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A method for the identification of high-frequency
oscillations in unsteady flows

In direct numerical simulations (DNS) of instabilities related to laminar-turbulent transition the identification of
oscillations with small amplitudes is very difficult. Especially in laminar separation bubbles slight or in some cases
even strong time variations of the base flow dominate the Fourier transform for all frequencies. We show that
higher-order derivatives of the time signal amplify high-frequency components and low-frequency trends are almost
removed. Thus, time derivatives are well suited to improve results of Fourier transforms using a standard Hanning
window.

1. Laminar separation bubbles

Under certain conditions laminar separation bubbles are unsteady. The bubble increases and decreases in size
periodically. Typical time signals of the wall vorticity (a measure for the shear stress, figure 1a) for such a case show
two time scales:

e a slow oscillation of the base flow with the frequency fy; (period Tyy).
e high-frequency oscillations, so-called Tollmien-Schlichting (TS) waves, frs ~ 100fys, which have only tem-
porarily large amplitudes (time window B) and otherwise no influence on the base-flow (A).

2. Using time derivatives to improve the Fourier transform

A Fourier transform is generally well suited for the detection of TS-waves due to its harmonic ansatz. For the given
time signal, however, it is impossible to fulfill the underlying assumptions in a satisfying manner:

e the time window has to be a complete multiple of the period of any disturbance, and resulting from that:
e the discontinuity of the time signal and its derivatives at the borders must be low. Otherwise, this discontinuity
causes non-realistic large-amplitude contributions to the analysis for all frequencies.

Applying a window function, as for example a Hanning window: vpen () = v(¢)[0.5 — 0.5 % cos(2m(t — t5)/(te — ta))]
helps to reduce the problems caused by the borders.

To further improve the method, we analyse derivatives of the time signal taking into account the different charac-
teristics of the unsteadiness in the data (see above). For harmonic waves with the amplitude A: v = A x e’ the n®
time derivative is v(") = (iB)"™v. TS-waves are harmonic in time, whereas the low-frequency behaviour is supposed
to be a mixture of both polynomial and harmonic components. Since the n'® and higher derivatives of polynomials
of the order n are zero, low-frequency trends in the time signal are expected to be considerably reduced. Harmonic
components are amplified by the factor i3™. Thus, oscillations with high frequencies are strongly magnified com-
pared with low-frequency components. However, this effect can be corrected by recalculating the Fourier amplitude

of the nth derivative Aé,n) by: Ag = Agn)/ﬁn~

3. Examples

The effect of using time-derivatives for better amplitude resolution in a Fourier transform will be demonstrated
by two simple examples (figure 2). Two harmonic oscillations are superposed — a high-amplitude low-frequency
disturbance D; and a low-amplitude high-frequency disturbance D,. Time signals and derivatives are calculated
analytically.

Figure 2a) examines the influence of a time window that does not exactly match the period T of the signal. Due
to the discontinuity at the borders of the time window, an error is spread into the whole frequency regime which is
decreasing with increasing frequency. The error thus introduced is bigger for a sine wave than for a cosine wave due
to the steeper descent and hence stronger discontinuity at the boundaries. Although the time window fits almost the
period 717, the disturbance D» cannot be detected even if a Hanning window is employed . Using fourth derivatives
(dashed lines) improves the amplitude resolution by approximately eight decades in the high-frequency regime and
D> appears as a peak in the spectrum.
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To examine the effect of time derivatives on a time window with a strong trend of the mean flow, the duration of
the time window is chosen to be one half of the low-frequency period 7T} in figure 2b). As expected, the results of
a standard Fourier transform are even worse in this case. Employing a trend-removal technique (forcing the signal
to zero at the borders) and applying a Hanning window is not sufficient to detect the low-amplitude disturbance,
whereas applying fourth derivatives is again much better. Additionally, the trend-removal technique introduces
‘unphysical’ dents into the spectrum at different frequencies, depending on whether a Hanning window is applied or
not. Such dents might be misinterpreted as being inherent in the time signal.

To demonstrate the practical relevance of the proposed method, the amplification curves of the simulation data
in time window A (see figure 1) are compared to the original technique in figure 3. Downstream of = ~ 3.6, the
Fourier transform agrees very well with the new technique based on the fourth derivatives (9¢t*). However, upstream
of z =~ 3.6, no meaningful result can be attributed to the time signal due to the problems discussed above. The
curves of the fourth derivatives instead show a very good quantitative agreement if compared with linear stability
theory.

4. Conclusions
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Figure 3: Amplification curves from window A in figure 1.
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