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Abstract. Inlaminar separation bubbles a new mechanism of secondary instability
is presented which exists for large boundary layer Reynolds numbers at separation.
If a 2D wave is forced, temporal secondary amplification of 3D modes occurs. It is
based on instabilities of instantaneously appearing high-shear layers with respect
to 3D perturbations left over from the previous TS-period. After the 3D modes
gain large amplitudes transition sets on. This phase is again characterized by the
entrainment of 3D disturbances by the 2D shear layer in the re-attachment zone.
The 3D disturbances pierce the detached shear layer from underneath and destroy
it very rapidly, thus leaving spanwise rolls of turbulent flow.

1 Introduction, Numerical Method

In a transitional laminar separation bubble (LSB) separation is followed by
laminar-turbulent transition which forces the flow to re-attach. Results of
stability theory and many experimental observations show a non negligible
bias towards two-dimensional instability. Since turbulence is inherently three-
dimensional (3D), there must be mechanisms which produce 3D disturbances
in a LSB. Secondary instability, i.e. amplification of small-amplitude 3D dis-
turbances by large-amplitude Tollmien-Schlichting (TS) waves is one such
possible mechanism. However, our earlier investigations in [6,8,9] have shown
that such a mechanism is difficult to identify in a LSB because amplification
rates caused by linear (primary) Orr—Sommerfeld-type instability are nearly
as large as those from secondary instability. In addition, it turned out that
a large-amplitude 2D TS-wave at re-attachment and in the wake of the LSB
reduces the amplification of secondary disturbances. Therefore, Rist [6] pro-
posed to consider the non-linear interaction of weakly-oblique waves (large
spanwise wave length) which are nearly as unstable as perfectly 2D waves and
which lead to small-scale 3D disturbances by the so-called “Oblique Break-
down” mechanism.

A 4th-order accurate finite-difference method with explicit time-stepping
(Runge-Kutta O4) which was originally developed by Rist, Konzelmann &
Fasel [7] and improved by Kloker [2] is applied to solve the complete incom-
pressible Navier-Stokes equations in vorticity-transport formulation in a rect-
angular integration domain (Fig. 1a). The spanwise direction is discretized
with a spectral ansatz implying periodicity. At the free-stream boundary a
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decelerated velocity distribution is prescribed (Fig. 1b, solid line) which ap-
proximates the experiment when separation is suppressed by a turbulator
(triangles). An improved boundary-layer interaction-model is used to cap-
ture displacement effects by the separation bubble [4]. Thus, compared to
the prescribed velocity a modified velocity distribution develops during the
DNS, as in the experiment with separation bubble (squares).
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Fig. 1. Integration domain (a) and edge-velocity distribution (b) in the experiment
(symbols) and in DNS

In the present computations which have been performed for the boundary
layer on a research airfoil XIS{0MOD at Re. = 1.2 x 10° (at separation:
Reg, =~ 2500, where 6; is the displacement thickness), a new mechanism of
secondary disturbance amplification has been found (Maucher et al. [3]). As
will be shown, the mechanism has two distinct characteristics. First, there is
a temporal amplification of definite initial disturbances in the presence of a
large-amplitude TS wave near re-attachment which is described in Sect. 2,
and second, there is a periodic entrainment of 3D disturbances by the roll-up
of the 2D free shear layer at re-attachment, which causes this shear layer to
break down very rapidly, as described in Sect. 3.

2 Transient Phase, Secondary Instabilities

A 2D Tollmien-Schlichting (TS) wave is forced by periodic wall-normal suc-
tion and blowing in a disturbance strip at the wall upstream of the LSB
leading to an initial amplitude of urs ~ 10~°. Downstream, the amplitude
grows rapidly in the separated region of the boundary layer and finally sat-
urates at almost 30% Uy, in the re-attachment region. The large-amplitude
TS-wave produces spanwise rolls of vorticity and a sequence of instantaneous
re-attachment and separation points (w, = 0) which travel downstream (cf.
Fig. 2). Perhaps the most important point is that the re-attachment point of
the separation bubble appearing at the downstream end of the newly forming
“vortex roll” oscillates with the frequency of the TS-wave between z =~ 7.8
and 8. Thus, the flow field in the re-attachment zone somehow resembles the
stagnation flow of an oscillating cylinder [5].



