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Abstract

Direct numerical simulations in two and three dimensions have been performed to
investigate the sound generation by vortex pairing in a compressible plane mixing
layer with Ma1 = 0.5 being the upper and Ma2 = 0.25 being the lower stream
Mach number. The Reynolds number based on the vorticity thickness at the inflow
and the velocity of the upper stream is Re = 500. The flow is forced at the inflow
with eigenfunctions obtained from viscous linear stability theory including three-
dimensional disturbances. The results are verified with linear stability theory and
the two-dimensional simulations performed by Colonius, Lele and Moin [6]. The
excitation of a steady longitudinal vortex mode leads to an early three-dimensional
deformation of the travelling spanwise vortices and reduced sound emission to the
slower fluid stream side.
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1 Introduction

Noise reduction is an important issue for a wide range of applications like
aircrafts and turbomachinery for example. Being part of the French-German
DFG-CNRS Research Group ”Noise Generation in Turbulent Flows”, our mo-
tivation is to simulate both the compressible mixing layer itself as well as parts
of the surrounding acoustic field. The term mixing layer describes a flow field
composed of two streams with unequal velocities and serves as a model flow
for the initial part of a jet. Even with the actual increased computational
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power, resolved simulations of full jets are limited to relatively low Reynolds
numbers [7] and the focus on the initial shear layer removes this limit. The
subsonic mixing layer has been investigated previously with respect to sound
generation. The acoustic radiation of instability waves in a supersonic mixing
layer was discussed by Tam and Burton [14]. Bogey, Bailly and Juve [3] used a
two-dimensional Large-Eddy-Simulation to simulate a hyperbolic-tangent ve-
locity profile. Direct Numerical Simulations of a two-dimensional mixing layer
have been performed by Colonius, Lele and Moin [6]. Bogey et al. aswell as
Colonius et al. compared the acoustic far field with Lighthill’s acoustic analogy
[12] showing good agreement between simulations and the acoustic analogy.

Aeroacoustic computations face the problems of i) the large extent of the
acoustic field compared to the flow field and ii) the low amplitudes of the
emitted sound relative to pressure fluctuations of the instability waves inside
the shear region. To minimize spurious numerical sound, the unsteady com-
pressible Navier-Stokes equations are solved using high-order accurate spatial
direct numerical simulations (DNS) with appropriate boundary conditions.

Verification of our DNS code is done by comparing the results with viscous
linear stability theory and with the two-dimensional simulations performed
by Colonius et al. [6], serving as a benchmark problem for the project. By
additionally forcing the flow with spanwise periodic perturbations, the inves-
tigation of sound generation mechanisms is expanded to three-dimensional
effects.

2 Computational Configuration

2.1 Numerical Scheme

For this problem we apply our newly designed DNS code which solves the
three-dimensional unsteady compressible Navier-Stokes equations. In what
follows, velocities are normalized by the inflow velocity U∞ and all other quan-
tities by their inflow values, marked with the subscript ∞. Length scales are
made dimensionless with a reference length L and the time t with L/U∞,
where the overbar denotes dimensional values. Temperature dependence of
viscosity µ is modelled using the Sutherland law:

µ(T ) = µ(T∞) · T 3/2 · 1 + Ts

T + Ts

, (1)

where Ts = 110.4K/T∞ and µ(T∞ = 280K) = 1.735 ·10−5kg/(ms). As a weak
temperature dependence can be assumed, the Prandtl number Pr = 0.71 and
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the ratio of specific heats κ = 1.4 are taken constant for air. We use the
conservative formulation solving for density ρ, momentum densities in the
three dimensions ρu, ρv, ρw and total energy per volume E.

The spatial discretization in streamwise (x) and normal (y) direction is done
by 6th order compact finite differences. The tridiagonal equation systems of the
compact finite differences are solved using the Thomas algorithm. To reduce
the aliasing error, alternating up- and downwind-biased finite differences are
used for convective terms as proposed by Kloker [10]. The second derivatives
are evaluated directly which better resolves the second derivatives compared
to applying the first derivative twice. The square of the modified wavenumber
k∗mod over k∗ is shown for different schemes in figure 1. The exact solution for
the second derivative is k∗2. While the relative error of the second derivatives
is less than 1% up to a modified wavenumber of k∗ = 1.00 or k∗ = 1.74 for 4th

and 6thorder, respectively, the result of computing the first derivative twice is
only good up to k∗ = 0.62 and k∗ = 1.42 accordingly. Due to that, our scheme
provides a resolution advantage of factor 3 for the viscous terms compared to
a standard scheme of 4thorder, often used for compressible flows. Moreover,
another advantage of direct second derivatives computation is the fact, that
k∗2mod does not vanish for the least resolved waves with k∗ = π providing better
accuracy and stability of the code.
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Fig. 1. Comparison of second derivative versus twice the first derivative for a wave
with wave number k∗ = k ·∆x.

