LDA-Messungen zur Transition in einer laminaren Ablöseblase

M. Lang, O. Marxen, U. Rist, S. Wagner, W. Würz
Institut für Aerodynamik und Gasdynamik der Universität Stuttgart

Motivation

Versuchsanlage und experimenteller Aufbau

Abbildung 1: Experimenteller Aufbau

Der Laminarwasserkanal (LWK) wurde speziell für Transitionsexperimente ausgelegt [5]. Der Turbulenzgrad beträgt $Tu \leq 0,05\%$ für einen Frequenzbereich von $0,1\rightarrow 10\, Hz$.
bei einer Strömungsgeschwindigkeit von $140 \text{ mm} \text{s}^{-1}$. Die Meßstrecke ist von jeder Seite optisch zugänglich, 10 m lang, 1, 2 m breit und von oben offen. Die Experimente wurden an einer laminar angeströmten ebenen Platte durchgeführt. Die Grundströmung entspricht einer Blasius-Strömung ($H_{12} = 2.591$). Der gemessene Formparameter $H_{12} = 2,6$ über der Spannweite der Platte schwankt nur um 1% seines Mittelwerts. Die Grenzschicht kann daher mit sehr guter Näherung als zweidimensional betrachtet werden.

Mit Hilfe einer Schwingdrahtvorrichtung wird eine Tollmien-Schlichting-Welle kontrolliert vor dem Verdrängungskörper in die Grenzschicht eingekoppelt. Die Frequenz dieser Störung ($f_0 = 1,1 \text{ Hz}$) entspricht der nach der linearen Stabilitätstheorie (LST) am stärksten angefachten 2-D-Störung. Mit dieser Frequenz schwingt die Ablöseblase auch im ungestörten Fall, jedoch nicht mit zeitlich konstanten Amplituden wie im Fall mit Störungsbegleitende Messungen erfolgen phasengekoppelt zur Störungsanregung mit Hilfe eines vom Schwingdrahtantrieb abgegebenen TTL-Signals.

Mit einem zweikanaligen Dantec-Laser-Doppler-Anemometer (LDA) werden die Geschwindigkeitskomponenten in Hauptströmungsrichtung u und in Wandnormalenrichtung w, sowie ihre Schwankungsgrößen gemessen. Die Aufzeichnung der Rohdaten erfolgt mit Hilfe der kommerziellen Software “BSA-Flow”.

Das am Laminarwasserkanal installierte LDA weist folgende Eckdaten auf: Rückwärtsstreuung, zwei BSAEnhanced-Module, Bremmscheibe 675 mm, Meßvolumendurchmesser ca. 70 μm, Interferenzstreifenabstand 3.22 μm für die u-Komponente. Hier wird bei einer Datenrate von 125 kHz ein Turbulenzgrad von $Tu \leq 1,1\%$ gemessen. Einer der blauen Strahlen für die w-Komponente läßt sich in die Mitte der Optik schieben, um trotz senkrecht zur Kanalseitenwand ausgerichteter Sonde wandnahe Messungen zu ermöglichen. Dabei ergibt sich ein Interferenzstreifenabstand von 6.11 μm.

Meßdatenauswertung

Der wesentliche Bestandteil dieses Transitionsexperiments ist die Messung periodischer Störungen und deren Entwicklung stromab. Dabei werden die während des Transitionsprozesses auftretenden Schwankungsgrößen der Geschwindigkeitskomponenten in Hauptströmungsrichtung u und Wandnormalenrichtung w erfaßt. Da die mit dem LDA gewonnenen Daten für eine schnelle Fourier-Transformation (FFT) nicht äquidistant vorliegen, wird das Zeitsignal linear interpoliert und äquidistant mit 2^n Samples abgetastet. Dabei ist 2^n größer als die Anzahl der aufgenommenen Doppler-Bursts am Meßpunkt. Zur genaueren Bestimmung der Amplituden auch bei geringen Datenraten oder hohen
Frequenzen wird zusätzlich über alle gemessenen Perioden der fundamentalen Frequenz f_0 des Schwingdrahtes eine Phasenmittlung durchgeführt [2, 3].

Bei einer zu untersuchenden dreidimensionalen Störung liefert eine Fourieranalyse in zeitlicher und räumlicher (spannweitiger) Richtung die Amplituden $a_{h,k}$ und Phasen $\Phi_{h,k}$ der eingebrachten, sich entwickelnden Störung. Dazu wird folgender Ansatz gemacht [2]:

$$u'(x, y, z, t) = \sum_{h=1}^{H} a_h(x, y, z) \sin(h2\pi f_0 t + \phi_h(x, y, z))$$

$$= \sum_{h=1}^{H} \sum_{k=-K}^{K} a_{h,k}(x, z) \sin(h2\pi f_0 t - k \frac{2\pi}{\lambda_y} y + \phi_{h,k}(x, z)),$$

Die Indizes h und k dieses doppelten Fourieransatzes stehen für die Wellenzahlkoeffizienten in zeitlicher und räumlicher Richtung. Diese Methode kann bis zum Auftreten starker Nichtperiodizitäten in der Strömung zwischen dem Transitions punkt und dem Wiederanlegebereich angewendet werden.

