body or by suction through the opposite wall in a channel
(here denoted as channel formulation). This method is used by the most of
the above mentioned authors. In the second approach, in contrast, basing on
the work of Gruber and Rist we prescribe the streamwise velocity component
at the free stream u, and allow for displacement effects by applying a von-
Neumann boundary condition for the wall-normal velocity component which
is defined according to the equation of continuity (S—Z .= —dé‘;; x and y are
the streamwise and wall-normal coordinates, respectively). This procedure is
strongly related to boundary-layer methods and meets the conditions at an
airfoil, where a decelerated velocity distribution is forced upon the boundary
layer by the inviscid streamwise velocity distribution and where no walls limit
displacement in the far-away flow field (termed free-flight formulation further
down).

Wasistho et al. [15] prescribe the wall normal distribution obtained in
a first simulation with a fixed streamwise u, distribution (case A) as wall-
normal boundary condition in a second DNS (case B). They prove that the
results of both DNS (A and B) are equivalent.

Hsiao & Pauley [16] compare results for marginal separation at low Reynolds
number obtained by DNS (channel formulation) and with a boundary layer
approach, where the viscous-inviscid boundary layer interaction was taken
into account (free-flight formulation). In the DNS a suction port with a
fixed suction distribution was inserted into an elsewhere non-transpiration
free-stream boundary. Even in a very high integration domain separation
was strongly delayed in DNS by the displacement of the growing bound-
ary layer which accelerates the flow in comparison with the boundary layer
method due to a narrowing of the “channel”. When the non-transpiration
condition is replaced by a von-Neumann condition for the wall-normal ve-
locity component outside the suction port Hsiao & Pauley gained favorable
agreement with the boundary layer method (modification towards free-flight
condition). On the other hand this limits the width of the suction port to
small streamwise extends.

Spalart & Strelets [13] apply a suction port according to the original
boundary condition of Hsiao & Pauley. The flapping of the free shear-layer in
their DNS might be caused by “channel”-effects, a strong unsteady widening




and narrowing of the effective channel height due to unsteady displacement
effects. If one imagines an experiment in a very low channel with a height
of only a few boundary-layer thicknesses, according to typical boxes in DNS,
it is evident that blockage effects may have strong impact on the streamwise
potential velocity component and thus on the pressure distribution, especially
if an unsteady separation bubble appears.

Hildings [17] recalculates an experiment, where separation was forced on
a flat plate by a displacement body at the opposing wind-tunnel wall. He pre-
scribes either the measured wall-normal (channel formulation) or streamwise
velocity component at the free-stream (free-flight formulation) and calculates
the respective missing component according to the condition of vanishing
spanwise vorticity at the free-stream (g—’; = 221'). Thus, in the free-flight
formulation a Dirichlet boundary—conditiorel is appleied for the wall-normal ve-
locity component. Both formulations achieve only coarse qualitative agree-
ment with the experimental findings. The channel formulation cannot guar-
antee to accurately reproduce the flow in an experimental channel, since
usually the computational box is low in comparison with the height of the
channel. In our institute, Miiller began promising attempts to reproduce the
same experiment with our boundary condition (free-flight formulation, von-
Neumann condition for v). If the computational box does not cover the whole
channel height, a channel resembles properties inherent in both formulations,
the channel formulation and the free-flight formulation. Nevertheless, there
are first hints that even here the free-flight formulation is superior if the
computational box covers only a smaller part of the experimental channel.
However, for reliable statements further research is necessary.

Our calculations (with the free-flight formulation) of airfoil separation
bubbles show, that the velocity distribution at the edge of the boundary layer
deviates from the prescribed distribution at the free stream boundary (see
later in this paper). A typical velocity distribution with a velocity plateau
appears, even if the integration domain covers only a few heights of the
boundary layer, since a relaxation of the potential velocity towards the free-
stream boundary takes place. Actually, this formulation captures the main
properties of LSB on airfoils. The definition of an appropriate boundary
condition with the channel formulation, in contrast, is very difficult. The final
wall-normal velocity distribution at the airfoil is not known at the beginning
of the DNS, and the definition of the boundary condition needs to make
assumptions, which in turn have strong impact on the development of the
LSB. Prescribing the wall-normal component at the free-stream in DNS of
airfoil separation-bubbles therefore requires a detailed knowledge about the
effects of the LSB, whereas prescribing the streamwise component primary
rests on the usually a priori known inviscid velocity distribution which finally
causes separation. Besides these general differences, the findings of Hsiao &
Pauley as well as our experience are evidence of the advantages of a von-
Neumann condition for the wall-normal velocity component in DNS of airfoil
LSB.

At high Reynolds numbers (Res; ~ 2000) none of the mentioned ap-
proaches yields satisfactory solutions for LSB on airfoils. To obtain quan-




titative findings the effect of boundary layer interaction at the free-stream
boundary may not be neglected. This problem is addressed in the present
paper.

