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Abstract. Direct Numerical Simulations of laminar
separation bubbles are presented. The bubbles are gen-
erated by prescribing a locally decelerated free-stream
velocity along a flat-plate. Controlled disturbances are
introduced into the flow field upstream of the bubble by
suction and blowing through the wall in order to study
the linear and nonlinear stability characteristics of the
flow. Two generic cases with different two-dimensional
(2-D) and three-dimensional (3-D) initial disturbance
amplitudes are investigated, a case (S) subject to sec-
ondary instability (strong amplification of $-D disturb-
ances by resonance with a large amplitude 2-D wave),
and a 8-D nonlinear case (O) where two oblique waves
with opposite wave angle interact. After an initially
very good agreement of the numerical results with pri-
mary and secondary instability it is found that the sec-
ondary instability in case (S) does not necessarily lead
directly to 3-D breakdown in contrast to the ”oblique
mechanism” in case (O) which is operative until sat-
uration of the 3-D disturbances. Recent results of the
investigation of these mechanisms are presented, in ad-
dition to investigations of the effect of the wall on the
instability of the flow. The possible occurrence of an
absolute instability is also checked in a numerical sim-
ulation.

1 INTRODUCTION

Laminar separation bubbles occur due to boundary
layer separation, transition, and turbulent reattach-
ment of the flow. They can play a significant role in
many flows of practical importance, as e.g., on lami-
nar airfoils or turbine engine compressor blades, espe-
cially at low chord Reynolds numbers under changing
flow conditions. The appearance and disappearance of
separation bubbles leads to unsteady forces, which are
difficult to predict when designing a new airfoil section.
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At present there exists a significant gap in our under-
standing of laminar-turbulent transition in a separated
2-D boundary layer: separation and initial disturbance
development is 2-D but turbulence is inherently 3-D,
so, where, how, and why do 38-D disturbances grow?
Is turbulence in a 2-D laminar separation bubble ini-
tiated by a sequence of instabilities like, for instance,
in a flat-plate boundary-layer or more like in a free
shear-layer, or is it due to absolute instability? Since
it is very difficult to obtain 3-D instantaneous flow-
field measurements from experiments, Direct Numer-
ical Simulations (DNS) of laminar separation bubbles
based on the complete 3-D Navier-Stokes equations can
offer new insights.

In section 2 a brief overview of the numerical method
being used is given. This is followed by a description
of the base flow in section 3. Secondary instability and
oblique wave interaction are discussed in section 4. The
influence of the wall and the possibility of absolute in-
stability are checked in sections 5 and 6, respectively.
At the end, the results are summarized in section 7.

2 NUMERICAL METHOD

The success of a transition simulation strongly depends
on the accuracy and the efficiency of the numerical
method used. Compared to other CFD simulations,
these requirements are typically orders of magnitude
larger and attempts to use “standard CFD codes” for
transition simulations (e.g., [8]) have failed so far.
The numerical method that we use is based on the
vorticity-velocity formulation of the Navier-Stokes equa-
tions for incompressible unsteady flow [11]. Velocity
components are denoted by u, v, and w in stream-
wise (z), wall normal (y), and spanwise direction (z),
respectively (cf. Figure 1). The flow is split into a two-
dimensional steady base flow and a three-dimensional
unsteady disturbance flow in such a way that no lin-
earization occurs. This makes the method more gener-
ally applicable for the investigation of transition phe-



nomena in different base flows without the need for
altering the boundary conditions for the calculation of
the disturbance flow from case to case.

Here, a closed laminar separation bubble in a Blasius
boundary layer is calculated as base flow by prescribing
a velocity distribution with local deceleration along the
upper boundary BC of the integration domain, a tech-
nique already used by Gruber et al. [1]. Subsequently,
small amplitude disturbances are introduced into the
integration domain by timewise periodic blowing and
suction upstream of the bubble, and their downstream
development is calculated by solving the 3-D distur-
bance flow equations.
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Figure 1. Integration domain for the DNS of a laminar
separation bubble (S: separation, R: reattachment).

The boundary condition at the upper boundary of
the integration domain allows for an exponential de-
cay of the disturbances in y-direction, and hence us-
ing a relatively small integration domain. At the out-
flow boundary the disturbances are suppressed by di-
rect manipulation of the disturbance vorticity in the
so-called “relaminarization zone” upstream from the
boundary [7].

