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Abstract. In the present paper results of Direct Numerical
Simulations of Laminar SeparationBubbles causedby stream-
wise increasing pressure gradient are shown. Small amplitude
random disturbances are strongly amplified and therefore the
flow shows unsteady behaviour. The spatial growth of the dis-
turbances and the corresponding velocity profiles derived by
Fourier transform are comparedwith results of linear stability
theory (so-called Tollmien-Schlichting waves (TS-waves)).
Caseswith and without artificial disturbances are considered.
Two major time scales are observed. The first one is corre-
sponding to the hydrodynamic instability (TS-waves), while
the second, large one, is associated with an oscillation of the
bubble and occurs in undisturbed cases. The damping influ-
ence of an upper boundary condition in the numerical domain
with interaction between the viscous boundary layer and the
inviscid outer flow (interaction model) on this large-scale ef-
fect is also shown.

1 INTRODUCTION

When a laminar boundary layer is subjected to an adverse
pressure gradient it will eventually separate. As the separated
boundary layer resembles a free shear layer which is known
to be very unstable with respect to a broad spectrum of dis-
turbances the flow will most probably become turbulent. Tur-
bulence, in consequence, will entrain high-momentum fluid
from the outer part of the separated flow towards the wall
and will cause re-attachment in many cases. Such a phe-
nomenonwhere a closed reverse-flow region exists at the wall
is termed a Laminar Separation Bubble (LSB). The involved
flow physics are not yet fully understood. Since flight per-
formance characteristics of laminar airfoils and compressor
blades strongly degrade with the existence of laminar separa-
tion bubbles there is great interest in further investigations.

2 NUMERICAL METHODS

Here the computational techniques used for the present in-
vestigations are introduced. The calculations in this paper
are based on two approaches, Direct Numerical Simulation
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(DNS), and Linear Stability Theory (LST) [6]. Both methods
have already been discussed in the literature. Therefore, only
the essentials are outlined here. To extract basic features of
the DNS-results Fourier Transform is used.

2.1 Direct Numerical Simulation

The calculations presented in this paper are performed with
a numerical scheme originally developped by Fasel et al. [2],
improved by Kloker [4] and more recently by Kloker et al.
[5]. Themethod is basedon the completeNavier-Stokes equa-
tions in vorticity-velocity formulation for unsteady, three-
dimensional, incompressible flow. Since the major changes
of the code deal with features which are used to calculate the
two-dimensional (2-D) component of the flow, this paper is
restricted to 2-D flows. Consequently, only the equations for
the 2-D components will be explained in this section. The
velocity components are denoted by u in streamwise (x) and
v in wall-normal direction (y) (see figure 1).
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Figure 1. Integration domain for the DNS of a LSB;
d.s.: disturbance strip.

All variables are nondimensionalized with a reference
length L and the free stream velocity U� . The nondimen-
sional variables relate to the corresponding dimensional ones
(denoted by bars) as
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where �̄ is the kinematic viscosity and Re is the Reynolds
number. The vorticity is defined as

� =
�u
�y

� 1
Re

�v
�x

. (2)

In contrast to the disturbance-flow formulation used by
Kloker [4][5] (i.e. the flow is split into a steady base-flow and
an unsteady disturbance-flow), now the total-flow formula-
tion is used, since a solution for a steady base flow cannot
be obtained due to the high amplification rates of random
disturbances in the separated flow considered here. Thus the
vorticity-transport equation (3), the Poisson-equation (4) and
the equation for continuity (5) have to be solved to obtain �,
v, and u, respectively:
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For discretisation of the governing equations in stream-
wise and wall-normal direction, central finite-differences of
fourth-order-accuracy are used. The integration in time is per-
formed with a fourth-order accurate Runge-Kutta scheme.
The four stages per time step of this scheme are coupled
with a centered-upwind-downwind-(and vice versa)-centered
discretisation for the x-convection term.

Optionally, the flow can be disturbed by time-periodic suc-
tion and blowing within a so called Disturbance Strip on the
surface of the plate (figure 1). In that way, TS-waveswith pre-
scribed frequency and amplitude can be generated (see [5] for
details). In x-direction the integration domain extends from
x0 to xf and covers a certain region of the boundary layer flow
over an airfoil including a laminar separation bubble, while
in y-direction the domain typically covers approximately 10
displacement thicknesses at the inflow boundary.