Fig. 2. Instantaneous 2D vorticity

To investigate the instability of the present flow with respect to 3D dis-
turbances, 3D modes with fixed spanwise wavenumber v = 27/, are super-
imposed on the 2D TS-wave by short pulse-like 3D excitation in the LSB
with extremely low amplitude (u!,,, ~ 1071%). Similar to the mechanisms of
secondary instability according to the theory of Herbert [1], 3D amplification
with subharmonic and fundamental frequency with respect to the forced 2D
wave is observed for different spanwise wave numbers (Fig. 3). The amplifica-
tion rates have been validated in computations using different discretizations
(240 instead of 160 grid points per TS wave length, circles and diamonds,
resp.). Only for large v > 300 differences appear. However, they are moder-
ate even for v > 400. (For comparison: the streamwise wave number of the
TS-wave is « ~ 20.)
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Fig. 3. Secondary temporal amplification rates 3; vs. spanwise wave number ~ from
computations using two different grids
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Comparisons with linear stability theory confirmed that there is no pri-
mary 2D nor 3D absolute instability which could explain the large 3D tem-
poral amplification rates observed here. Clearly, the 3D instability must be
connected with the presence of the 2D periodic forcing as in the investigations
of Menter & Wedemeyer [5] or Herbert [1]. However, closer examination of
the flow field in the re-attachment zone shows that a phase with strong re-
verse flow alternates with a phase of downstream flow during each TS-period.
It turned out, that the phase with reverse flow is decisive for the secondary
temporal amplification.

The instantaneous vorticity field shows the roll-up of the 2D free shear
layer in the re-attachment region (Fig. 4 (a), emphasized by contours of high
vorticity) generating small-scale high-shear layers (see boxes). These small-
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scale shear layers are unstable with respect to 3D perturbations and 3D u
maxima occur at their very positions (boxes in Fig. 4(b)). When the 2D
velocity becomes positive the 3D perturbations are convected downstream.
At the begin of the roll-up of the shear layer in the next TS-period, however,
3D disturbances are partially captured and again entrained into the separated
region thus offering the basis for a continuous temporal amplification of 3D
modes. Finally, the amplitudes of the secondary 3D modes saturate and an
equilibrium state between the forced 2D wave and self-sustaining 3D modes
ends the transient phase.
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Fig. 4. Comparison of instantaneous 2D vorticity (a) with respective instantaneous
3D w-distribution (b)

3 Amplitude-Saturation Phase

For better comparison with the wind-tunnel experiments (airfoil), a smaller
TS initial amplitude of uzg o = 1075 has been forced upstream of separation
for the results presented in this section. A comparison of the amplitudes
of several modes in the frequency spanwise wave number spectrum (Fig. 5)
indicates a close agreement of the downstream amplification of the TS-wave
(mode (1,0), fat solid line) with locally parallel linear stability theory (for
the mean-flow profiles extracted from the DNS). 3D modes with the TS-
frequency and spanwise wave numbers of K+, are negligible upstream of the
LSB. But at = 7.4 they suddenly reach amplitudes only one to two decades
lower than the forced TS-wave. Actually, they are due to upstream transport
from the roll-up of the free shear layer. The secondary 3D amplification is
only weakly stronger than the primary 2D instability (7.4 < z < 8.0). Every
amplification ceases when the 2D wave saturates at  ~ 8 with an amplitude
that is almost one decade larger than the largest amplitude of the 3D modes.

The subsequent breakdown of the free shear layer is visualized by iso-
surfaces of the instantaneous spanwise vorticity in Fig. 6. Note, that only
the immediate re-attachment zone of the bubble is shown here. In (a) the
shear layer is almost 2D until z = 8.05. Afterwards, it is pierced by 3D
perturbations from inside the reverse-flow zone and longitudinal vorticity
structures build up at ¢ ~ 8.0 (b). A 3D strongly perturbed roll which
consists of fine scale structures leaves the separation bubble (c+d). This large-
scale structure is still very dominant at the beginning of the next TS-cycle
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Fig. 5. Comparison of spectral amplitudes after 3D saturation with linear stability
theory (LST, symbols); (1,0) = forced 2D wave, (2,0) = its first higher harmonic,
and self-sustaining 3D modes (1,K), where v = K+o; S, R = separation and mean
re-attachment points, resp.

at x = 8.2 (a) and it takes a considerable streamwise distance until the
dominance of the 2D wave (respective of the turbulent rolls) vanishes and an
equilibrium turbulent boundary layer is reached.
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