Since the flow is assumed to be periodic in spanwise direction, we apply a
spectral ansatz for the z−direction:

f(x, y, z, t) =
K∑

k=−K

F̂k(x, y, t) · ei(kγz) . (2)
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f denotes any flow variable, F̂k its complex Fourier coefficient, K the number
of spanwise modes and i =

√
−1. The fundamental spanwise wavenumber

γ is given by the fundamental wavelength λz representing the width of the
integration domain by γ = 2π

λz
.

Spanwise derivatives are computed by transforming the respective variable
into Fourier space, multiplying its spectral components with their wavenum-
bers (i · k · γ) or square of their wavenumbers for the second derivatives and
transforming them back into physical space. Due to the non-linear terms in
the Navier-Stokes equations, higher harmonic spectral modes are generated
at each timestep. To suppress aliasing, only 2/3 of the maximum number of
modes for a specific z-resolution are used [4]. If a two-dimensional baseflow is
used and disturbances of u, v, ρ, T , p are symmetric and disturbances of w
are antisymmetric, flow variables are symmetric/antisymmetric with respect
to z = 0. Therefore only half the number of points in spanwise direction are
needed (0 ≤ z ≤ λz/2) and equation (2) is transferred to

f(x, y, z, t) = F0r(x, y, z, t) +2 ·
K∑

k=1

Fkr(x, y, t) · cos (kγz) (3)

for f ∈ [u, v, ρ, T, p]

f(x, y, z, t) = −2 ·
K∑

k=1

Fki(x, y, t) · sin (kγz) (4)

for f ∈ [w] .

Arbitrary grid transformation in the x-y plane is provided by mapping the
physical grid on an equidistant computational ξ-η grid:

x = x(ξ, η) , y = y(ξ, η) . (5)

According to [1], the first derivatives can be computed as:

∂

∂x
=

1

J

[(
∂

∂ξ

)(
∂y

∂η

)
−
(

∂

∂η

)(
∂y

∂ξ

)]
(6)

∂

∂y
=

1

J

[(
∂

∂η

)(
∂x

∂ξ

)
−
(

∂

∂ξ

)(
∂x

∂η

)]
(7)

J =

∣∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣∣ =
∂x

∂ξ
· ∂y

∂η
− ∂y

∂ξ
· ∂x

∂η
(8)

with the metric coefficients (∂x/∂ξ), (∂y/∂ξ), (∂x/∂η), (∂y/∂η) and J being
the determinant of the Jacobi matrix. To compute second spatial derivatives,
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equations (6) and (7) are applied twice. Here one has to take into account that
the metric coefficients and by that also the Jacobi determinant are a function
of ξ and η as well.

Time integration is done using the standard 4th-order Runge-Kutta scheme
as it is described in [10]. A hybrid parallelization based on domain decom-
position in the x-y plane with internodal communication and shared-memory
parallelization in spanwise direction allows to effectively use modern super
vector computers like the NEC SX-8 installed at HLRS in Stuttgart. Details
on the parallelization concept can be found in [2].

Non-reflective boundary conditions as described by Giles [8] are implemented
at the inflow and the freestream boundaries. The inflow additionally allows to
introduce defined disturbances with specific amplitudes and phases. To mini-
mize reflections caused by oblique acoustic waves, a damping zone is applied
at the upper and lower boundary, forcing the flow variables to a steady state
solution. To avoid large structures passing the outflow, a combination of grid
stretching and spatial low-pass filtering [11] is applied in the sponge region as
done by Colonius, Lele and Moin [5]. Disturbances become increasingly badly
resolved as they propagate through the sponge region and by applying a spa-
tial filter, the perturbations are substantially dissipated before they reach the
outflow boundary.

