
Control of turbulent boundary-layer flow using

slot actuators

Ralf Messing, Ulrich Rist1, and Fredrik Svensson2

1 Institut für Aerodynamik und Gasdynamik (IAG), Pfaffenwaldring 21, 70550
Stuttgart, Germany [last name]@iag.uni-stuttgart.de

2 NEC High Performance Computing Europe GmbH,
Heßbrühlstraße 21B, 70565 Stuttgart, Germany
fsvensson@hpce.nec.com

This paper describes the advances made by the collaboration between the
Institut für Aerodynamik und Gasdynamik and the Teraflop Workbench. The
target was to enable new research on the large SX-8 system at HLRS.

1 Introduction

For the case of flows over solid surfaces, the separation of the boundary layer
causes large energy losses which in turn strongly affect the aerodynamic loads
in terms of lift loss and drag increase. Therefore, there is a strong need to
delay or even eliminate the occurrence of flow separation. Regarding commer-
cial aircrafts the delay or elimination of separation of the typically turbulent
boundary layer on the wing would permit higher angles of attack during land-
ing and take-off. Using appropriate means for separation control one could
even think of a high-lift system without slat (slatless wing) leading to devices
with less maintenance effort and noise production.

In order to manipulate and control separated turbulent boundary layers
jet actuators have been proposed injecting fluid into the boundary-layer flow
by continuous or pulsed blowing. The influence of geometry and orientation
of the orifices as well as the direction of the fluid jets (parallel, inclined or
normal to the wall) is actually under examination in research studies. Basi-
cally, the application of these jet actuators aims at enhanced mixing rates in
the boundary layer increasing momentum in the vicinity of the wall.

This paper presents a comparison of experiments conducted at the In-
stitut für Strömungsmechanik at the Technical University of Braunschweig
and direct numerical simulations done at the Institut für Aerodynamik und
Gasdynamik.



2 Ralf Messing, Ulrich Rist, and Fredrik Svensson

1.1 Numerical Method

Details of the numerical method have been reported in various publications
[Bon99, Mes04, Was02]. Therefore, the description of the numerical method
can be restricted to the modifications that had to be carried out to simulate
a slot actuator with steady blowing. Blowing is modeled by prescribing the
steady wall-normal velocity at the wall:

v′(x, 0, z) = vc cos3
(πr

d

)

. (1)

For spanwise slots with a slot width dSL (extension in chordwise direction)
and a slot length LSL (extension in spanwise direction) follows :
For zSL ≤ z ≤ zSL + LSL

d = dSL , r =

√

(x − xSL)
2

, r ≤
dSL

2
(2)

For z < zSL

d = dSL , r =

√

(x − xSL)
2
+ (z − zSL)

2
, r ≤

dSL

2
(3)

For z > zSL + LSL

d = dSL , r =

√

(x − xSL)
2
+ (z − (zSL + LSL))

2
, r ≤

dSL

2
(4)

The slots have circular roundings at their lateral ends. The center of the round-
ing is located at (xSL, 0, zSL). In contrast to older versions of the numerical
code the slots can now be rotated in the wall plane with respect to the main
flow direction (skew angle β, see figure 1). Blowing is still perpendicular to
the wall (pitch angle α, see figure 1).

2 Results

2.1 Undisturbed flow

Experimental data has been provided for a flate plate with zero-pressure gradi-
ent at a freestream velocity U∞ = 15m/s to gain some detailed insight into the
effectiveness of skewed slot actuators. However, before comparing experimen-
tal and numerical results it has to be ensured that the turbulent bounday-layer
flows without actuators match. To establish turbulent boundary-layer flow the
numerical simulation is carried out according to the procedure in the exper-
imental set-up. There, turbulence is triggered by an adhesive tape mounted
downstream of the leading edge of the plate, and far enough upstream of the
measurement station. A very similar approach is applied in the numerical



Control of turbulent boundary-layer flow 3

x

y

z

Fig. 1. Sketch of actuator for definition of pitch angle and skew angle

14 15 16 17 18 19

0

0.001

0.002

0.003

0.004

0.005

x

cf

Fig. 2. Skin friction coefficient versus streamwise direction. Black line: simulation;
Red line: laminar flow; Blue line: turbulent flow.

set-up. By harmonic suction and blowing in a disturbance strip unsteady dis-
turbances are excited which lead to rapid breakdown of the initially laminar
flow and rapidly provide a fully-developed turbulent boundary layer down-
stream of the disturbance strip. To illustrate this, the skin friction coefficient
is plotted over the whole integration domain in figure 2. The disturbance strip
is located at x = 14.34. Downstream the wall friction coefficient cf strongly in-
creases due to laminar-turbulent transition and rapidly approaches the values
for fully-turbulent flow. Despite the penalty of additional computational time
and memory requirements this approach has been prefered because it does
not suffer from somehow unphysical initial boundary conditions for turbulent
flow.