Since the seventies strong attempts to model the boundary-layer interac-
tion in numerical schemes were made. Now, “viscous-inviscid boundary-layer
interaction models” are frequently used for boundary layer calculations in flat
integration domains, where the wall-normal extent is very small compared
with the streamwise extent. In such models the initially prescribed (inviscid)
potential velocity distribution wu, is superposed with a viscous component
(index v) due to the displacement of the boundary layer. The displacement
is regarded as a modification of the shape of the wall contour and is modeled
with a distribution of sources and sinks ¢(x) at the wall. The velocity distri-
bution u, is updated by adding the streamwise velocity component u, which
is induced by the sources at the wall. Employing the theory of thin airfoils
[18], the sources can be easily calculated (Veldman [19)]):

d 1

Uv(x) - %(up(sl)) Q(x) = 5?}”(.’17), (1)

where 6; denotes the displacement thickness.

Gruber [2] applied such a model to his DNS code for the investigation of
2D instability in laminar separation bubbles. He shows that the wall-normal
viscous velocity-component v, at the free-stream boundary is connected to
the instantaneous wall-normal value v(z,y = y.) and an inviscid part v,:

Ye
vy (1) = v(x,y.) — ; %—Tg)dy = v(x,ye) + ye%. (2)
He tested this method at small Reynolds numbers (Res, , ~ 600) and ob-
tained reliable results.

Tests with Gruber’s model at Reynolds numbers typical for mid-chord
bubbles of glider wing-sections or high-lift devices (Res, , ~ 2500) failed. At
best, only coarse qualitative agreement with the experiment can be obtained.
Such simulations demand a tall integration domain and the theory of thin
airfoils increasingly overestimates the streamwise viscous component u, in
higher integration domains. Moreover, disturbance waves extend far out into
the potential flow and cause oscillations at the upper boundary which, in
consequence, are modeled as source distribution at the wall. Errors due to
the simplifications in the model (i.e., the displacement is modeled at the
wall and not in the boundary layer, where it originates) decay only slowly
in streamwise direction (< 1/z) compared to TS-waves, which might be
generated far upstream of the bubble by such errors. If once generated,
they are amplified exponentially to such amplitudes which can exceed the
amplitude of the initiating errors in the separated region by far, rendering
the DNS useless.

Nevertheless, in DNS of LSB at high Reynolds numbers there are nu-
merical motivations for the application of an interaction model. Imposing
the velocity distribution in a low domain has a very rigid impact on the ve-
locity distribution at the edge of the boundary layer. Displacement effects



are mostly suppressed. Very high domains allow for changes of the potential
flow in wall-normal direction. The velocity at the edge of the boundary layer
thus differs from the prescribed potential velocity distribution at the upper
boundary of the integration domain. If the height of the integration domain
is varied, the edge-velocity distribution therefore changes in spite of similar
boundary conditions. A well-defined interaction model has to capture the
displacement effects properly, simultaneously avoiding the dependency on
the height of the integration domain.

2 Numerical Method

2.1 Governing equations

The DNS numerical scheme is based on the complete incompressible Navier-
Stokes equations in vorticity-transport formulation [20, 21]

ﬁwx 0 0 A
Y &y —(vwy — uwy) + &(wwx —uw,) = A w,,
Ow, 0 0 _ A
T ag U T ) g (wey — ) = Ay,
ow 0 A

z v . v _ - A
o+ e = wn) + (o — ww) = A,

1 0? 0* 1 0 5
Re 0x? * 0y? * Re 02? )
which are solved in a rectangular integration domain (figure 1). w de-
notes the vorticity. u,v,w are the velocity components in streamwise (z),
wall-normal (y), and spanwise (z) direction, respectively. All variables are
non-dimensionalized by a reference length L, by the velocity Us, and the
Reynolds number Re = i L /v, where " denotes dimensional variables and ©
is the kinematic viscosity:

with A=

ng,y:vReg,z:i,
L L L

u= ,v:vReAL,w:A ) (4)
oo uOO (e.@)

Additionally, the variables in wall-normal direction y and v are stretched
by v Re. This leads to the definition of the non-dimensionalized vorticity
components:
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The velocity components can be computed from three Poisson equations:

v 0*u ow, 0%
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2.2 Boundary conditions and discretization

In spanwise direction a spectral ansatz is applied which implies periodic
boundary conditions. The equations are solved with a highly efficient, par-
allelized finite difference method, 4th order accurate in time (Runge-Kutta)
and space. Due to the spectral ansatz in spanwise direction the u and w
Poisson-equations (6, 8) can be solved independently for each spanwise spec-
tral mode. They reduce to ODEs in streamwise direction and lead to penta-
diagonal systems. Only the v-equation (7) has to be solved iteratively by a
line relaxation method accelerated by a multigrid algorithm. The spectral
ansatz allows to specify different boundary conditions for the 2D and 3D part
of the flow.

