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Abstract A region of strong local adverse pressure gradient acting on a laminar flat-plate
boundary layer can produce a closed fully laminar separation bubble for suffi-
ciently small pressure rise and Reynolds number. However, such a flow field
is hydrodynamically highly unstable and transition will occur in the region of
adverse pressure gradient. Due to an interaction with the potential flow, the tran-
sition process may even suppress laminar separation completely.

Direct numerical simulation (DNS) of oblique transition in a steady laminar
separation bubble is carried out. The mean flow deformation is found to play an
important role even upstream of the transition location. However, with proper
treatment of the upper boundary it is possible to take the upstream influence into
account and to obtain results that are height independent in accordance with the
physical model of an unbounded domain. Hence, DNS results can serve as a
reference for an analysis of the large-eddy simulation (LES) technique.

Such an analysis of LES is carried out based on a (scale) separation step
associated with an explicit filter and a (subfilter-scale) modeling step to obtain
closure. It is shown that filtering of the Navier-Stokes equations is not a formal-
ity and that the subgrid-scale model has to be adopted to the filter accordingly.
Numerical results for a discrete filter together with a relaxation term model lead
to guidelines for the choice of the explicit filter and the desired action of the
turbulence model.
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Introduction

A laminar boundary layer separates in a region of adverse pressure gradient
on a flat plate and can reattach while being still laminar in case of a sufficiently
small pressure rise and low Reynolds number, forming a laminar separation
bubble (LSB). However, such a flow field is hydrodynamically unstable and
will amplify incoming disturbances by several orders of magnitude. Therefore,
the laminar separation bubble is likely to be the location of transition to turbu-
lence. Through its upstream influence, in some cases the transition process
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is able to completely suppress separation by an interaction of the mean flow
deformation with the potential flow (so-called vicous-inviscid interaction).

Numerical techniques applied to as complex as separated and transitional
flows rely mainly on direct numerical simulations (DNS, see e.g. Alam and
Sandham, 2000) to keep uncertainties connected with a turbulence model to a
minimum. In many technical applications laminar separation plays an impor-
tant role, e.g. on low pressure turbine blades. Thus, there is need for numerical
methods to accurately capture the behaviour of laminar separation bubbles that
are less expensive than DNS. One of these methods is the so-called large-eddy
simulation that aims at capturing the motion of large coherent structures while
modeling the small-scale turbulence. Only a few large-eddy simulations (LES)
of LSB’s are reported in literature (Yang and Voke, 2001, Wilson and Pauley,
1998). A detailed comparison of results from both techniques for a flow field
where DNS is still feasible to provide a reference can serve to shed light on
modeling uncertainties. The first part of the paper addresses issues related to
establishing a proper reference case by means of DNS.

The methodology of LES consists of two steps: separation of variables into
resolved and unresolved scales (separation step) by application of a spatial fil-
ter, and replacing the resulting unclosed (subgrid- or subfilter-scale) stresses by
a turbulence model (modeling step). For a long time, the separation step was
considered a mere formality and its quantitative effect on the solution of the
equations of motion has only recently drawn more attention (Pruett, 2001). The
present work aims at analysing the quantitative effect of isolated parts of the
LES method on the numerical results. This is beliveved to provide deeper in-
sights compared to a full LES run with its complex interaction of filter, model,
and discretization strategy. Dependence of the results on turbulence model and
(explicit) filtering operation will be discussed in the second part of the paper.

1. Numerical Method and Definiton of the Base Flow

Numerical Method. Spatial direct numerical simulation of the full three-
dimensional Navier-Stokes equations in vorticity-velocity formulation were
carried out in a disturbance formulation for incompressible flow. All quan-
tities are divided into a steady part Ub(x, y) and a fluctuation u(x, y, z). Finite
differences (4th/6th order) on a Cartesian grid are used in streamwise and wall-
normal direction while a spectral ansatz is applied in spanwise direction. An
explicit fourth-order Runge-Kutta scheme is used for time integration. Up-
stream of the outflow boundary a buffer domain smoothly ramps down all dis-
turbances. These disturbances are introduced via blowing/suction through a
narrow slot in the wall near the inflow boundary. Details of the numerical
method can be found in Kloker, 1998. In addition, grid stretching is applied in
wall-normal direction (Meyer, 2003).
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Definition of the Base Flow. A generic test case was chosen that has al-
ready been well-studied by means of DNS (Rist and Maucher, 1994). It models
a physical situation as shown in Fig. 1. All quantities are non-dimensionalized
resulting in a Reynolds number Re=105. The streamwise axis x is denoted
as for a Blasius boundary layer. To illustrate this, cf -values for the Blasius
solution are added to Fig. 2. In contrast to Rist and Maucher, 1994, the inte-
gration domain starts slightly further downstream at x0=1.021576 and ends at
xe =3.36468. The Reynolds number based on the displacement thickness δ1

at the inflow boundary is Re δ1=570. The domain height equals ymax=∆M · δ1

with ∆M=23.2 at the inflow boundary. Characteristic boundary-layer param-
eter distributions are given in Fig. 2. Boundary-layer thicknesses (e.g. δ1) are
computed based on the spanwise vorticity (see Spalart and Strelets, 2000).