At the free-streamboundary a streamwise pressure gradient
is imposed by prescribing the free-stream velocity distribu-
tion ue(x) of the external flow, assuming inviscid flow. For
the simulations discussed in this paper ue(x) is chosen to ap-
proximate the potential flow distribution from s/c=0.215 to
s/c=0.578 on the upper side of an FX66-S-196 airfoil at 9
degrees angle of attack (see figure 2a), as obtained from an
experiment. The vorticity is set to zero.

At the inflowboundary,steadyflowis assumed.An approx-
imated Hartree-parameter �H calculated from the local slope
of the ue velocity at the inflow boundary is used to calculate
Falkner-Skan profiles.

At the outflow boundary a new condition based on the
so-called Relaminarisation Zone technique, a special buffer
domaindevelopedandextensively tested byKloker et al. [5] is
introduced. Now, the total 2-D vorticity is artificially damped
to 0 by multiplying it with a function which smoothly decays
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Figure 2. a) Velocity distribution (ue) at the free-stream boundary.
xa denotes the beginning of the region with acceleration at the wall

and xc constant u velocity. The dashed line shows the data with
interaction (ia) at the upper boundary, crosses mark experimental

data.
b) Velocity distribution (uw) at the wall.

from 1 to 0 near the outflow boundary. In addition, the free-
stream u-velocity is set to a constant value and the velocity at
the wall is accelerated to its free stream value (see figure 2b).
This leads to uniform and irrotational flow throughout the
boundary layer. This new method has been rigorously tested
for spatially evolving TS waves in Blasius flow (x 3), its
applicability for laminar separation bubbles is shown in the
present paper (x 4).

To take the displacement effect of the separation bubble on
the potential flow into account, a model for viscous-inviscid
interaction developed by Gruber [3] based on thin-airfoil the-
ory can be used optionally. The v-velocity ve at the free-stream
boundary is split into an inviscid component V and a part vc

related to displacement

vc = ve � V = ve � ye
dU
dx

, (6)

where V has been replaced by the prescribed potential flow
distribution U using the continuity equation (5). U in the
present case coarsly approximates the potential flow over an
FX66-S-196 airfoil (figure 2a). Now ue can be updated from

ue = U �
1
�

Z xr

�=xl

vc

x� �
d�, (7)

where xl , and xr are the left, and the right boundary, re-
spectively, where displacement effects of the boundary layer
and especially the bubble are considered. The code neglects
curvature of the airfoil since the curvature radius is very large
compared to the boundary layer thickness.

To start the simulation, initial values for the whole flow-
field are needed. These are taken either from the solution
of a boundary-layer calculation, or from the averaged values
of a previous simulation with the same boundary-conditions.
After a period of transient behaviour the appearance of a
’quasi-periodic’ state of the flow is observed.
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2.2 Linear Stability Theory

In the present paper unsteadyflows are investigated. The ma-
jor interest focuses on the development and the profiles of
the disturbances. For the validation of the DNS-results com-
parisons with results of Linear Stability Theory (LST) can
be used. For the LST calculations local velocity profiles of a
steady baseflow are needed.As for the simulations discussed
in this paper no steady base flow exists, the stability calcula-
tions are performed for the mean base flow profiles generated
by averaging the DNS velocity components over a long time.
The local streamwise variation of the base flow is neglected
in the theory. Thus uniform steady 2-D base flow is assumed
locally and the profiles depend on y only. Disturbances of the
form

v�(x,y,t) = A(y)e��i x cos (�rx� �t�Θ(y)) (8)

are considered, where v� , A,�i,�r, �, and Θ denote a ve-
locity-component of the wave, amplitude, spatial amplifica-
tion rate, streamwise wave number, frequency, and phase,
respectively. Negative �i means amplification in x-direction.

This ansatz is inserted into theNavier-Stokes equation. Lin-
earisation then yields the so-calledOrr-Sommerfeld equation.
From the solution of theOrr-Sommerfeld equationeigenfunc-
tions (disturbance velocity profiles) and amplification rates
for given base-flow velocity profiles, Reynolds number, and
frequency, are obtained.

2.3 Fourier Transform

Fourier analysis yields the complex amplitudes of the fre-
quency spectrum of a periodic signal [1]. Since all DNS cases
presented in this paper are unsteady, an important attempt to
understand and validate results is Fourier Analysis. The fol-
lowing discrete ansatzdefines the Fourier Transform (FT) that
is used

F(x,y,
n

L∆t
) = ∆t

L�1X
k=0

f (x,y,t1 � k∆t)e�i 2�nk
L , (9)

where f , ∆t, t1, F, L, n denote the waveform to be decom-
posed into a sum of sinusoids, the time step, the initial point
of the analyzed time window, the complex Fourier amplitude,
the number of discrete points (in time) andan integer counting
the frequency � as follows:

�=
2�n
L∆t

. (10)

If a function is not periodic or if the arbitraryly chosentime
window L∆t does not consist of an integer multiple of the
period, ’noise’ is introduced into the spectrum by the FT. This
is particularly apparent if there is a large discrepancybetween
the starting and end point of the interval. Especially in strong
unperiodic DNS cases it is often difficult to determine a time
window in such a way, that results of FT are meaningful
and independent of the choice of the time window. Using a

Hanning window to modify the time signal before applying
FT may help to reduce such undesirable effects:

fh(t) = f (t)
h
0.5� 0.5 cos

�
2�

t� t1
t2 � t1

�i
. (11)

3 VERIFICATION OF THE
PARALLEL-OUTFLOW CONDITION

To validate the parallel-outflow condition, test calculations
for the well known Blasius flow with artificially excited dis-
turbances have been performed. The base flow is described
by Re = 105, U� = 30m

s , �̄ = 1.5 � 10�5 m2

s , L = 0.05m. The
frequency of the disturbances is � t = 11. The spatial develop-
ment of the excited small-amplitude TS-waves is compared
with results of LST in figure 3. The amplification rates for the
u-velocity maximum normal to the wall derived from DNS
and the respective results from LST are shown. Excellent
agreement between both approaches is observed. There is al-
most no upstream influence of the parallelization zone. Even
at the beginning of the acceleration of u at the wall, the am-
plification rates agree well. Since amplification rates are very
sensitive even to slight variations of the base flow, the results
demonstrate the suitability of the parallel-outflow boundary
condition.

�i

2.0

0.0

�2.0

DNS
LST

x0
d.s.

xa
x

Figure 3. Amplification rates �i=� �
�x ln (u�max) compared with

LST for Blasius flow.

4 RESULTS FOR FLOWS WITH
SEPARATION

So far, only 2-D simulations for flows with strong adverse
pressure gradient and a separation bubble have been per-
formed with the new code. The velocity distribution ue pre-
scribed at the free-stream boundary is taken from an experi-
ment for a FX66-S-196 airfoil at 9 degrees angle of attack and
a chord-Reynolds number of Re=1.5 � 106 (see figure 2a). A
casewith fixed velocity ue at the upper boundary and without
artificial disturbances is investigated extensively. Furtheron
the influence of the IA-model at the upper boundary and the
development of artificial disturbances is briefly presented.

All DNS are performed usingRe=1.5�105 , U�=30.28 m
s ,

�̄ = 1.5 � 10�5 m2

s , L = 0.0743m. The integration domain ex-
tends from x0 =2.153 (c/s=0.215) to xf =5.782 (c/s=0.578; in
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cases with interaction xf = 4.977, c/s=0.498) with 722 (562)
grid points and from y=0 to y=48.19 with 97 grid points
(∆x=5.034�10�3, ∆y=0.5020). In the case of artificially ex-
cited disturbances the frequency of the disturbances is chosen
to be �t = 30.

4.1 Results for fixed ue, self-excited
disturbances

The simulation was started using the averaged flow fluid data
from a previous simulation as initial condition. The initial
transient stage of development was terminated at approxi-
mately t=16.76=ttr. For t>ttr a ’quasi-periodic’ behaviour of
the flow field was observed, as discussed subsequently.

An overall impression of the flow-field at t� ttr=2.72 can
be obtained from figure 4, where lines of constant velocity
component u are shown. Although steady inflow and free-
stream boundary conditions are used, the flow exhibits large-
amplitude unsteady disturbances and remains unsteady for
all times. Due to the parallel-outflow condition at the end of
the integration domain, all fluctuations of the u-component
disappear. A distinct separation bubble is visible through the
reverse flow region. Downstream of the bubble, strong vari-
ations of u in streamwise direction are apparent. Since there
are no artificial disturbances, these fluctuations indicate the
appearance of self-excited wave packets, possibly due to the
strong instability of the separated flow.

y
18.1

0.0
2.5 4.0 5.0 xa

x

Figure 4. Fixed ue: u = -0.04, -0.02 (dashed), 0 (dotted),
0.2, 0.4, ... , 1.6 (solid).

In figure 5 the instantaneous time signals for the vortic-
ity at the wall at different downstream positions are plotted
versus t� ttr. In addition to the high-frequency disturbances
corresponding to the wave packets in figure 4, a low fre-
quency oscillation appears, especially in the region near the
inflow boundary (i.e. at x=3.0 and x=3.5 in figure 5). The
low frequency oscillation lets the separation bubble periodi-
cally appear and disappear (note that negative vorticity at the
wall corresponds to reverse flow, i.e., separation). The high-
frequency oscillations are comparedwith results from LST in
the following section.