Since the free-stream boundary is in the potential flow, all vorticity compo-
nents vanish and are set to zero. The inviscid streamwise velocity component
u, is prescribed for the 2D part. With the continuity equation

duy _ Oy

oy Oz )

a 2D von-Neumann condition for v is defined. It allows for a wall-normal
velocity component due to displacement effects even if no interaction model
is applied. For the 3D part, exponential decay of the wall-normal velocity is

assumed i
(91)3[) p

By = \/ﬁvw,
where o = /a2 + (7,)? denotes an individual wavenumber specified for each
spectral mode k which consists of the respective spanwise wavenumber ~; and
a streamwise wave-number «, which is considered to be representative for the
whole streamwise extent of the integration domain (Fasel et al. [22]). In the
potential flow, this condition is consistent with the exact solution for linear
TS-waves with the streamwise wave number «,. In the progress of a rapid
breakdown into fine length scales downstream of the separation bubble, small
vortices are injected into the previously undisturbed potential flow. A buffer
domain at the free-stream boundary damps the wall-normal derivatives of
the vorticity-transport equations to zero when the vortices approach the free
stream boundary and finally their wall-normal propagation is stopped. The
assumption of inviscid flow at the very boundary remains valid.

At the inflow boundary, steady Falkner-Skan profiles, usually Blasius pro-
files are prescribed. The 3D part of the flow is set to zero. If controlled condi-
tions are required, disturbance waves can be forced by periodic or pulse-like

(10)



wall-normal suction and blowing in a disturbance strip at the wall. Except
for the disturbance strip, the no-slip condition is applied at the wall.

The unsteady vorticity components are smoothly damped to steady-state
values in the relaminarization zone upstream of the outflow boundary [21].
Consequently, the unsteady velocity components also decay exponentially in
streamwise direction and vanish at the outflow.

2.3 Boundary-layer interaction-model

To meet the requirements on the interaction model in DNS of separation
bubbles at higher Reynolds numbers, the inviscid theory has to be applied
without such assumptions as they are made in the theory of thin airfoils. The
viscous component 7, ; is modeled at each An-th of the total of N streamwise
grid points in the limits from n; near the inflow boundary to ny upstream of
the buffer domain at the outflow boundary, resulting in I = 1+ (ny —ny)/An
discrete sources ¢;:

7711,@' = Cv q; (11)

The indices 7 and j denote the streamwise positions of the viscous velocity
component v,(z;) and of the source ¢(z;), respectively, where 1 <4,j < I.
The matrix C, has the coefficients

R
g+

(12)

Cu,ij

where §;; denotes the streamwise distance from the source (z; — z;). C, is
inverted once at the beginning of the DNS, giving the relation

gy = C14, ;. (13)

Since the matrix C, is ill conditioned especially in high integration domains
and for narrow spacing of the sources, a minimum spacing considerably larger
than the streamwise discretization is required (An > 1), at the same time
limiting the total number I of sources used. Finally, the streamwise viscous
velocity component is calculated at all z-stations between n; and n, from

Z_L)v,n — Cu q_;a (14)
where the (ny —n; + 1) x I matrix C, has the constant coefficients
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The boundary-layer interaction model is implemented into the multigrid
scheme for solving the 2D part of the v-Poisson equation. The boundary
conditions of the 3D spanwise spectral modes are not effected. During each
multigrid cycle of the 2D v-Poisson equation (V-cycle with 4 grids and 2/10/1
iterations on the respective grid after coarsening/ on the coarsest grid/ after
refinement), the von-Neumann condition at the free-stream boundary is fixed.
At the end of the cycle equations (2), (13), and (14) are calculated to update



the von-Neumann condition at the free-stream boundary of the v-Poisson
equation

? _ _d(uvdJr up)‘ (16)

Yle T

It turned out that u, should be adapted with an under-relaxation of 0.55
for optimum convergence. This procedure is only repeated for the first three
of a total of eight multigrid-cycles. On the one hand, since the variation
of u, stops decaying from one cycle to the next. On the other hand, the
convergence of the multigrid scheme is much worse when the model is active
than without it.

The instantaneous update of the viscous component is very efficient at
streamwise stations where the free-stream disturbance amplitude is still large
compared to the maximum in the boundary layer. In particular, downstream
of the LSB even high-frequency displacement effects caused by large ampli-
tude vortices are captured, and an accurate treatment of such oscillations
at the free-stream boundary is ensured (see next section). In turn, strong
detrimental upstream influence might be caused by such oscillations. This
is probably the main source of errors in the model. According to the lin-
ear stability theory (LST), TS-waves do not cause displacement because the
displacement due to the near-wall maximum is compensated by the reverse
effect of the 2nd maximum in the u-eigenfunction. The wall-normal veloc-
ity component vanishes with increasing distance from the wall and finally
approaches zero. In contrast, the model takes into account only the dis-
placement up to the location of the free-stream boundary and omits the
rest. Thus, in the model, each TS-wave has a significant displacement effect.
The respective sources and sinks induce oscillations at the entire free-stream
boundary. However, the mean value of those oscillations is low (for a linear
TS-wave it is zero).