The flow field was obtained from a calculation where a distribution for the
streamwise velocity was prescribed at the upper boundary to impose the pres-
sure gradient. The calculation was advanced until a steady state was reached.
Using this steady laminar solution as a base flow, the unsteady development
with controlled disturbance input is computed as discussed in the next section.

2. Direct Numerical Simulation of Transition in a LSB

Disturbance Input and Resolution Requirement. The transition scenario
studied here is similar to the oblique case O in Rist and Maucher, 1994. Below,
the notation (h, k) will be used to denote modes with h-times the fundamental
frequency β = 18 and k-times the fundamental spanwise wave number γ =
40. A single pair of oblique waves (1,±1) is introduced in a disturbance strip
between x = 1.152475 and x = 1.283375 with a v-amplitude of Av = 2·10−4

each. The buffer domain started at x = 3.102881.
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Figure 1. Physical configuration. Figure 2. Base flow values for surface
pressure cp, skin friction coefficient cf ,
and local Reynolds number Reδ1 .
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The DNS was carried out with N=1970 grid points in streamwise direction,
M=225 grid points in wall-normal direction and K=63 (complex, i.e. asym-
metric) spanwise modes. In wall-normal direction grid points were clustered
at the wall. Resolution in time was 1600 time steps per fundamental period.

Results were highly sensitive to underresolution in wall-normal direction
(not shown). However, 15 (real, i.e. symmetric) spanwise modes proved to be
sufficient to predict correct mean values shortly beyond the transition location
(Fig. 3), while showing an overshoot in the skin friction in the turbulent part.
The calculation was advanced for at least 20 periods before analysing the data
to get rid of initial transients, visible e.g. as mode (0.5, 0) in Fig. 4.

Mean Flow Deformation and Upper Boundary. The small disturbance
input is sufficient to completely suppress separation (Fig. 3). In particular, it is
remarkable that the mean flow deformation (MFD) (mode (0, 0) in the present
notation) is the largest observable disturbance even far upstream around the
location of the disturbance strip (Fig. 4). Such an effect was not observed for
subharmonic or fundamental breakdown that lead to saturated spanwise rollers
but not to true turbulent flow (Rist, 1998), were a relatively small deviation of
mean flow values was seen only downstream of disturbance saturation.

Because of the importance of the MFD even at the upper boundary, the
original formulation of the upper boundary condition ∂v

∂y
= −αv was replaced

by a boundary-layer interaction model. It is based on a source/sink distribution
at the wall, which strongly depends on the disturbances introduced. With such
a boundary condition independence on the domain height could be obtained
(Fig. 3). This independence is important since the underlying physical model is
a boundary layer with an adverse pressure gradient, i.e. an unbounded domain,
and not a channel flow.
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3. Analysis of Large-Eddy Simulation

The DNS solution presented in the last section will serve as a reference for
the following analysis of LES. This analysis is carried out according to the two
steps introduced before. In the next paragraphs, a filter operation is defined as
the convolution integral:

u∗

i (x) = G2 ∗ ui =

∫
G2(

x − x′

∆
, x)ui(x

′)
dx′

∆
. (1)

Derivation of the Filtered Equations. Even though the calculations dis-
cussed in this paper were obtained with the vorticity-velocity formulation of
the Navier-Stokes equations, derivation of the equations for LES will be demon-
strated for primitive variables since this is more familiar in the literature. For
numerical simulations the curl of the equations is taken and only commutative
filters are applied. Starting point are the momentum equations:

∂ui

∂t
+

∂ujui

∂xj

+
∂p

∂xi

−
1

Re

∂2ui

∂xkxk

= 0. (2)

First, the (scale) separation step is carried out by adding a term to both sides of
the equations (bold in eq. (3)), which is similar to the non-linear term, however
with the velocities replaced by their filtered counterpart u∗i = G2 ∗ ui (Fig.
5). The resulting equation is filtered with a spectral filter with cut-off wave
number kc. Spectrally filtered variables will be denoted by a tilde: ũi = GS∗ui

(analogous to eq. (1)). With the additional constraint that the transfer function
of G2 is (only) 0 for k > kc, the following equality holds: u∗

i = G2 ∗ ui =
G2 ∗ ũi = ũ∗

i . Note that the resulting equations are still exact, assuming we
prescribe periodic boundary conditions:

∂ũi

∂t
+

˜∂ũ∗

j ũ
∗

i

∂xj

+
∂p̃

∂xi

−
1

Re

∂2ũi

∂xkxk︸ ︷︷ ︸
dependent on scales k < kc only

=
˜∂ũ∗

j ũ
∗

i

∂xj

−
˜∂ujui

∂xj

.

