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Two boundary layers with impinging shock wave at Ma = 6, Toc = 78K and a shock
angle with respect to the wall of o = 12° are compared: a boundary layer with insulated
wall and a cooled case with T,, = 300K. As expected, the length of the separation
bubble is smaller for the case with cooled wall. Linear stability calculations show, that
the first instability mode could be completely stabilised by wall cooling in the underlying
case. However, it is known that cooling destabilizes higher, acoustic modes, which is
the case here, too. An oblique breakdown scenario reveals the formation of longitudinal
vortices in both cases with shock, mainly promoted by the non-linear growth of the (0,2)
mode. The maximum disturbance amplitudes are larger for the case with insulated wall
and the disturbance parameters chosen. The structure of the (0,2) mode is different in
the cases with shock, compared to the boundary layer without shock. The wall-normal
velocity component v in the base flow of the boundary layer without shock counteracts
the formation of longitudinal vortices in the total flow.

1. Introduction

In practice, hypersonic flow-situations mainly occur during re-entry into the earth atmosphere.
Re-entry is one of the most critical situations during a space-flight mission. A failure of structure
is difficult to handle, possibly leading to a total loss of the vessel. Therefore, a profound
knowledge of the physics is absolutely necessary. Hypersonic flow is defined at Mach numbers
of four to five and higher. There are three main physical effects to be considered:

Real gas effects. During the re-entry trajectory at a certain flight level a space vessel
encounters very high temperatures, which do not allow to consider an ideal gas within this
particular flow regime. If such high-temperature flows are intended to be investigated, real gas
behaviour has to be modelled and can not be neglected. In the underlying work, these real
gas effects are not taken into account. We limit ourselves to cold flows below ~ 2500K, the
borderline to dissociation at standard conditions, with a smaller Mach-number at the lower end
of the hypersonic regime. At this flow conditions, a real-gas assumption is justified. Taking
real gas effects into account certainly is subject to further studies.

*Project funded by Deutsche Forschungsgemeinschaft within Sonderforschungsbereich 259. Computer time
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Shock bounday layer interaction. In flows faster than the speed of sound, a change in
direction always results in either a compression or expansion, depending on the direction of
the turnaround. Compression waves can merge into a shock, which in turn is very likely to
hit a boundary layer on the structure of the craft. In fact this so-called shock-boundary layer
interaction is a major source of high heat or pressure loads and often causes separation of the
flow. In hypersonic flows, these loads can become very high. Shock-boundary layer interactions
were studied from the mid 1940’s. First systematic experimental studies have been carried out
by Ackeret et al. [2] and Liepmann [18]. Due to the pressure rise, an impinging shock-wave
causes the boundary layer to thicken. It penetrates into the boundary layer ending at the
sonic line as an almost vertical shock. There it is reflected as a system of expansion waves.
Provided the pressure gradient is strong enough, the boundary layer separates. The thickening
results in a deflection of the flow yielding compression waves near separation and reattachment.
Well outside the boundary layer, they coalesce to the separation and reattachment shock,
respectively. A more thorough description of shock-boundary layer interactions can be found
in [7].

Transition to turbulence. Transition from a laminar to a turbulent flow comprises high
aerodynamic loads, as well. It has been a major area of concern in the past decades and a
lot of research has been carried out on the aspects of understanding and possibly influencing
transition. However, although a lot of progress has been achieved the physics are far from
being understood. For compressible flows, such as hypersonic flows, much less has been done
compared to incompressible flows. For the first phase of the transition process, quantitative
predictions can be made with compressible linear stability theory, which was formulated by
Mack [19]. Eifler & Bestek [8] and Fezer & Kloker [11] investigated transition to turbulence of
flat-plate boundary layers at Mach numbers ranging from about four to six. Experiments with
controlled, artificial disturbances in hypersonic flows are very difficult to perform. Therefore,
only few are known [16], [10].

2. Numerical Scheme

Governing Equations The numerical scheme is based on the complete, three-dimensional,
unsteady, compressible Navier-Stokes equations for Cartesian coordinates in conservative for-
mulation:
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with the velocity vector u = [u, v, w]’.