In order to suppress the above mentioned errors (oscillations), the region
upstream of the separation bubble is treated in a special manner. It is suf-
ficient to just model the time-averaged displacement effects at streamwise
stations where the TS-amplitude at the free-stream boundary is small com-
pared to the amplitude in the boundary layer. At the same time it is crucial
to suppress oscillations which are generated by large amplitude vortices fur-
ther downstream. Therefore, the mean u,(x) and the Fourier-amplitude U, of
the instantaneously induced streamwise velocity component wu,(x,t) (where ¢
denotes the time) are checked during each TS-period. Upstream of a position
T;o(t), where the amplitude U,(z) is below a limit of £;,, = 2 x 10™* (figure
2a), u,(z,t) is described by a polynomial function, valid for one TS-period:

fol@,t) = fo(x) + for(2)t + foo(x)t® + fes(x)t? (17)

to obtain a smooth temporal behavior. The coefficients fo(z), fo1(x), fe(z),
fes(x) are adjusted at the beginning of the respective TS-period (¢t = tp)
in such a way, that f.(x,t) is continuous up to its second time derivative,
which results in three conditions for the evaluation of the four coefficients.
For the required fourth condition assumptions for the end of the TS-Period



(t = t, = to + Trs) have to be made: either about the unknown function
value f.(z,t;) or one of the time derivatives. Here, a combination of both is
applied. The deviation f of the polynomial f.(x,t) from a assumed target
value fi(z) and the first time derivative f’ and second time derivative f” at
the end of TS-Period (¢ = t;) are weighted in a special way:

3 0 0?
7 (o, th) = fuln)| 43 o fo(w, 01) +Trs o5 fe(w, 1) =0 (18)
Trg ~ “ > Ot ot?

Inserting equation (17) and re-arranging yields the missing fourth condition.
If the target value (for example @, ) is constant, the weighting guarantees that
the target value is gained by the polynomial function the latest after three
TS-periods. However, in some DNS (with very small forcing amplitudes)
even the changes of u,(x) from one TS-period to the next are too large
compared with the TS-amplitude, and prescribing u,(x) as target value f;(x)
causes the excitation of disturbance waves upstream of the separation bubble.
Nevertheless, those changes may be small enough not to affect the instability
properties of the mean flow. Then, their cancellation is desired and has no
influence on the amplification of T'S-waves. A limit ;,4 is introduced, which
marks the tolerable range for u,(z) with negligible influence on the instability
properties of the mean flow. If %,(z) is fitted in the limits of +e;,, the
disturbance amplification is not affected. A relaxation factor R;, is defined,
which depends on the difference between the mean in the past TS-period
uy(z) and the instantaneous value of the polynomial function f.(z,t):

> Einst - Ria (ZL’) -

1
|y (2) — fe(z,t0)] { T (

\av(x)—fc(x,ton)l-f’ _ (19)

Einst

The target value is calculated

fi(w) = fe(w, t0) = Ria () [fe(w, to) — w(2)] (20)

and introduced into equation (18). The exponent causes a rapid decay of the
relaxation factor R;, towards zero, if |u,(z) — fe(x,ty)| < €ins. Thus f.(z)
becomes almost steady. In model calculations the properties of the ansatz
are investigated. Its convergence properties are demonstrated by prescribing
three initial conditions for f.(¢ = 0) in figure 2b. The tolerable range £,
is assumed to be £0.05 (error bars), the mean is independent from time:
U,(t) = 1. For all initial values of the function f.(t = 0) = 0 (solid line),
fe(t = 0) = 0.5 (dashed line), or f.(t = 0) = 0.95 (dash-dotted line), f.(t)
approximates the desired range +¢;,, rapidly (error bars). If the updates
of the coefficients are performed without relaxation (f, outside the range
+einst) Uy 1s gained exactly (solid line at t = 4Tg). With the initial value
fe(t = 0) = 0.5 (dashed line) the update of the coefficients at ¢ = 3Trg is
performed with an under-relaxation since f.(¢) already has entered the range
of @, £ €;nst- The function f. fails to gain @, = 1 but becomes almost steady
and is well inside the required range €;,5. Of course, for initial values of f,.



inside the range +¢;,, the same behaviour is observed (dash-dotted line).
The curves in figure 2c address the damping of a harmonic oscillation of
the mean @, with an amplitude A,eq, = 0.5 (circles). The development of
the function f, is investigated for three values of £;,5. In the case of the
solid line the limit £;,, is set to be € = Apmean = 0.5. Actually, this
agrees with the temporal behaviour of f. when no relaxation is applied. The
dashed line €;,5s = 2 Ajean = 1 marks moderate under-relaxation and the
amplitude of the oscillation of f. is reduced to one third in comparison with
the case without relaxation. For ;5 = 10 Apeqn, = 5 (dash-dotted line) the
oscillation of the mean , is strongly damped. The sub-figures prove, that
on the one hand the required accuracy @, + e;,5 is gained rapidly (figure
2b), and on the other hand low amplitude oscillations are effectively damped
(figure 2c¢). An appropriate value for e;,5 is 0.004 which ensures that the
mean-velocity distribution is accurate enough to meet the required stability
properties.