Similar techniques called “buffer domains” or ”fringe
regions” [13] have been independently developed by
different research groups all over the world [5]. They
represent the current state-of-the-art for spatial tran-
sition simulation schemes and allow to exactly control
the background disturbance-amplitude level which is
essential to obtain grid-independent numerical results.
We have carefully tested our technique and found that
it works for boundary layers as well as for strongly non-
parallel base flows, like for instance, free shear-layers
or bluff-body wakes.

The equations are discretized assuming periodicity
in spanwise direction only, and an efficient pseudo-
spectral/finite difference scheme is constructed employ-
ing a Fourier ansatz in z-direction and fourth-order-
accurate finite difference expressions in z- and y-direc-
tion. Efficiency is enhanced by using optimized Fast-
Fourier-Transforms, multi-grid convergence acceleration
and parallelization.
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Time integration is performed by an explicit, fourth-
order-accurate four stage Runge-Kutta scheme which is
coupled with a hybrid discretization of the z-convection
terms using central, upwind, downwind, and again cen-
tral finite-differences in the four successive stages. The
sequence of upwind and downwind differences is altered
for every time step. It can be shown that this technique
effectively damps out small-scale oscillations that can-
not be accurately discretized on a given grid [6].

3 BASE FLOW

The integration domain A BCD in Figure 1 extends from
29 = 0.37 to zy = 5.06 in downstream direction and
from y = 0 to ypyy = 18.8 normal to the wall. All vari-
ables are normalized by a constant reference length L =
0.05m and by the free-stream velocity Uy, at inflow. In
addition, the y-direction and the vorticity are scaled by
VRe and 1/\/%7 respectively, where Re = U L/v is
the reference Reynolds number. N = 697 and M = 96
equally spaced intervals are used for the discretization
of the flow field, except for case O which is discretized
from zp = 1.5 to zxy = 8.17 using 437 intervals.

At the inflow boundary AB a Blasius boundary layer
is specified with a local Reynolds number Res; = 330
based on the displacement thickness. The velocity U
at the free-stream boundary is specified by a fifth-order
polynomial that matches continuously up to the second
derivative with u(yps) = 1.0 and u(yps) = 0.9 up- and
downstream of the bubble, respectively. This velocity
distribution is shown in Figure 2 together with some
results of the base-flow calculation.

Negative vorticity at the wall, between the separa-
tion and the reattachment point, indicates reverse flow
inside the bubble, which is outlined by the separation
streamline ysep. The shape factor H computed from
the boundary-layer velocity profiles indicates a rapid
increase from the Blasius value H = 2.59 at inflow to
rather high values inside the bubble, followed by an
asymptotic relaxation back to the Blasius value down-
stream of the bubble. In this region the wall vorticity
is nearly constant and somewhat lower than that for
a Blasius boundary layer without a bubble starting at
the same zp which is also presented in Figure 2.

4 UNSTEADY CALCULATIONS

Unsteady forcing at the wall is applied by specifying
a finite wall-normal velocity within the disturbance
strip located between z; = 0.55 and z2 = 0.70. Peri-
odic forcing with nondimensional frequency f = 18
(F = 1.8 in the standard instability diagram of a
Blasius boundary layer) generates Tollmien-Schlichting
(TS-) waves that travel downstream into the undis-
turbed flow. The disturbance frequency has been cho-
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Figure 2. Base flow parameters: free-stream velocity
Upr, shape factor H, separation streamline ysep, wall
vorticity wqy and wall vorticity of a Blasius boundary layer
wp- S = separation, R = reattachment point.

sen to correspond to the most amplified frequency for
the steady base flow according to linear instability.

After simulation of several disturbance cycles, when
the flow field becomes periodic, a Fourier analysis yields
insight into the downstream growth of the correspond-
ing disturbances which typically extends over several
orders of magnitude of the amplitude. Two distinct
cases are discussed in detail in the next two subsec-
tions, interaction of a large-amplitude 2-D TS-wave
with a small-amplitude 3-D wave pattern of subhar-
monic frequency f/2, and the self interaction of two
oblique waves with the same frequency and wave lengths
but opposite flow direction in z-direction.

4.1 Case S, Secondary instability

Herbert[2] has developed a theory to describe the am-
plification of small-amplitude oblique waves in an ap-
proximately streamwise-periodic base flow that con-
sists of the steady boundary layer profile (u(y)) and a
finite-amplitude 2-D TS-wave. The primary parameter
of this so-called secondary instability is the amplitude
of the 2-D wave. As a rule of thumb, one may say that
secondary instability occurs when this amplitude (mea-
sured as A = upq;/Uso) exceeds 0.5 — 1%. The sec-
ondary amplification rate also depends on the spanwise
wave number v = 27/A; and on the frequency f of the
3-D disturbances. Subharmonic 8-D disturbances are
usually most amplified for small A and fundamental
ones for large A.