The energy is calculated as
1
e:/cvdT+ §(u2+v2+w2). (5)

The fluid is a non-reacting, ideal gas with constant Prandtl number Pr = 0.71 and specific
heat ratio k = ¢, /¢, = 1.4, with ¢, and ¢, as the specific heat coefficients at constant pressure
and volume, respectively. Viscosity p for temperatures above the Sutherland temperature 7 is
calculated by Sutherland’s law, for temperatures below T with the relation p/ oo = T/Tw. The
thermal conductivity coefficient ¥ is proportional to the viscosity. In our simulations, all lengths
are made non-dimensional with a reference length L, which appears in the global Reynolds
number Re = poo * Uso - L/ 1o = 10°. A local Reynolds number is defined as R, = v/« - Re. The
specific heat ¢, is normalised with u2, /T, (with T}, giving the free-stream temperature) and
time ¢ is normalised with L/u.,, where uo, is the free-stream velocity. Density p, temperature
T and viscosity p are standardised by their respective free-stream values.

Figure 1 shows the integration domain. The calculation starts at X,, the end of the inte-
gration domain is given by Xy. X, gives the location of the shock, which is prescribed at the
free-stream boundary. A buffer domain [14] can be switched on at X3 damping the disturbances
in order to provide an undisturbed, laminar flow at the outflow boundary. The disturbance
strip is located between X; < x < X,. The disturbances are periodic in spanwise direction,
having a wavelength of A\, and determining the width of the integration domain as zy = A,.
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Figure 1. Integration domain.

Discretisation For a more thorough description of the numerical scheme the reader is referred
to [23] and [9]. Time integration is performed at equidistant time steps with a standard Runge-
Kutta scheme of fourth-order accuracy (see for example [13]). In streamwise direction, compact
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finite differences of sixth-order accuracy are applied, which are in a split-type formulation in
order to have some damping properties with regard to small-scale numerical oscillations ([15]),
which occur at the high gradients resulting from the shock. In the split-type formulation, the
weighting of the numerical stencil alternates each Runge-Kutta step from downwind to upwind
and vice versa. Near the boundaries, differences of fourth and second order of magnitude are
applied ensuring the stencils remain within the integration domain. If a stronger shock is
present, the damping characteristic of the split-type formulation is not sufficient enough in the
two-dimensional base-flow calculation. In this case, an implicit filter of fourth-order accuracy
([17]) is applied to filter the variables of the solution vector each physical time step in streamwise
direction:

. . . b
afii+ fit+tafin=afi + g(fi—l—Z + fi—2) + 5(fi+1 + fic1) (6)
with
a:%(5+6a), b:%(1+2a), c:—é(l—Qa). (7)

a is the filtering parameter. a = 0.5 would mean no filtering, while oo = 0.495 is typically used
in our simulations. Aware of the possible influence of the filter on the calculations, particular
focus has been taken to the grid-independency of our simulations. It turned out, that with
sufficiently small step-sizes no influence of the filter could be observed. Both for the filtering
and the streamwise derivatives, the resulting tri-diagonal system of equations is solved by a
Thomas algorithm (see e.g. [3]).

In wall-normal direction split-type finite differences of fourth-order accuracy are used to cal-
culate convective terms, while viscous terms are calculated by fourth-order central differences.
As for the streamwise derivatives, the finite differences at the boundaries are adapted to fit in
the integration domain, while keeping the formal order of accuracy here.

In spanwise direction we have periodic boundaries, which allow to apply a spectral approx-
imation with Fourier expansion (see e.g. [5]). Transformation to Fourier and physical space is
performed with a standard fast-Fourier transform, such as described in [21].

Boundary Conditions At the free-stream boundary, a characteristic boundary condition
([12]), where the flow variables are held constant along the characteristic

Jy B .1 1 v
<8:c>+ = tan <sm .t tan u> (8)

and, more recently, a non-reflecting boundary condition, according to Thompson [22] is applied.
The basic idea in this non-reflecting boundary condition is to neglect parabolic terms in the
wall-normal derivatives of the Navier-Stokes equations thus obtaining a hyperbolic problem,
which has to be converted into characteristic formulation. Then, incoming characteristics are
set to zero.