Downstream of z;, the polynomial f.(z,t) and the instantaneous values
uy(z,t) are weighted by means of a blending function ¢;(z), which is continu-
ous up to the second derivative and changes from zero for + < x;, to one for
x> (g + Azyy):

1 —¢;(z)] felz, t) + ci(x) uy(x, t), (21)

where Ax;, is approximately one TS wave-length, to guarantee a smooth
transition to the domain further downstream where instantaneous u, values
are applied. Sudden changes of x;,(t) at the step from one TS-period to the
next are avoided by a smooth temporal adaption of ¢;(x).

Nevertheless, even very close to the inflow boundary the model originally
induced comparably strong oscillations. The buffer domain at the free-stream
boundary (section 2.2) proved necessary to keep these oscillations sufficiently
low. During the breakdown of the laminar boundary layer, vortices are in-
jected into the potential low. Without the buffer domain, the wall-normal
velocity component related to these vortices would be interpreted as rapidly
changing boundary-layer thickness, if they touch the free-stream boundary.

If the disturbances are periodic with respect to the TS-frequency, the
mean does not vary from one TS-period to the next. In the region with
polynomial function (z < z;,) periodic flow is assumed by approximating
the mean. If the DNS finally gains the desired periodic state, this assump-
tion introduces no additional simplifications into the numerical code but,
in contrast, removes errors which are generated further downstream by the
modeling of TS-waves and vortices with large amplitude even far out in the
potential flow.

The computation time for the interaction model is below 1% of the CPU-
time of the whole numerical scheme.



3 Numerical test case

In an experiment in the laminar flow wind tunnel of our institute, the natural
transition in a laminar separation bubble on a wing section with a chord-
length of ¢ = 0.615 m was investigated [23]. The free-stream velocity .,
is 29.3%. Accordingly, the chord Reynolds number is Re. = 1.2 x 10°. In

the DNS the reference length is chosen to be L = 0.0615 m. The non-
dimensionalized streamwise location x = 10 is equivalent to 100% chord and
the resulting Reynolds number in DNS is Re = 1.2 x 10°.

In the experiments, two velocity distributions wu,(x) at the edge of the
boundary layer have been measured. The first one (diamonds in figure 3)
refers to a flow with a separation bubble. For the turbulent second one, the
separation has been suppressed by fixing a turbulator upstream of laminar
separation (circles). The difference between the two is due to displacement
effects. The crosses mark the distribution which corresponds to the pressure
at the wall in the case with separation bubble. To test the interaction model,
the turbulent distribution was approximated by a polynomial function (figure
3, solid line) and prescribed as boundary condition w, in the DNS. The
range at the inflow boundary (5.0 < z < 6.0), where the velocity is constant
(Blasius flow), is not shown. If the interaction model works properly, the

DNS should finally approximate the experimental conditions with separation
bubble (diamonds).

3.1 Variation of the height of the integration domain

Since the 3D part of the DNS code was unchanged, extensive 2D simulations
were performed to test and validate the numerical model. In five simulations
the height of the integration domain was varied between y, = 7.296; , (1)
and 19.44 6, , (5). With a constant grid spacing (Ay = 0.31) this corresponds
to 145 (1) and 385 grid points (5) in wall-normal direction, respectively. In
streamwise direction the grid has 690 points. A TS wave-length is discretized
with approximately 40 grid points. In each case the same free-stream velocity
distribution u, was prescribed, and a 2D TS-wave with an amplitude of
Urs = 107 was forced at the disturbance strip far upstream of the LSB
(5.21 < z < 5.52).

For the investigation of transition mechanisms, the quality of DNS results
mainly depends on an accurate reproduction of the disturbance development.
Thus, the independency of the DNS results from the height of the integration
domain is evaluated by comparing the amplitude profiles of the forced TS-
wave Urg and its first higher harmonic U, at three streamwise locations
in the different integration domains (figure 4). To examine the influence
of displacement effects on the boundary layer, the mean profiles u at the
respective positions are also included. At the onset of the adverse pressure
gradient, location (a), the mean-flow profile has almost Blasius shape and
the TS-amplitude of 0.025% is in the linear regime. Consequently, the higher
harmonic is negligible (except for the lowest domain (1), solid line).

At station (b) the reverse mean-flow velocity near the wall indicates the



separation bubble. The potential flow begins at y/é6;, ~ 3.2. It is sig-
nificantly accelerated compared to the prescribed potential velocity at this
x-position, which is included as a vertical line. The deviation declines with
increasing wall distance. The TS-wave is already strongly non-linear and a
higher harmonic with large amplitude is present. At the upper boundary of
domain (1) the TS-wave has an amplitude of almost 1%. Nevertheless, the
profile of simulation (1), solid line, fits well with the other simulations. Ob-
viously, the interaction model derives a very accurate boundary condition for
TS-waves. Behind the bubble (position ¢), the potential flow is decelerated.
The mean-flow profile has an almost turbulent shape due to the saturated TS-
amplitude. The amplitude and wall-normal extend of the higher harmonic
is significantly increased once more. The model predicts correct boundary
conditions for disturbance waves even if disturbances with different frequen-
cies and non-linear amplitude are present at the free-stream boundary (in
domain (1): Urs(ye) =~ 4%, Us(y.) =~ 1%). In the three highest domains (3),
(4), (5) the number of sources in the interaction model was limited to [ = 74:
each TS-wave length is modeled with only five sources, a wave length of the
first higher harmonic covers less than three sources. In the simulations (1)
and (2) it is twice that number.