2.2 Flow parameters

For verification, the flow configuration has been closely matched to the case
investigated by Colonius, Lele and Moin [6]. The Mach numbers of the upper
and the lower stream are Ma1 = 0.5 and Ma2 = 0.25, respectively. As both
stream temperatures are equal (T1 = T2 = 280K), the ratio of the streamwise
velocities is U2/U1 = 0.5. The Reynolds number Re = ρ1U1δ/µ = 500 is based
on the vorticity thickness at the inflow which is is used to normalize length
scales:

δ(x0) =

(
∆U

|∂u/∂y|max

)
x0

. (9)

The initial condition of the mixing layer is provided by solving the steady
compressible two-dimensional boundary-layer equations. The initial coordi-
nate x0 = 30 is chosen such that the vorticity thickness at the inflow is 1. By
that length scales are made dimensionless with δ. Velocities are normalized
by U1 and all other quantities by their values in the upper stream. Figure 2
shows the initial values at the inflow x0 = 30.
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Fig. 2. Baseflow condition at the inflow x0 = 30.
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Fig. 3. Grid in x-y plane showing every 25th gridline and illustrating the domain
decomposition and grid streching in the damping zone.

A cartesian grid of 2500 x 850 x 9 points in x-, y- and z-direction is used
for 0 ≤ z ≤ λz/2. In streamwise direction, the grid is uniform with spacing
∆x = 0.157 up to the sponge region where the grid is highly stretched. In
normal direction, the grid is continuously stretched with the smallest stepsize
∆y = 0.15 in the middle of the mixing layer and the largest spacing ∆y = 1.06
at the upper and lower boundaries. In both directions, smooth analytical func-
tions are used to map the physical grid on the computational equidistant grid.
In spanwise direction, the grid is uniform with a spacing of ∆z = 0.491 which
is equivalent to a spanwise wavenumber γ0 = 0.8 , where λz/2 = π/γ0 = 3.927
is the spanwise extent of the domain. For parallelization, the total grid is
decomposed into 8 domains as illustrated in figure 3.
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3 Linear Stability Theory

To excite defined disturbances, the flow is forced at the inflow using eigen-
functions from spatial viscous linear stability theory [13]. They have the form

Φ = Φ̂(y) · ei(αx+γz−ωt) + c.c. (10)

with Φ = (u′, v′, w′, ρ′, T ′, p′) representing the set of disturbances of the prim-
itive variables. The eigenfunctions are computed from the initial condition by
combining a 4th order matrix-solver and Wielandt iteration. The y direction
is resolved with 301 points and a stepsize of ∆y = 0.15. The stability diagram
in figure 4 shows the amplification rate at several x positions as a function of
the frequency ω. The angular frequency is defined by ω = 2π · f̄ · δ̄(x0)/Ū1 with
f̄ in [Hz]. The fundamental frequency ω0 = 0.6293 was chosen in accordance
with Colonius, Lele and Moin [6] having the largest amplification rate at the
inflow x0 = 30. Further downstream, the amplification rate decreases and its
maximum moves towards lower frequencies. If αi and ω are scaled with the
streamwise growing local value of δ(x), the curves almost collapse like the low
frequency band in figure 4. We note that we use viscous theory and not the
Rayleigh equations like Colonius, Lele and Moin [6]. The growth rates and
eigenfunctions thus differ up to 15% as can be seen from figures 4 and 6.
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Fig. 4. Stability diagram for 2-d distur-
bances of the mixing layer at several x
positions including inviscid theory (�).
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Fig. 5. Amplification rates in depen-
dence of the spanwise wave number γ
at the inflow x0 = 30; ∆γ = 0.1.

For oblique instability waves the amplifcation rates decrease while the maxi-
mum stays at the same frequency as illustrated in figure 5. The amplitude and
phase distribution of an oblique wave with γ = 0.8, corresponding to a wave
angle of approximately 45◦, can be found in figure 7. The amplitude profile of
the streamwise velocity u is narrower in the oblique case. The v−amplitude
is shifted to the spanwise velocity w. For the thermodynamic parameters ρ,
T and p, the maximum amplitudes are reduced by a factor of more than two
compared to the two-dimensional case.
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Fig. 6. Amplitudes of the eigenfunctions from spatial viscous theory compared with
the results of the inviscid Rayleigh equations.
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spanwise wavenumber of γ = 0.8 at the inflow.
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4 Results