The rapid amplification of 3-D disturbances by sec-
ondary instability leads to a rapid generation of higher
harmonic disturbances in frequency and spanwise di-
rection and to the final breakdown to turbulence by
nonlinear interactions.
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In [10, 12] we have already investigated secondary in-
stabilities in the laminar separation bubble of the pre-
vious section and found that secondary amplification is
hard to detect because it is only approximately twice
as large as for primary instability. For comparison: in a
Blasius boundary layer secondary amplification is typ-
ically one order of magnitude larger than the largest
possible primary amplification rate.

In addition, we observed that the 3-D disturbances
exhibit a reduced amplification after saturation of the
2-D primary wave. This phenomenon occurred for sub-
harmonic, as well as for fundamental 3-D disturbance
frequencies [12].

Here we reconsider the subharmonic case S, where
a 2-D TS-wave with frequency f = 18 and a pair of
3-D waves with frequency f/2 = 9 running in oppo-
site oblique direction are introduced by periodic suc-
tion and blowing at the wall upstream of the bubble.
The spanwise wave number of the subharmonic wave
is 7 = 40 which yields an oblique direction of about
60° relative to the z-axis.

LST
sec. instab.
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Figure 3. Comparison of the numerical results with

linear stability theory (LST) and secondary instability
theory. a) amplification curves, b) amplification rates. S =
separation, R = reattachment of the undisturbed flow.

Amplification curves 4,4, (z) and amplification rates
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a; = —d/dz(In uy,,,) obtained after Fourier analysis
of the numerical results from the 23”% and 24" funda-
mental disturbance period (i.e., the 12?* subharmonic
disturbance cycle) are displayed in Figure 3. The 2-D
fundamental (f) and its higher harmonics (2f and 3f)
are shown together with the $-D subharmonic (f/2)
and its higher harmonics (3/2f, 5/2f, and 7/2f).

The downstream amplification of the 2-D fundamen-
tal practically agrees with linear stability theory until
its nonlinear saturation inside the bubble at z ~ 2. The
higher harmonics of the 2-D wave grow in a strikingly
regular manner: for instance, when uj,q, (f) = 1077,
Uhnae(2f) = 1074 and e (3f) ~ 10~°. Here, two-
dimensional disturbances below 10~ %-10~7 cannot be
observed due to numerical round-off errors.

The &-D subharmonic also grows like linear theory
until £ =~ 1.8, followed by a section with increased
growth until z ~ 2.2 after which it reduces again. The
higher harmonic 8-D wave components are apparently
generated by nonlinear interaction with the 2-D funda-
mental: for instance, (f/2, v) + (f, 0) — (3/2f, ), and
so on. Thus, the distance between neighboring curves
of the 3-D spectrum in the downstream part of the flow
field is approximately as large as the distance between
the 2-D fundamental and its first harmonic.

The growth rate of the 8-D, f/2-disturbance is com-
pared with results of linear stability and secondary sta-
bility theory in some more detail in Fig. 3b). The undis-
turbed base flow of section 3 has been used for the
linear stability theory. The results therefore exhibit an
increasing amplification rate until z ~ 2 followed by a
decrease in the zone where the base flow relaxes back
to a Blasius boundary layer.

For the secondary instability calculations, the local
mean-velocity profile 4(y) and fundamental 2-D TS-
wave amplitudes have been used. Figure 3b) shows that
the increased 3-D growth is due to secondary subhar-
monic resonance, as expected. However, the a;-maxi-
mum around z = 2.1 is not predicted quantitatively
very well. This might be due to strong nonparallel ef-
fects in the reattachment zone which have been ne-
glected in the stability theory, but it could also be due
to neglecting other 3-D modes which have grown to
the same order of magnitude as those considered in
the theory. Downstream of the bubble, the theory also
predicts a reduced amplification of the subharmonic
compared to £ < 2.1, as in the DNS.

Despite that only qualitative agreement with the re-
sults of the DNS is observed in the downstream part,
it is obvious that 3-D disturbances are still amplified
in the “periodically modulated” 2-D base flow. These
disturbances are shown together with plots of the in-
stantaneous (2-D) stream function and spanwise vor-
ticity contours in Fig. 4. The 8-D disturbance depicted
by the contours :1:1079, :t10787 ey +10~4 radically
changes its shape around z = 2.0: the local maxima
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and minima originating from the subharmonic wave are
apparently “picked up” by the large-amplitude 2-D dis-
turbance. Thus, the wave length of the 3-D disturbance
adjusts to the 2-D wave and the minima and maxima
are torn around the centers of large-amplitude 2-D vor-
tices. This explains why the amplification in Figure 3a)
suddenly changes when the 2-D wave saturates.