To study the limits of the region where the application of the model is
justified, a more detailed investigation of the slight differences between the
computations is necessary. Position (a) is in the region where the temporal
behavior at the free-stream boundary is approximated by a polynomial func-
tion (r < x;,) and hence does not allow for oscillations. The fundamental
profile Urg in computation (1), solid line, differs from all other simulations,
which, in contrast, fit well to each other. The difference is the largest near
the free-stream boundary of integration domain (1). In the simulations (2) -
(5) the fundamental wave Urg has a significant amplitude at the wall-normal
distance of the free-stream boundary of domain (1). In simulation (1) oscil-
lations with fundamental frequency are suppressed, whereas a slow drift is
prescribed through the polynomial function. Thus, the amplitude in simula-
tion (1) at the free-stream boundary represents the Fourier transform of this
drift and is not due to a harmonic oscillation. Thereby, the distribution in
a wide range towards the wall is affected including the second maximum of
the TS-wave at y = 1.9y/6; ;. Additionally, a higher harmonic U, is gener-
ated. Prescribing the analytical function, thus may impair the identification
of TS-waves. It should be noted, however, that the disturbance amplitude
Urs =~ 2.5 x 107" at location (a) is very small and that the near-wall max-
imum agrees well in all computations. Moreover, the further disturbance
development is not affected (positions (b) and (c)).

The disturbance amplitude in simulation (5), dotted lines, at position
(a) and (b) at the near-wall maximum of the TS-wave is approximately 8%
larger than in the other computations. Especially at station (b), the whole
profiles computed in domain (5) differ slightly from the other simulations. A
close-up view on the velocity distribution in the potential flow at a constant
distance from the wall (figure 5) shows the reason. In case (5), dotted line,
the onset of the strong deceleration and the related higher TS-amplification



takes place a little further upstream than in the other cases. Apart from
this, the distributions are quite similar. Namely, the process of disturbance
growth and disturbance saturation evolves slightly upstream in comparison
with the other cases. The saturated state apparently almost freezes any fur-
ther disturbance development, since the breakdown into fine-scale turbulence
is suppressed due to the lack of three-dimensionality. Therefore, when the
saturated state is once attained in all computations, differences almost disap-
pear (location c). If three-dimensionality is considered, there would be direct
impact on the onset of transition to turbulence and consequently the entire
re-attachment region. Simulation (5) thus marks the upper limit, where the
assumptions in the model are justified. On the contrary, domain (1) repre-
sents the lower limit since it covers just one boundary-layer thickness at the
outflow boundary. In between, the results are independent of the height of
the integration domain.

3.2 Variation of forcing amplitude

In the underlying experiments neither the exact initial amplitude of the TS-
waves nor their frequency distribution and spanwise wavenumber spectrum
could be determined, because the TS-amplitude was far below the resolu-
tion properties of the hot-wire probe and signal-processing used. Before the
interaction model was available, the separation bubble in DNS was much
shorter than the one observed in the experiments. This was regarded to be
due to different initial conditions of the T'S-waves, especially different initial
amplitudes. Therefore, 2D test calculations were performed aiming at the
reproduction of the experimental findings by a variation of the forced initial
disturbance amplitude in DNS. However, this attempt failed. The maximum
shape parameter Hij 0, = 6.75 agrees well with the experiment (figure 6,
symbols) if a TS-wave with an initial amplitude of Urgs = 10~ is forced (case
w4, long dash-dotted line). The location of the onset of transition and re-
attachment, indicated by the decay of the shape parameter, is in case w4 far
upstream compared to the experiment. If the initial amplitude is lowered to
Urs = 1075 (case wb, short dash-dotted line) the maximum grows strongly
to Hismez = 8.75 but still the bubble remains further upstream. This re-
sult indicates an increased height and reverse-flow intensity in the separation
bubble.

3.2.1 Influence of boundary-layer interaction

With the interaction model applied, in contrast, a reduction of the TS-
amplitude from 10~* (case w4ia, long dashes), to 107> (case wbia, short
dashes), and finally 107° (case w6ia, dots) delays re-attachment, and the
experimental distribution in the separated region is approximated much bet-
ter in cases wbia and w6ia. Downstream of the bubble, the experimental
results indicate turbulence (Hyy &~ 1.5) whereas the DNS values are signifi-
cantly higher due to the two-dimensionality. In cases with the same initial
TS-amplitude the shape-parameter maximum is lower if the boundary-layer



interaction is considered. This elucidates the damping influence of displace-
ment effects on the size of the separation bubble.