�wall
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�0.05

0.1

�0.1

1.0

�1.0

1.0

�1.0

t� ttr0 18.85

Figure 5. Fixed ue: Time signals at different downstream positions
(x=3.0 (top), x=3.5, x=4.0, x=4.5).

4.1.1 Comparison with LST

Results from a Fourier analysis of the wall-vorticity time
signals as plotted in figure 5 are shown in figure 6. Start-
ing at x=3.0 a remarkable amplitude is observed only for
very low frequencies. However, the frequencies about �=23
and �=30 exceed the surrounding amplitudes. Further down-
stream (x=3.5) a frequency hillock appears between � � 20
and � � 32 with amplitudes that are more than two mag-
nitudes larger than other frequencies (except the very low
ones). The large-amplitude frequency-band strongly grows
in downstream direction and as it gains large amplitudes,
other frequencies are also strongly amplified (x=3.75, x=4.0,
x=5.0).

log10 �wall
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�2

�4

�6

�8

�10
�0 30 60

x=3.0
x=3.5
x=3.75
x=4.0
x=5.0

Figure 6. Fixed ue: u� amplitude-spectrum.

The amplification of each frequency component can be de-
termined by calculating its amplification rate �i=� �

�x ln u�

ue

which in turn is comparable with LST. In the present case,
however, due to the self-excited nature of the disturbances,
these amplification rates show large-amplitude random oscil-
lations, anda comparisonof�i with LST is difficult. We there-
fore show a comparison of u�-velocity profiles in figure 7. The
time window used to generate the u’-profiles aswell as the av-
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eraged baseflow for LST extends from t� t tr=20.94 to 23.04.
The comparison is performed for the frequency�=18. Initially
(x=3.0) the disturbance amplitude is very small (O(10�8))
and the DNS profile resembles more to the base flow profile
than to the LST-eigenfunction. With increasing x, however,
the disturbance profile continuously changes from its initial
shape towards the shapeof a TS-wave. Especially at x=4.0 the
agreement with LST is very good. Further downstream, the
profiles start to differ, but this can be attributed to nonlinear
effects due to the large disturbance amplitude of the waves in
the DNS which in addition to changing the disturbance pro-
files feed energy into higher harmonics (waveswith amultiple
of the fundamental frequency).

�=18
�=18,LST base flow

x=3.0 x=3.5

x=4.0 x=5.0

1

0

A

0 18.1y

Figure 7. Fixed ue, self-excited disturbances: u�-profiles.

A denotes
u�
�

u�
�,max

.

The phaseΘ of the frequency �=30 of the vorticity at the
wall versus x is plotted in figure 8. The analyzed time interval
corresponds to the interval shown in figure 5.

�

��

Θ

x0 3.0 4.0 5.0 xf
x

Figure 8. Fixed ue, self-excited disturbances: Phase Θ of the
disturbance mode �=30 of the vorticity at the wall.

There are three different zones. Near the inflow bound-
ary there are only slight variations of the phase with a large
wavelength. This can be explained with the low frequency
oscillation of the bubble. Figure 5 shows that the phase of
the low-frequency oscillations differs at different x-positions
(x=3.0 and x=3.5). In the domain where TS-waves are dom-
inant the phase has the typical shape for propagating waves
(continuouslydecreasing).Near the outflowboundary the TS-
waves are strongly damped and consequently the phase ap-
proaches a constant value, which is different from the value at

the inflow boundary. Therefore, pressure disturbances which
possibly couldbe generatedby the outflow-boundaryand then
propagate upstream with infinite velocity (in incompressible
flow i.e. constant phase) seem not to have remarkable impact
on the development of disturbances in the present code.

4.1.2 Low frequency bubble oscillation

In the region between x=2.8 and x=3.7 the flow periodically
separates and reattaches. The condition with fixed u-velocity
at the upper boundary is not able to take displacement effects
caused by the bubble into account. In real flows the displace-
ment effect of a growing bubble leads to an acceleration of the
outer flow and reduction of the adverse pressure gradient and
consequently to a decrease of the bubble. On the other hand
this decelerates the outer flow and promotes separation. Both
adverse effects stabilize each other. Regarding the long-time
behaviour it seems that the bubble oscillations slowly decay.
The simulation has been stopped at t� t tr=23.04 and it is not
certain if the low frequency oscillations would completely
disappear for larger simulation time. Effects comparable to
the bubble oscillation in the present simulation have been
observed in previous 2-D simulations of flat-plate separation
bubbles [3] or backward facing steps in channel flow. Possi-
bly there is no solution for the steady base flow for some 2-D
problems.