Figure 4. Instantaneous flow field for case S after 24
disturbance cycles. a) 2-D stream function, b) 2-D
vorticity (contours: —0.06, 0.06, 0.12, ..., 0.9), c)

z-component of 3-D vorticity (contours: :tIO_g, :|:10_8,
e, k1074 ). Negative contour lines are dashed.

4.2 Case O, Oblique breakdown

This part of our research is motivated by several ob-
servations: linear (primary) instability yields very large
amplification rates in the separation bubble, the ampli-
fication of oblique waves with obliqueness angles under
30° is approximately as large as that for 2-D waves,
and investigations such as the one discussed in the pre-
vious subsection have shown the possibility that 3-D
disturbance amplification by secondary instability does
not necessarily lead directly to a turbulent flow in the
separation bubble.

The so-called oblique breakdown starts from the non-
linear interaction of a pair of oblique waves of the
same frequency running in opposite spanwise directions
(forming a symmetric wave pattern). Higher harmonic
wave components in spanwise and in frequency direc-
tion are rapidly built up, as can be seen in the amplifi-
cation curves in Figure 5. Here, the initial behavior of
the priming wave is again governed quite well by pri-
mary (linear) stability until nonlinear saturation of the
disturbances. Additional simulations of this case have
shown that the mechanism is most effective for the
spanwise-wave-number—frequency combination shown
here which corresponds to an obliqueness angle of ap-
proximately 20°.
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Figure 5. Amplification curves for oblique breakdown.
Mode (1, +1): f = 18, v = £20, f = frequency, v =
spanwise wave number. LST = linear stability theory.

The instantaneous flow field is depicted in Figure 6
by contours of the 2-D vorticity, the 3-D vorticity com-
ponent w, corresponding to v = 20, and by the total
z-vorticity at the wall. In contrast to Figure 4, a break-
down of the regular 3-D wave pattern can be observed
starting at z =~ 2.0 inside the boundary layer, i.e., be-
low the phase shift of the $-D disturbances.

A staggered pattern is observed at the wall inside
the bubble, but this does not indicate subharmonic
breakdown here. In the absence of a large-amplitude
2-D TS-wave this is merely a manifestation of the 3-D
oblique wave pattern.

Instantaneous flow field for obliqgue breakdown

Figure 6.
after 22 disturbance cycles. a) 2-D vorticity (contours:
—0.06, 0.06, 0.12, ..., 0.9), b) z-component of 3-D
vorticity, ¢) z-component of vorticity at the wall. The
contours in b) and c) are +107%, 104, ..., £109.

Downstream of the bubble, after the initial break-
down zone, longitudinal streaks appear. They belong to
mode (0,2) in the frequency-spanwise-wave-number—
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spectrum and they typically dominate the spectrum in
all investigations of the oblique breakdown. The occur-
rence of longitudinal vortices in the reattachment zone
has already been observed in wind-tunnel experiments
(cf. [4]) but it has not yet been attributed to a possible
oblique transition mechanism.

Figure 7 is intended for comparison with the subhar-
monic case of the previous section. Here, instantaneous
spanwise vorticity contours are shown in streamwise
cuts at z = 0. Case S is dominated by large-amplitude
2-D disturbance waves which are stable, while case O
shows a rapid formation of small-scale 3-D structures
in the reattached boundary layer.

Figure 7. Comparison of instantaneous spanwise
vorticity at z = 0 of case S (a) with case O (b).

5 INFLUENCE OF THE WALL

Here we want to investigate the influence of the wall
on the primary (linear) 2-D instability of the separated
boundary layer. In literature about laminar separation
bubbles it is usually argued that the separated flow
behaves like a free shear-layer. With the data obtained
in the DNS, some manipulation of the extracted base-
flow profiles, and linear stability theory it is possible
to investigate this hypothesis.

The u-velocity profile at z = 2.0, where the maxi-
mal reverse-flow occurs and where the bubble’s height
is largest, is taken as a starting position for these in-
vestigations. The first manipulation consists of shifting
the profile in positive (u-) direction by the amount of
the back flow (=~ 1%) and setting the velocity between
the minimum and the wall to zero. This has actually
no significant influence on the linear instability and on
the resulting eigenfunctions as can be seen in Figure 8
where both cases nearly coincide.