The time averaged streamwise velocity fields in the vicinity of the separa-
tion bubble without and with interaction model (w5 and wbia) are plotted
in figure 7a) and b), respectively. The isolines @ = 0 are emphasized. Ad-
ditionally, in figure 7b) the @ = 0 isoline of case w5 is included to enable a
direct comparison of size and shape of the separation bubble in both cases.
The wall-normal direction is stretched by a factor of 20 in comparison with
the x-coordinate. As seen above, the restrictive boundary condition with
neglected interaction effects, fixes the separation bubble in streamwise di-
rection. Thus, the flow separates further upstream and the angle of the
isoline v = 0 at separation is larger. The separation bubble is taller. The
reverse-flow velocity maximum is 21 % u., in this case and 19 % u, in case
wbia. The shape parameter is maximum at the positions x ~ 7.55 (w5) and
x & 7.75 (wbia) in the two cases, which agree with those streamwise posi-
tions where the @ > 0 isolines have the biggest distance from the wall, but
are different from the streamwise positions with the reverse-flow maximum.

The curvature of the isolines in the shear layer in the upstream part of the
separation bubbles tends to zero if the interaction model is applied (figure
7b). Without the model, the curvature is stronger (r = 6.75 — 7.5). A com-
parison of the wall-pressure p,, helps to explain this phenomenon. All cases
show the same characteristic properties (figure 8). In the region upstream
of separation and in the front part of the separation bubble (z < 7.5), the
pressure is increasing until a strong negative peak is observed, which indi-
cates a counter-rotating vortex in the bubble (figure 8a). Furthermore, the
bubble is the tallest at approximately this location. Then, a sudden strong
pressure increase occurs, indicating the diminishing height of the bubble and
the strong convex curvature of the u isolines in the re-attachment region.
With interaction model, the reduction of the forcing amplitude mainly in-
fluences the location, where these characteristic properties of the pressure
distribution are observed. The pressure increase in the separation region is
shifted upstream in the case w6ia, dots in figure 8a, compared to cases wbia
and w4ia, short and long dashes, whereas the negative peak and the sud-
den pressure increase towards still growing final values is delayed (figure 8b).
Without interaction model, the position of the bubble is almost fixed and the
reduction of the forcing amplitude first of all causes changes of the pressure
gradients. Upstream from separation (z < 7.0), the pressure increases much
stronger in the case wb, short-dash dotted, than in the case w4, long-dash
dotted in figure 8a, forcing the convex @ isolines (figure 7a). In the front
part of the bubble (7.0 < x < 7.5), in contrast, the pressure increases only
weakly in case w5 and has the lowest value of all five cases, causing concave
@ isolines. The end of the sudden pressure increase in the re-attachment
region and the respective final pressure levels are almost similar in the cases
w4 and w5 (figure 8b).

The velocity distributions at the edge of the boundary layer in all simu-
lations contain a plateau due to the displacement of the separation bubble
(figure 9). Without interaction model, the lowering of the disturbance ampli-



tude causes a strong growth of the height of the separation bubble, indicated
by the high values of the shape parameter in case wb, that leads to an ac-
celeration of the velocity in the plateau. Taking displacement effects into
account (cases ia) the plateau is more distinct and the distributions with
different amplitude compare well with each other until in the respective sim-
ulation the sudden deceleration begins which indicates re-attachment. The
strong deceleration in the case with the lowest amplitude (w6ia) is at almost
the same streamwise location as in the experiment. Upstream of the bubble,
the edge velocity is decreased in comparison with the prescribed distribution
u, and separation thus takes place at a lower edge velocity than in the exper-
iment. Subsequently, the edge velocity in the plateau in all DNS is slightly
lower than in the experiment (diamonds). The DNS runs indicated by the
index 3D will be explained further down.

3.2.2 Comparison with LST

In figure 10 the amplification curves of TS-waves for the cases w4, w4ia,
wb, and wbia are plotted for comparison with parallel linear stability theory
(LST, dotted lines). Initially, they depend only on the forced amplitude. The
early deceleration of the potential flow in the cases with interaction model
(solid line) soon causes stronger disturbance amplification and at z ~ 6.0
their amplitude becomes larger than in the computations without interac-
tion model (dashed lines). At z = 6.8 an inverse behaviour begins. The
disturbance growth in the computations without interaction model becomes
stronger and at x & 7.0 their amplitude exceeds the amplitude of the re-
spective run using the model. Finally, the amplitude saturates at almost the
same streamwise locations despite their different initial amplitudes. In con-
trast, with the interaction model applied, wave saturation is delayed if the
initial amplitude is decreased. For all cases the agreement between DNS and
the parallel linear stability theory (LST) is very good, although it could be
expected that at least in the separated region the non-parallel contributions
to the stability properties might be too large to justify the assumption of
parallel flow.