Meßergebnisse

Bei einer freien Anströmgeschwindigkeit von $u_\infty = 128 \text{ mm/s}$ wurden über den gesamten Bereich der abgelösten Grenzschicht an 30 Positionen Geschwindigkeitsprofile gemessen. Die Auflösung in Wallnormalenrichtung betrug dabei 1 mm. Abbildung 3 zeigt den Verlauf der wichtigsten Grenzschichtparameter über diesen Bereich. Die Reynoldszahl bezogen auf die Verdrängungsdicke δ_1 an der Ablösestelle betrug $Re_{\delta_1} = 960$.

Die Gesamtlänge der Ablöseblase ist mit ca. 230 mm durch die Trennstromlinie gegeben. Diese trennt das Rezirkulationsgebiet von der Außenströmung, d.h. im zeitlichen Mittel muß die Massenfluktuation zwischen der Plattenoberfläche und der Trennstromlinie null sein:

\[\int_{z=0}^{\infty} \tilde{u}(z) \, dz = 0 \]

Im laminaren Bereich der Ablöseblase wurde ein Vergleich der direkt aus den Meßwerten erhaltenen Amplitudenverläufe einer eingebenen zweidimensionalen Störung \(\frac{\partial u}{\partial x} \) (ohne Spacer) mit den nach der linearen Stabilitätstheorie berechneten Amplitudenverläufen durchgeführt. Dabei dienten die gemessenen und anschließend gesplitten Geschwindigkeitsprofile als Eingabe für einen Orr-Sommerfeld-Löser. Der Vergleich dieser (1, 0)-Mode zeigt, daß bis zum Auftreten erster dreidimensionaler Störungen in der Scherschicht bei \(x = 300 \text{ mm} \) die Anfachung der eingebenen zweidimensionalen Störung im Experiment mit der linearen Stabilitätstheorie beschrieben werden kann (Abbildung 3). Diese Anfachung konnte jedoch erst nach dem Ablösen der Grenzschicht in der freien Scherschicht gemessen werden (Abbildung 4), was auch in [7] beobachtet wurde. Bei einsetzender Sättigung der Störungsanfachung kann eine starke Entwicklung dreidimensionaler Strukturen in der Scherschicht beobachtet werden (Abbildung 2).

Im Falle der eingebenen dreidimensionalen Störung wurden Grenzschichtprofile an 16 Positionen über eine Spacer-Wellenlänge \(\lambda_y \) in spannweitiger Richtung gemessen.

Abbildung 4: Entwicklung der Amplituden \(a_{h,k} \) für die Geschwindigkeitskomponente \(u \) ab dem engsten Querschnitt stromab bei dreidimensionaler Störung.
Abbildung 4 zeigt die Entwicklung der Amplituden einiger \((b, k)\)-Moden für die Geschwindigkeitskomponente \(u\) vom engsten Querschnitt unter dem Verdrängungskörper bis in den Sättigungsbereich. Bemerkenswert ist, daß im Falle einer eingegebenen drei-dimensionalen Störung eine stationäre \((0, 2)\)-Mode über den Verdrängungskörper hinweg stark angefacht wird. Im Gegensatz dazu gewinnt beim Grenzschichtumschlag mit fundamentaler Resonanz ohne Ablösung [2] die \((0, 1)\)-Mode an Dominanz. Im vorliegenden Fall bilden sich pro Spacerwellenlänge zwei Peak-Valley-Ebenen aus. Da dennoch ein starker Anteil der \((b, \pm 1)\)-Moden vorhanden ist, wird als Grundquerwellenlänge die durch die Spacer eingebrachte Wellenlänge von \(\lambda_y = 58\) mm zu Grunde gelegt.

Vergleich mit DNS

Abbildung 5: Vergleich der gemessenen (Symbole) und mit DNS berechneten Grundströmungsprofile (links) mit dazugehörigen Amplitudenverläufen \(a_{(1,0)}\) und Phasenverläufen \(\phi_{(1,0)}\) (rechts) der 2-D-Störung \(((1, 0)\)-Mode).

Simuliert wurde der Fall einer eingegebenen, rein zweidimensionalen Störung von ver-
gleichbarer Amplitude wie im Experiment, die bereits mit der LST verglichen wurde. Ein zusätzlich in der DNS eingebrachter 3D-Puls sehr kleiner Amplitude bewirkte den Zusammenbruch der abgößten Schicht bis zu feinskaligen, turbulenten Bereichen. Abbildung 5 zeigt den Vergleich von gemessenen und berechneten Grundströmungsprofilen. Diese wurden mit der größten Geschwindigkeit am oberen Rand des Integrationsgebietes normiert. Zusätzlich sind die zugehörigen Amplitudenverläufe $a_{1,0}$ und Phasenverläufe $\phi_{1,0}$ über der Wandnormalenrichtung dargestellt. Die Amplitude wurde dabei mit ihrem Maximalwert normiert. Es zeigt sich eine sehr gute quantitative Über-einstimmung.

Zusammenfassung und Ausblick

In Zukunft ist eine weitere, enge Verzahnung zwischen Experiment und direkter numerischer Simulation vorgesehen. Die LDA-Messungen sollen durch PIV-Messungen ergänzt werden.

Literatur