Finally, mean velocity profiles and rms-profiles of the streamwise velocity
component at Reδ1 = 1855 are compared in figure 3 to mutually validate



4 Ralf Messing, Ulrich Rist, and Fredrik Svensson

experiment and numerical simulation. Agreement is quite satisfactory, even
though some minor deviations are discernible in the rms-profiles near the wall.

100 101 102 103

5

10

15

20

25

30
U+

y+ 0 200 400
0

1

2

3

4

y+

u+
rms

Fig. 3. Comparison of experiment (symbols) and simulation (lines) at Reδ1 = 1855;
left: streamwise mean velocity profiles; right: streamwise rms-profiles

2.2 Disturbed flow

At the University of Braunschweig a measuring campaign was conducted to
identify the most effective configuration to increase momentum near the wall.
As mentioned a flate plate with zero-pressure gradient has been chosen to
minimize expenses as extensive parametric studies were necessary. A slot with
preferably steady blowing with a pitch angle α = 90◦ and a skew angle β = 45◦

turned out to work best. The slot length is LSL = 10mm, the slot width is
dSL = 0.3mm. The maximum blowing velocity is vmax ≈ 75m/s, which is
about five times the freestream velocity.

The small slot width in combination with high blowing velocities consti-
tutes very challenging boundary conditions for the direct numerical simula-
tions. In order to resolve all occuring flow scales a very fine grid, especially
in wall-normal direction, must be used. The main parameters are set as close
as possible to the experiment and are finally: LSL = 10mm, dSL = 2mm,
vmax = 40m/s.

Although not all main parameters exactly match, qualitative agreement
between experiment and numerical simulation is quite encouraging. To illus-
trate this, streamwise mean velocity contours and cross-flow velocity vectors
in three successive cross sections downstream of the slot are plotted in figures
4 and 5. The strong blowing acts like a large obstacle and downstream of the
slot actuator a vortex forms transporting high-momentum fluid to near-wall
regions. This vortex is persistent and still increases near-wall momentum far



Control of turbulent boundary-layer flow 5

y

0

10

20

30

z
-10

0
10

x

10

20

30

u: -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

y

0

10

20

30

z
-10

0
10

x

10

20

30

Fig. 4. Contour lines of mean streamwise velocity u (in m/s) (top) and v-w-vectors
(bottom) at three planes across main flow direction. Data from experiments provided
by University of Braunschweig [Sch06].



6 Ralf Messing, Ulrich Rist, and Fredrik Svensson

x

10

20

30
y

0

10

20

30

z
-10

0
10

u: -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

x

10

20

30

y

0

10

20

30

z
-10

0
10

Fig. 5. Contour lines of mean streamwise velocity u (in m/s) (top) and v-w-vectors
(bottom) at three planes across main flow direction. Data from unsteady direct
numerical simulations.



Control of turbulent boundary-layer flow 7

downstream of the actuator. This mechanism is clearly observable in experi-
mental data and qualitatively reproduced by the numerical simulation.

3 Conclusions

A comparison between experiment and unsteady direct numerical simulation
of a slot actuator with steady blowing for turbulent boundary-layer separa-
tion control has been presented. During experimental studies it turned out
that high blowing velocities are required to increase momentum near the
wall, and therefore to hinder the flow to seperate from the flow surface in
adverse-pressure gradient flows. The numerical effort to simulate such control
devices is tremendous, at least with the actual formulation of our DNS solver.
Improvements are planned or already under way, like the use of a strechted
grid in spanwise direction or domain decomposition with a refined grid in the
vicinity of the actuator.

4 TeraFlop Workbench Tunings

Within the TeraFlop Workbench project tunings were introduced to the code
to enable new research.

4.1 Introduction

The application was reworked in several stages to provide better scalability
and better single CPU performance. The improvements are to enable better
utilization of a large machine. Traditionally the program has been run on
one maybe two SX nodes. The high performance of the SX-6 machines in
comparison to their contemporary competitors made the SX the platform of
choice. As single CPU systems or even SMP machines have reached the limits
of what is possible in performance the direction is to run constellations of fast
machines. This introduces new problems as domain decomposition.