The shock wave is introduced by holding the flow-variables constant in a limited area at
the free-stream boundary, according to the Rankine-Hugoniot relations after the shock and the
initial free-stream conditions before the shock.
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The flow quantities at the inflow boundary result from the solutions of the compressible
boundary layer equations and are held constant throughout the simulation. At the wall, a
no-slip condition and vanishing normal velocities are assumed.

Disturbances are introduced at a disturbance strip located between X; and X5 in figure 1
with simulated blowing and suction. The disturbance function is

fou(S, 2,t) = a xsin(Ft) = cos(kfBz) * f,(s). 9)

In our modal discretization in spanwise direction, k£ indicates the spanwise Fourier modes,
with £ = 0 meaning a two-dimensional disturbance. The disturbance frequency F' determines
the streamwise wave number «, via the dispersion relation of the disturbances. The spanwise
wave number is §. Thus, the obliqueness angle v is given by tanvy = (kfB)/a,. a is the
disturbance amplitude and f,(s) the spatial disturbance function

fr(s) = f(B2—Tc+4), 0<¢<1 (10)
fr(2-¢) = _fpv(g)a (11)

with
R 12

The wall temperature can be chosen to remain either constant or adiabatic. At the outflow
boundary, second derivatives are neglected. To provide an undisturbed base flow at the outflow
boundary, disturbances are damped artificially [9] at a disturbance strip, located between X3
and Xy in figure 1.

3. Computational Performance

The code usually runs on the NEC SX-4 and NEC SX-5 of the High Performance Computing
Centre in Stuttgart (HLRS). The results presented within this paper represent problems of
small size and were therefore computed on the smaller machine, the NEC SX-4. The grid size
of the base flow is m x n = 301 x 1201 = 361502, the simulations with controlled disturbances
consist of a grid with m x n = 301 x 650 = 195650 grid points and & = 10 harmonics in
spanwise direction. m represents the number of grid-points in wall-normal direction, while n
is the number of grid points in streamwise direction. Simulations at Ma = 6, 0 = 12° with
insulated wall typically perform with three processors at 2688 MFLOPS using 751 MByte.
Code-vectorisation is 98.8%

4. Results

In the following, results at Ma = 6 with a free stream temperature of 7T,, = 78 K and a shock
angle of 0 = 12° will be presented. Both simulations with adiabatic and cooled wall conditions
(T = 300K = const.) have been carried out.
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Ma=6, 6=12°, insulated wall, T =78K
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Figure 2. Density field (upper picture) and density distribution for n = 50 = const. Ma = 6,
o = 12°, insulated wall.

Base Flow Properties The upper picture in figure 2 gives the density field of a simulation
with insulated wall and the free-stream conditions mentioned before. n = y - Re/R, is a wall-
normal similarity parameter. The thickening of the boundary layer due to the impinging shock
wave can clearly be seen. It begins at R, =~ 1140. Also, the boundary layer is fairly thinner
behind the interaction region compared to the boundary layer upstream. The lower picture in
figure 2 shows the density distribution versus R,, which was extracted at n = 50 = const. The
location of typical interaction phenomena in the free stream, such as compression waves near
separation and reattachment, the impinging shock wave and the expansion fan, which where
already discussed in the introduction are marked accordingly.

Caused by the pressure gradient of the impinging shock wave, the boundary layer separates,
provided the shock is strong enough. Figure 3 gives the skin friction distribution of both the
insulated wall-case and the case with T,, = 300K = const. For validation purposes, results
of grid-refinement studies are also given, represented by the filled symbols. They show the
grid-independency of our simulations. Simulations with both higher and longer integration
domains indicated no influence of the boundaries (not shown here). The boundary layer of the
cooled wall is thinner than the adiabatic boundary layer, therefore the skin friction coefficient
in figure 3 of the incoming flow is larger compared to the adiabatic boundary layer. For the
same shock angle of ¢ = 12°, the length of the separation bubble, which can be identified by
its negative skin friction, for the case with cooled wall is only &~ 60% of the length for the case
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Figure 3. Skin friction distribution of both the cases with insulated wall and constant wall
temperature 7, = 300K.

with insulated wall.