The next step consists of moving the shear layer fur-
ther away from the wall by introducing additional grid
points with zero velocity near the wall, as is shown in
Figure 8a). The results indicate that the linear insta-
bility steadily approaches the typical instability curve
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and eigenfunctions of a free shear-layer [9] when the
wall distance is increased.

However, as can be seen in Fig. 8a) the wall distance
that is needed to turn the present base-flow profile into
a free shear-layer profile is rather large, and if one takes
the relative importance of the near-wall maximum of
the u'-eigenfunctions as a criterion, the base flow found
in the DNS is far from a real free shear-layer and qual-
itative and quantitative comparisons with a free shear-
layer should be regarded with care.
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Figure 8. Investigation of the influence of the wall on
the 2-D linear instability of the separated boundary layer
at £ = 2.0. a) base flow profiles, b) u’-eigenfunctions, c)
amplification rates versus frequency. y* = additional
distance at the wall with zero velocity.

6 ABSOLUTE INSTABILITY OF
THE BASE FLOW

Flow fields with reverse-flow regions might be subject
to absolute or global instability [3], i.e., there might be
an amplification of disturbances which grow locally and
which are not convected away by the oncoming flow.
This will drive the flow to a new state which cannot be
stopped by turning off the forcing of the disturbances.
Here we want to investigate this possibility again by
DNS in order to avoid possible ambiguities related to
the neglection of nonparallel or other effects in an ap-
proximate theory.

The basic idea is to start from the subharmonic case
shown in section 4.1 and to stop forcing at the wall
after the 18*" disturbance cycle. If the flow were abso-
lutely unstable, the disturbances arising from absolute
instability would not decay because of zero or negative
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phase velocity. On the contrary, if they decay the flow
is conwvectively unstable.

The results of our investigation are shown in Fig-
ure 9 by amplification curves for the fundamental 2-D
(a) and 3-D disturbances (b) obtained after 30, 40, ...,
70 disturbance periods. Apart from a short-time in-
crease of the 3-D disturbance in the 30" cycle which
is due to the passage of a wave packet resulting from in-
stantly turning off the disturbance strip, the harmonic
disturbances die away on the long-term.

In the framework of the present investigation it could
not be expected that all disturbances immediately dis-
appear. It must be expected instead that it takes some
time after stopping the forcing at the wall until they
leave the integration domain in downstream direction.
However, it is possible that other disturbances than
those shown in Figure 9 remain. This possibility is
checked in Figure 10 by the frequency spectra for the
2-D and 3-D disturbances at z = 2.0 and z = 2.5. The
solid line shows the spectrum with forcing for compari-
son. It exhibits discrete peaks at the 2-D fundamental,
the 3-D subharmonic, and their higher harmonic fre-
quencies. The first spectrum, obtained from a Fourier
analysis over ten subsequent fundamental disturbance
periods after termination of the distrubance input still
exhibits these peaks, but the space in-between is filled
up due to the passage of the aforementioned wave packet.
The third trace (p31-40) is as a whole very high due
to this, especially at z = 2.5.

In the later periods all disturbances gradually de-
crease, indicating that the base flow considered here
must be convectively unstable. However, two peculiari-
ties can be observed: a slower decay of the convectively
unstable 2-D Tollmien-Schlichting waves in a band cen-
tered around f = 18, and the rather slow decay of the
longitudinal vortices (f — 0) in the 3-D spectrum.

7 CONCLUSIONS

The investigations of secondary instability discussed
here have shown that the largest 3-D amplification oc-
curs just prior to nonlinear saturation of the 2-D wave.
After this the 3-D amplification is reduced so that the
flow field remains dominated by large-amplitude 2-D
vortices which seem to redistribute the 3-D disturbance
field in such a way that the initial eigenmodes com-
pletely disappear.

The investigation of the most unstable oblique case
revealed a rapid breakdown of the flow in contrast to
the subharmonic case. The influence of the wall on the
linear 2-D instability appears to be important: com-
pared to a free shear-layer, the maximal amplification
rate is considerably reduced and the eigenfunctions
present a large near-wall maximum. Finally, absolute
instability could not be found, since all disturbances
decayed after termination of the forcing at the wall.
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Figure 9. Amplification curves of uj,,, after
termination of the disturbance input compared to the
forced periodic results of Fig. 3a). a) 2-D disturbances,

frequency f, b) 3-D disturbances, subharmonic frequency
f/2,v=40.p30 = 30t disturbance period, etc.
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Figure 10. Frequency spectra of the wall vorticity after
termination of the disturbance input in the 25tk cycle. a)
2-D, z = 2.0,b) 2-D, z = 2.5,c) 3-D, z = 2.0, d) 3-D,
T =25
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