︸ ︷︷ ︸
dependent on all scales k

(3)

If eq. (3) would be solved on a grid that can resolve scales up to k = kc,
the right-hand side of that equation would be the so-called subgrid-scale term
(SGS term). The second term on the left-hand side cannot generate scales
k ≥ kc and does not depend on them. Furthermore, formally eq. (3) does not
depend on the choice of G2 while the quantitative value of the right-hand side
will. Thus, it could as well be called the subfilter-scale term.
The second step is the (subfilter-scale) modeling step. The right hand side
will be replaced by a term that depends only on scales below the cut-off kc to
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obtain closure. In the LES terminology, such a term is called a turbulence or
SGS model. One simple model is a so-called relaxation term, e.g. χ (ũ∗

i − ũi):

∂ũi

∂t
+

˜∂ũ∗

j ũ
∗

i

∂xj
+

∂p̃

∂xi
−

1

Re

∂2ũi

∂xkxk

= χ (ũ∗

i − ũi) . (4)

Note that all necessary steps have been carried out now, solving eq. (4) will be
called a LES. For constant χ only(!) the right-hand side acts purely dissipative.
In that case, the present closure can be related to the approximate deconvolu-
tion model (ADM) (Stolz et al., 2001a; Stolz et al., 2001b). However, to arrive
at the equations used in ADM, another filter G has to be applied to eq. (4):
ūi = G∗ui. With the constraint that G2 = QN ∗G and QN =

∑N
ν=0(1−G)ν ,

one obtains:

∂ūi

∂t
+

∂u∗

ju
∗

i

∂xj
+

∂p̄

∂xi
−

1

Re

∂2ūi

∂xkxk

= −χ (I − QN ∗ G) ∗ ūi, (5)

with ¯̃ui = ūi = I ∗ ūi,

¯̃u∗

i = G ∗ (QN ∗ G ∗ ũi) = (G ∗ QN ) ∗ ūi = (QN ∗ G) ∗ ūi.

Numerical Results. From what has been shown in the last paragraph it is
obvious that the last step (to arrive at the ADM equations) is not necessary, and
with it the whole procedure of filtering and deconvolution, since closure was
obtained already in the second step. This was earlier recognized by Winck-
elmans and Jeanmart, 2001. In particular, eq. (4) and eq. (5) will yield equal
results, if the solution of eq. (4) is filtered in a postprocessing step.

This was checked by applying the filtering only in the spanwise direction us-
ing 15 Fourier harmonics (K=15=kc − 1), where the present numerical method
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Figure 6. Results of eq. (4) and eq. (5)
for K=15, filtering in z only.
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is in accordance with the assumption of periodicity. The turbulence model is
given by the relaxation term with constant χ = 572.96 = ∆t

4
. As a filter G,

a symmetric 5 point stencil was used, applied in Fourier space via its transfer
function (Fig. 5), so that the integral in eq. (1) reduces to a product for each
Fourier harmonic. Results show that solution of eq. (4), G2 obtained from
QN ∗ G with N=5, and eq. (5) are in fact equal as expected (Figs. 6, 7).

The spectrum (Fig. 7) reveals that the present LES is under-dissipative in
the medium wave-number range (5 . . . 10). Such a behaviour was also ob-
served by Winckelmans and Jeanmart, 2001. In the following an explanation
is suggested. If k2 is the cut-off wave number of G2, the relaxation term in eq.
(4) affects only scales k>k2. However, filtering of the velocities ũ → ũ∗ before
plugging them into the non-linear term on the left-hand side will affect scales
k<k2 by suppressing an influence of scales in the range k>k 2 on them. Assum-
ing that this effect would have been dissipative (i.e. scales in the range k>k2

would act in a way as to draw energy from scales k<k2), the complete model
is not dissipative enough for scales k<k2. Setting χ=0 or leave the non-linear
term on the left-hand side unfiltered does not change the situtation significantly
(Fig. 8), since both relaxation and explicit filtering act in a similar manner.

4. Conclusions

DNS of laminar-turbulent transition in a separation bubble was carried out.
A large mean flow deformation reaching far upstream was observed and at-
tributed to a viscous-inviscid interaction. This lead to a formulation of the
upper boundary to yield height-independent results. The DNS-result was cho-
sen as a reference case for a subsequent analysis of LES. This analysis con-
sisted of two steps: a (scale) separation and a (subfilter-scale or SGS) modeling
step. The first step is associated with an explicit filter applied to the non-linear
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term while the second step yields closure through a turbulence model. It was
shown that the form of the filtered momentum equations does not depend on
the choice of the filter while the quantitative value of the SGS model will.

From the observations made, the following guidelines for the choice of the
filter G2 and the SGS-model can be derived: G2 should be designed such that
k2 ≤ min(2

3
kc, k

FD
accurate) and the turbulence model should not only act on

scales k>k2 but also on smaller ones. The constraint on G2 reduces errors
originating from aliasing and finite differencing (kFD is the modified wave
number), while the modeling aspect was discussed in the previous section.
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