Scaling becomes very important and even if a problem is dividable most
problems are not easily parallelized. As the machine is very large with 72
nodes, one wants to take advantage of the power of these nodes to calculate
larger and more detailed cases. The application scales with the dimensions of
the dataset, this means that distributing the code on less powerful processors,
increases the need for a larger domain, which in turn increases the need for
computing power. The SX-8 nodes in themselves already are very powerful
and by simply scaling the problem from the old usage of one to two nodes, to
ten nodes improves throughput and research abilites of the IAG.



8 Ralf Messing, Ulrich Rist, and Fredrik Svensson

4.2 Tunings

Sine and Cosine transforms

The application is relying on sine and cosinus transforms, since the Z dimen-
sion is represented in frequency space. These transforms were compiled from
source. The sine transform uses sines only as a complete set of functions in
the interval from 0 to 2π, and, the cosine transform uses cosines only. By con-
trast, the normal Fast Fourier Transform (FFT) uses both sines and cosines,
but only half as many of each. Sine and cosine transforms are not a part of
the highly optimized mathematical libraires, however FFTs are. By combin-
ing sine and cosine transform data, it is possible to use the FFT to do the
transform.

Fig. 6. Improvment by switching to FFT is not so visible in the performance plot
as the number of operations went down with the execution time. Single CPU loop
improvements also give the performance a boost.

Improving communication

The application does have a rather costly all-to-all communication, when deal-
ing with the frequency domain Z direction of the dataset. One target was to
overlap the communication, which can only be made by one CPU of the eight



Control of turbulent boundary-layer flow 9

CPU nodes, with meaningfull work, increasing the throughput. Another step
is to use the SX-8 global memory option in MPI communication.

The application has the data domain decomposed in the Z direction. In
the Z decomposition the Poisson equation is calculated, in an iterative manner
using penta-diagonal solvers. Loops in the solvers and loops in general in the
program are well vectorized. As the FFT transform needs to be solved a
redistribution of the data has to take place. The FFT needs to have access to
all values in the Z direction. The way it is made is using a new simple domain
decomposition over the X dimension. In the X decomposition the spanwise
direction is calculated using sine and cosine transforms. The transforms are
implemented by FFTs using the NEC MathKeisan FFT library.

To change between these two representations, all data has to be redis-
tributed between all MPI processes. In the earlier version the communication
dealt with the full dataset at once. Instead of doing MPI communication and
FFT of the whole data, first MPI communication is done on a Y layer. The
communication works in blocks of data “decomposed” in the Y direction. By
breaking down also the Y direction in independant blocks, see figure 7, it is
possible to create a pipelined loop that deals with the different stages. This
allows that one SMP thread can deal with the MPI communication, while the
other SMP threads can do calculations in the other Y blocks. Thus effectively
overlapping the communication done by one CPU with FFT calculation that
is done with remaining CPUs. As the first layer is calculated, the next layer
is transported. The first layer that already has been communicated can then
be calculated on by the FFT algorithm and so on.

Fig. 7. Treating the Y dimensions as independant blocks in the communication and
calculation of the sine-cosine transforms

The stages that need to be considered are



10 Ralf Messing, Ulrich Rist, and Fredrik Svensson

1. Reorganizing the data per CPU
2. Sending the data with MPI ALLTOALL

3. Reorganizing the data for the FFT
Calculating the FFT
Reorganizing the data per CPU

4. Sending the data with MPI ALLTOALL

5. Reorganizing the data into the original format

and each block will go through these stages.

Fig. 8. Working through the blocks in a pipelined manner instead of like before the
whole data at once gives less syncronization points between the threads.

The main target behind this new pipelined approach is to overlap the
communication with work. As can be seen in figure 9, as the single threaded
MPI call can be done in parallell, the rest of the CPUs do not have to sit idle.
This advantage is only possible in a hybrid program MPI/SMP. As each MPI
process can use up to 8 CPUs per node it means that up to 7 CPUs sit idle
in the old version in some of the stages (2 and 4).

This work distribution improves scaling as the communication can over-
lap with the calculation. This is especially important as all data has to be
redistributed between all MPI processes at every iteration.

Global Memory

The transport bufferes used in the MPI ALLTOALL were placed in the global
memory region with compiler directives. Global memory is normaly used by
the MPI implementation, and by placing the data there from the program
directly databuffer copy can be saved. Global memory regions are still memory
local to the machine, therefore not inhibiting performance on the local level.



Control of turbulent boundary-layer flow 11

Fig. 9. Overlapping computation with communicaton makes the most out of the
computer using the single threaded MPI implementation.