4.2 Interaction at the upper boundary,
self-excited disturbances

In order to suppress the low-frequency bubble oscillation the
effect of an alternate upper boundary condition, which con-
siders displacement effects by the bubble was investigated.
A condition satisfying all expectations could not be found,
yet. The interaction model by Gruber [3] calculates the ue

component by integration in a large x-domain (see eq. (7) )
and therefore allows for upstream influence of disturbances
which are strongly damped in real flow in upstream direction.
This leads to an excitation of disturbances with moderate
amplitude at the upper boundary. Nevertheless, calculations
using an interaction model show encouragingresults since the
low-frequency oscillation of the LSB is damped.

Figure 9 shows the amplitude spectrum of the vorticity at
thewall.When the interactionmodel is used, a broad spectrum
of disturbances appears in the flow near the inflow boundary
(x=3.0). In downstream direction some frequencies are am-
plified and a hillock appears in the spectrum for frequencies
15 � � � 32 at x=3.5. Higher frequencies are still not am-
plified in this region. As the fundamental disturbances grow
to very large values all frequencies are strongly amplified and
gain large amplitudes (x=3.75 and x=4.0).

4.3 Interaction, artificially disturbed

In order to check the accuracy of the present DNS by further
comparisons with LST, a case with artificial disturbances has
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Figure 9. Interaction, self-excited disturbances:
�wall amplitude-spectrum.

been computed. An artificial disturbance with a frequency of
� = 30 and an amplitude of u�max=10�4 was excited at the
disturbance strip located at 2.26 � x � 2.39.
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Figure 10. Interaction, artificially disturbed: u�-profiles.
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Velocity profiles for the u�-component are plotted in fig-
ure 10, and compared with the eigenfunctions obtained from
LST-analysis for the time-averaged mean-flowprofiles at four
different x-positions. Every plot contains the profiles of the
disturbance wave, its higher harmonics (�=60, 90, 120), the
LST-profile, and the local baseflow. Thefirst position (x=2.66)
is located in a region where the flow is still slightly acceler-
ated and the LST and the DNS profiles fit very well. At the
second position (x=3.16) they are very similar with little dif-
ferences only. These are supposed to be due to the strong
non-parallelism of the base flow caused by the deceleration
(which is neglected by LST due to the assumption of a lo-
cally parallel base flow). In addition, a nonlinear evolution of
the disturbance has started: the higher harmonic wave �=60
is amplified and visible in the picture with very low ampli-
tude. Moving further downstream (x=3.66, x=4.17), the DNS

profiles differ even more from the LST profiles.
The disturbanceamplitudes upstreamof the positionwhere

the oscillating bubbleoriginally appearedare now larger since
the initial amplitude is comparably high. The propagation
of energy towards the wall caused by the artificially excited
disturbances obviously supresses the process leading to the
oscillating bubble. The spectrum (see figure 11) shows the
expected shape with strong peaks at the excited frequency
and its higher harmonics. On the other hand, it is surprising
that at any x-position the amplitudes of the higher harmonics
exceed other neighbouring frequencies by far, even when the
amplitude of the fundamental wave is comparably low and
amplificationof the higher harmonicsby nonlinear interaction
does not take place (x=3.0). Since the unsteady effects are
dominated by the excited frequency and its higher harmonics
for all x it is very likely that, for the present case, the IA-model
propagates discrete frequencies (here the higher harmonics)
in upstream-direction.
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Figure 11. Interaction, artificially disturbed:
�wall amplitude-spectrum.

5 CONCLUSIONS

The results presented in this paper demonstrate that the nu-
merical method can be applied to boundary layer flows with
strong adverse pressure gradients including laminar separa-
tion bubbles, which, for example, appear on laminar airfoils.
The initial 2-D development of TS-waves can be predicted
very well. Nevertheless, 2-D simulations neglect a lot of ba-
sic features of separated or strongly decelerated flows. The
growth of 3-D disturbances has major impact on these flows.
Therefore 3-D calculations will be necessary to get better
insight into the flow physics of transitional airfoil flows.
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Grenzschicht. Dissertation, Universität Stuttgart, 1993.

[5] MarkusKloker, Uwe Konzelmann,andHermannFasel. Outflow
boundary conditions for spatial Navier-Stokes simulations of
transition boundary layers, 1993.

[6] L. M. Mack. Boundary-layer stability theory, 1969.

7 U. Maucher, U. Rist and S. Wagner