Two different cases have been computed: in case A, the flow is forced only
with two-dimensional eigenfunctions composed of the fundamental frequency
ω0 = 0.6293 and the first three subharmonics similar to the computations of
Colonius, Lele and Moin [6]. The amplitude of the fundamental frequency is
0.002 while the amplitudes of the subharmonics are 0.001. In accordance to
the computations of Colonius, Lele and Moin [6], the phase shift is ∆Θ =
−0.028 for the first, ∆Θ = 0.141 for the second subharmonic and ∆Θ =
0.391 radians for the third subharmonic disturbance. The amplitudes of the
eigenfunctions are normalized by their maximum value of u and then scaled
by the amplitude factor given above. As no three-dimensional disturbances are
introduced, a two-dimensional simulation has been performed. Case B contains
an additional one percent steady disturbance based on the eigenfunction of the
three-dimensional unsteady mode with a spanwise wavenumber γ = 0.8 and
the fundamental frequency ω0. By using a relatively high amplitude compared
to the unsteady disturbances, the two-dimensional waves can interact with the
steady forcing and generate unsteady oblique waves.

In figures 8 and 9 the spanwise vorticity is shown after 68 periods of the funda-
mental frequency for the two- and three-dimensional cases, respectively. The
initial region looks similar for both cases: the mixing layer rolls up into vortices
with the fundamental mode being fully developed at a position of x ≈ 100. The
first pairing takes place in the area of 110 < x < 150. The flowfield downstream
of x ≈ 150 differs for cases A and B. In the two-dimensional case the vortices
develop further and a second vortex pairing is visible at x ≈ 200, generating
larger vortices passing with the second subharmonic frequency, showing good
agreement with the reference case [6]. In the three-dimensional simulation,
the vortices break up into small-scale structures as they approach the region
of the second pairing. Further downstream, large scales almost disappear and
the vorticity structures move in the negative y−direction compared with the
two-dimensional case.

The λ2 criterion [9] can be used to give a three-dimensional impression of
the vortical structures. As shown in figure 10, the vortices are only slightly
modulated in spanwise direction up to x = 150. Downstream of the position,
where the vortices pair, the initially small three-dimensional structures form
S-shaped longitudinal vortices which are twisted around their spanwise coun-
terparts. Figure 11 shows an instantaneous view of the vorticity in x−direction
together with the velocity field in an exemplary crossplane at x = 161.2 il-
lustrating the S-shaped vortices. At x ≈ 200 the spanwise vortices break up
into small scale structures. While the flow field is dominated by small vor-
tices further downstream, they are accumulated in groups generated with the
wavelength of the second subharmonic mode.
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Fig. 8. Snapshot of the spanwise vorticity for computational case A with the y-axis
being stretched by a factor of 2.5. Contour levels range from -0.26 to 0.02 with an
increment of 0.04. The reference solution of Colonius, Lele and Moin [6] for the
corresponding domain is shown above.
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Fig. 9. Snapshot of the spanwise vorticity for computational case B at a spanwise
position of z = 0 with contour levels as in figure 8.
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Fig. 10. Perspective view of the isosurface λ2 = −0.005 in the range of two spanwise
periods.

Fig. 11. Instantaneous view of the streamwise vorticity and the velocity field at a
streamwise position of x = 161.2
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The small difference in the spanwise vortices compared to the reference so-
lution [6] is due to a slightly different forcing at the inflow. Of course, the
spanwise resolution is not sufficient for the late stages. Highly resolved DNS
will be performed for cases with parameters previously optimized using lower
resolution DNS with case B being one of them.

For further analysis, a Fourier analysis in time and spanwise direction (for
the three-dimensional case) is applied. The modes are denoted as (h, k) with
h and k being the multiple of the fundamental frequency and the spanwise
wavenumber, respectively. For both, amplitudes and amplification rates, the
maximum amplitude along y is taken. The value considered for this analysis
is the velocity component in y−direction v as its streamwise development is
mainly associated to vorticity.

Figure 12 shows the amplitudes of the two-dimensional case. In the first part
of the domain the amplitudes grow exponentially. The spatial growth rate αi

is compared with results from linear stability theory in figure 13. Although αi

is a very sensitive value, the mean values of the DNS correspond well to those
predicted by linear stability theory. The agreement between simulation and
theory serves as a verification of the computational scheme for small distur-
bances. Further downstream, the modes (1, 0), (1/2, 0) and (1/4, 0) saturate
at positions x = 100, x = 150 and x = 250, respectively, corresponding well
to the positions where the respective vortices are fully developed (figure 8).