Asynchronous Communication

As the routines had been adapted for this division in Y, the step of changing
the MPI communication was taken. A communication pattern using MPI Put

was introduced. This gives each thread the possibility to exchange data to
global buffers. This more asynchronous communication can also be achieved
on other platforms implementing the MPI ALLOC MEM call to allocate global
memory. The MPI ALLOC MEM call on the SX allocates global memory, a mem-
ory region that is specially treated by the MPI implementation.

5 Results

The tuning steps brought different improvements, single cpu performance and
scaling speedups.

The initial change, moving from homemade sine and cosinus transforms
gave a direct improvement of 34% for the Z symmetric path and 22% for the
Z non-symmetric path. As can be seen in figure 6 the performance change
is not as visible as the change in realtime as the number of operations also
goes down using the library FFT. The larger improvement in the symmetric
path can be attributed to the symmetry in the frequency data. Less data is
used to reach the result, giving the symmetric path an advantage over the
non-symmetric path. Both versions are used in research depending on the
problems investigated.

In the scaling step most concentration was put into the non-symmetric
path that is the more complex setup. Also the tridiagonal solver was improved
with some directives.

The current version shows good performance and scalability for large prob-
lems on the SX-8 system. While earlier research was made with smaller models
and less nodes (1-2), todays research is demanding larger models. The current
models in use have between 90 M and 996 M grid points. This will continue



12 Ralf Messing, Ulrich Rist, and Fredrik Svensson

to grow in the future. The primary target is to scale the X dimension to enable
studies of different flow phenomena over larger distances.

Fig. 10. Sustained performance for a case with 314 M grid points, detailing the
different tuning stages.

Figure 10 shows the performance differencs between the different stages.
The original performance on 30 nodes for the 314M grid points dataset was
745 GFLOP/s. With all tunings it reaches 1.4 TFLOP/s on 30 nodes,i.e.
it became almost twice as fast. The largest performance step is taken by
the overlapping of communication with calculations (47 %), but also the use
of the asynchronous communication improves scaling (16 %). The usage of
global memory does only limit some memory copy but that is always helpful
(5 %). The single node performance (only SMP without MPI), reaches 59
GFLOP/s and an efficiency of 46 %. Still the small case on 30 nodes retains
an efficiency of 35 %. Less than 10 % drop off when compared to the first
MPI measurement using 2 nodes at 44 %. Efficiency is calculated from a 16
GFLOP/s peak performance of one CPU.

As can be seen in the figure 11, the sustained performance on 70 nodes
of NEC SX-8 at HLRS reaches 2.68 TFLOP/s using a large test case with
1100M grid points. The strong scaling plot between 15 and 70 nodes, show
an efficiency between 39 % and 30 %. 1.27 TFLOP/s was the performance of
the original program using 70 nodes.



Control of turbulent boundary-layer flow 13

Fig. 11. Sustained performance for a case with 1100 M grid points, detailing the
different tuning stages.

5.1 Computational Results from IAG

The numerical code has been executed on the NEC-SX 8 of the hww GmbH,
Stuttgart. Using the original version the code attains 4.1 GFLOP/s of 16
GFLOP/s theoretical peak performance on a single processor at a vector op-
eration ratio of 99% and an average vector length of 222. In runs on 14 nodes
the code reaches 407 GFLOP/s with a RAM requirement of 193 GByte. The
computation time is 0.9µs per time step and grid point on a computational
grid of 2226×793×224 (streamwise × wall-normal × spanwise) grid points.

References

[Bon99] Bonfigli, G., Kloker, M.: Spatial Navier-Stokes simulation of crossflow-
induced transition in a 3-d boundary layer. In: Nitsche, W., Heinemann,
H.-J.; Hilbig, R. (eds) New Results in Numerical and Experimental Fluid
Dynamics II. Proc. 11. AG STAB/DGLR Symposium, NNFM 72. Vieweg
Verlag, Braunschweig (1999)

[Mes04] Messing, R.: Direkte numerische Simulationen zur diskreten Absaugung
in einer dreidimensionalen Grenzschichtströmung. PhD Thesis, Institut
für Aero- und Gasdynamik, University of Stuttgart (2004)

[Sch06] Scholz, P.: Private Communication, Institut für Strömungsmechanik, TU
Braunschweig (2006).



14 Ralf Messing, Ulrich Rist, and Fredrik Svensson

[Was02] Wassermann, P., Kloker, M.: Mechanisms and passive control of crossflow-
vortex induced transition in a three-dimemsional boundary layer. J. Fluid
Mech., 456, 49–84 (2002)