4 Transitional LSB

So far, all comparisons between DNS and experiment were more or less of
qualitative nature, since turbulence was disabled in the DNS due to the lack
of 3D disturbance modes. One would expect that no farther than z = 7.8,
where the decay of the shape parameter in the experiment indicates the
onset of transition, 3D modes play an important role and may no longer be
neglected. Thus, the runs wbia and w6ia were continued with a resolution
of 44 spanwise spectral harmonics. These runs are marked by the index sp.
After initial 3D perturbations were excited by pulse-wise forcing with very
low amplitude, 3D modes start to grow in time (see Maucher et al. [9]) and
finally transition to turbulence occurs. Actually, the respective edge-velocity
distributions (thin lines in figure 9) deviate in the re-attachment region from



the 2D curves and the overshoot of the velocity distributions observed in
the 2D cases upstream of the sudden decay vanishes. Case w6iasp almost
perfectly fits the experiment (diamonds).

Accordingly, the comparison of mean-flow profiles in this case w6iasp
with the experiment (symbols) shows very good agreement for all streamwise
stations A-G (figure 11a). Initially, the flow is attached (position A). The
shear layer then lifts from the wall (B) and the profiles exhibit an inflection
point. At station (C) separation already took place and a tall reverse-flow
region forms (D, E). Finally, a rapid disintegration of the shear layer occurs
within only one TS-wavelength Arg ~ 0.3 (F, G). All profiles agree well with
the experiment. The differences at the positions F and G near the wall are
probably due to the difficulties of the hot wire to resolve low mean velocities
if the rms-amplitude is high. Moreover, at least at position F, the DNS gives
evidence for the presence of reverse flow, which cannot be detected by the hot-
wires either. This also causes the underestimation of the shape parameter in
the experiment. The shape parameter maximum in the experiment, in fact,
is expected to be larger and to agree better with case w6ia than indicated
by figure 6.

Figure 11b shows a cut through the instantaneous spanwise vorticity w,
in the vicinity of re-attachment along the centerline of the airfoil at two
time-instances separated by one half TS forcing period T7g. The flow field
is highly unsteady and a interpretation of the mean flow is misleading. In
particular, no continuous breakdown of the free-shear layer and fine-scale
turbulence spreading towards the wall and into the potential flow causing
re-attachment is observed. In contrast, a periodic roll-up of the free shear
layer occurs (¢t = ty, = 8.05). The resulting large-scale vortex starts to
propagate downstream and breaks down into fine-scale turbulence (¢ = ¢, +
0.5Trs, x = 8.15). Contributions to the understanding of transition or re-
attachment cannot be expected from the investigation of the time-averaged
flow field. Although the turbulence downstream of the separation bubble (re-
attachment of the mean flow at x = 8.15) is not yet fully resolved and there
DNS results are only of qualitative nature, grid-refinement studies proved,
that the re-attachment region is well-resolved and the discretization fulfills
the requirements to quantitatively investigate the late non-linear stages of
the transition mechanisms involved.

5 Conclusions

Despite big advances in DNS of laminar separation bubbles in the recent
twenty years, 3D DNS at large Reynolds numbers as present on high-lift
devices or laminar-flow airfoils are just at the very beginning. A major prob-
lem is to evaluate a free-stream boundary condition, if the viscous-inviscid
boundary-layer interaction is not negligible. Here, the boundary-layer as-
sumptions are violated, namely the wall-normal pressure gradient deviates
from zero. Consequently, a measured pressure distribution (and the respec-
tive velocity distribution) at the wall or at the edge of the boundary layer



cannot be applied as free-stream boundary condition in DNS. Although it
is possible to determine the correct distribution iteratively by doing a DNS,
comparing the computed pressure distribution with the experiment, correct-
ing the boundary condition, doing the next DNS and so on, this needs tremen-
dous numerical effort and time. Additionally, such DNS depend on reliable
measurements with exactly that conditions required in the physical problem
subject of the investigation (initial disturbances, velocity distribution, etc).

In contrast, if an accurate boundary-layer interaction model is applied,
DNS can be performed independently from experiments. Only a potential
velocity distribution is needed, either calculated with a steady, inviscid nu-
merical scheme or measured in experiments with separation suppressed by a
turbulator (thus avoiding strong viscous-inviscid interaction). Comparisons
with the experiment are much easier and more essential, since the results are
not fitted from the beginning by comparisons but DNS and experiment are in-
dependent approaches to the same physical problem. DNS of the self-excited
transition often suffer from unknown initial conditions (amplitude and char-
acter of disturbances in the boundary layer). Without interaction-model,
agreement with experiments can be strived for by varying the initial condi-
tions or by adapting the free-stream velocity distribution. With a model,
only the influence of the initial disturbance amplitude has to be taken into
account.

The application of the interaction model renders fundamental numeri-
cal experiments on basic mechanisms in laminar separation bubbles possi-
ble without the necessity of continuous comparisons with measurements. In
DNS, the initial conditions can be fixed much easier and more accurate than
in experiments, which is needed for investigations of interactions of different
2D and 3D disturbance waves with low initial amplitude. Thus, DNS can be
expected to make large contributions to the understanding of the physics of
laminar separation bubbles.

Finally, an interaction model is able to catch displacement effects of high-
frequency disturbances in the boundary layer and to compute the respec-
tive instantaneous boundary condition. Consequently, DNS with interaction
model applied require a lower integration domain than without model, saving
a remarkable amount of memory and computation time.
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