The amplitudes of the three-dimensional case are shown in figure 14. The ex-
cited steady mode (0, 1) is slightly damped until x = 110 corresponding to the
amplification rate given by linear stability theory (see figure 5). Downstream
of x = 110 the non-linear generation of mode (0, 1) exceeds the initial distur-
bance and saturation is observed. The unsteady two-dimensional modes (1, 0),
(1/2, 0) and (1/4, 0) grow exponentially up to x ≈ 70 as in case A. A compar-
ison of the growth rates is given in figure 15. The oblique waves (1, 1), (1/2, 1)
and (1/4, 1) are nonlinearly generated by the combination of two-dimensional
waves with mode (0, 1) as they are directly coupled with their corresponding
two-dimensional modes. Therefore the amplitude growth does differ from lin-
ear behaviour where three-dimensional waves have a lower amplification than
the two-dimensional waves.
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Fig. 12. Maximum amplitudes of nor-
mal velocity v for the 2-d case A.
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Fig. 13. Amplification rates of v based
on max. amplitudes along y for case A
(for symbols see Fig. 15).
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Fig. 14. Maximum amplitudes of nor-
mal velocity v for the 3-d case B.
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Fig. 15. Amplification rates of normal
velocity v, based on maximum ampli-
tudes along y for case B.

The resulting acoustic field can be visualized by plotting the dilatation, being
∇ · ~u, the divergence of the velocity field. The disturbance generation at the
inflow itself produces acoustic waves, mainly at the fundamental and the first
subharmonic frequency. A clearer picture of the acoustic field can be obtained
by applying a Fourier transformation.

The Fourier transformed dilatation field is given in figures 16 for the two-
dimensional and in figure 17 for the three-dimensional case for the second
subharmonic.

In the two-dimensional case, the dominant accoustic source is located at
x ≈ 240, the position, where the vortices merge. The emitted sound is directed
mainly downstream. Since the results closely match those given by Colonius,
Lele and Moin [6], the computational scheme is thus verified for aeroacoustic
simulations as well.
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Fig. 16. Fourier transformed dilatation
field of the second subharmonic for
computational case A. Equidistant con-
tour levels range from −10−5 to 10−5.

Fig. 17. Fourier transformed dilatation
field of the second subharmonic for
computational case B. Equidistant con-
tour levels range from −10−5 to 10−5.

Fig. 18. Fourier transformed dilatation
field of 3/4 · ω0 for computational case
B. Equidistant contour levels range
from −10−6 to 10−6.

Fig. 19. Fourier transformed dilatation
field of 5/4 · ω0 for computational case
B. Equidistant contour levels range
from −10−6 to 10−6.
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The different flowfield of case B leads to a different emitted sound. Figure 17
shows that the dominant noise source with the frequency 1/4 · ω0 of case A is
missing. In figures 18 and 19 the Fourier-transformed dilatation field is given
for frequencies 3/4 · ω0 and 5/4 · ω0, respectively. Here it can be seen that the
tonal source from case A has transformed to broadband noise. Note that the
contour levels in figures 18 and 19 are one magnitude smaller. The position
of the noise source is located at x = 210, more upstream compared to the
dominant acoustic source in case A.

The figures also show spurious waves emitted from the sponge region. As
the wavelengths of these reflections are much smaller than the corresponding
acoustic waves for these frequencies, they are in fact higher harmonics aliased
to lower frequencies. A higher timewise sampling rate would be preferable, but
the binary output already has a total file size of roughly 34GB.

5 Summary

A compressible isothermal mixing layer with the Mach numbers Ma1 = 0.5 and
Ma2 = 0.25 for the upper and lower stream, respectively, has been simulated
using two- and three-dimensional DNS. The results have been compared with
linear stability theory and the two-dimensional simulation of Colonius, Lele
and Moin [6] and very good agreement has been found. While the initial flow
field of the three-dimensional computation with longitundinal-vortex-mode
input is similar to the results of the two-dimensional simulation, small scale
structures dominate the mixing layer further downstream. According to the
differences in the flow itself, also the emitted sound differs: the sound gener-
ation in two dimensions is dominated by a tonal noise source, while in three
dimensions, broad band noise is emitted. Investigations of the efficiency of
passive control compared to active control based on the optimal control work
of our French partners will be performed.

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG)
for its financial support within the the subproject SP5 in the French-German
research group FOR-508 ”Noise Generation in Turbulent Flows”. Supercom-
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