The wall-temperature distribution of the adiabatic case is given in the upper picture of
figure 4. Caused by the influence of the shock, the wall temperature rises. Inside the separation
bubble, the wall temperature nearly remains constant, similar to the typical plateau in the wall-
pressure distribution. The total rise of the temperature over the interaction region does not
exceed 13K . The wall pressure distribution is shown in the lower picture of figure 4. The larger
separation bubble of the case with insulated wall is reflected in the wall pressure distribution
as well. Because the shock is not very strong, the plateau is not pronounced in both the cases
with adiabatic and cooled wall. The total rise of the wall pressure over the interaction region
is slightly larger for the case with constant, cooled wall-temperature.

Small-Disturbances Development In this section, results of compressible linear stability
theory computations will be shown, which are based on the scheme developed by [19]. Figure 5
shows such computations for Ma = 6 without impinging shock and cooled wall (upper picture)
as well as insulated wall (lower picture). Given are amplification rates —a; = 9ln(A(z)/Ay)/0z,
where A(z)/Ap is the amplitude ratio of any flow variable with respect to its initial amplitude.
F is the disturbance frequency and R, the square root of the local Reynolds number. The
solid lines in the plots, labeled with ”0” are the lines of neutral amplification, darker shadings
indicate larger amplification rates. In the upper part of figure 5, the case with the constant wall
temperature of T, = 300K, only the second instability mode is present. Wall-cooling results
in a complete stabilisation of the first instability mode here. In the lower part of figure 5,
the adiabatic case, both the first and second instability modes are amplified. However, the
first and second modes have no distinct, separated location. They are affiliated to each other.
Because of the fact, that the second mode is stronger amplified than the first mode in this
configuration, the two modes still can be identified. Compared to the second mode in the case
with T, = 300K, the second mode of the adiabatic case has smaller amplification rates. This is
an effect of wall-cooling in the case with T3, = 300K, too: although it stabilises the first mode,
higher modes are known to be destabilised with cooling.

We now turn to the case with impinging shock wave as presented in the previous section.
In figure 6 amplification rates with respect to the disturbance frequency F and the square
root of the local Reynolds number R, for two-dimensional linear disturbances are given. They
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root of the local Reynolds number R,. Constant wall temperature 7;, = 300K (upper picture)
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Figure 6. Amplification rates «; with respect to the disturbance frequency F' and the square
root of the local Reynolds number R,. Constant wall temperature T;, = 300K (upper picture)
and insulated wall (lower picture). Shock angle o = 12°.

are obtained by extracting local v and T profiles from the two-dimensional direct numerical
simulation presented before, which are used as input data for the linear stability solver. The
upper picture in figure 6 gives the amplification rates for the case with T3, = 300K, while in the
lower picture amplification rates for the insulated wall-case are given. The insulated wall-case
behaves similar to results obtained earlier for Ma = 4.8, which can be found in [20]. The first
mode vanishes near shock-impingement, while the second mode is increased in its amplification
rate and shifted to lower frequencies. New instabilities form at higher frequencies. In [20], the
increase of the second-mode amplification rates is explained by an increase of the thickness
of the local supersonic flow region. Diminishing viscosity caused by the separation of the
boundary layer seems to play an important role, too. The cooled-wall case, which is given
in the upper picture of figure 6 shows according behaviour for its second mode instability.
However, compared to the adiabatic case the amplification rates remain larger over the whole
parameter range given in the plot.

The mode-identity is determined by the zeros of the pressure eigenfunction (cf. [19]). Fig-
ure 7 gives eigenfunctions and phase distributions at two different Reynolds numbers and var-
ious disturbance frequencies for the insulated case with shock. The solid lines at R, = 900
correspond to a first-mode instability, because no zero is present in the eigenfunction, while
the dashed line refers to a second mode (one zero). At R, = 900 the boundary layer is not
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Figure 7. Pressure eigenfunctions and their corresponding phase distributions at R, = 900 and
R, = 1300 for the adiabatic case. Shock angle o = 12°.

influenced by the shock-boundary layer interaction. R, = 1300 lies well inside the separation
bubble. The solid line in the corresponding pictures represents the eigenfunction and the phase
distribution for a second mode (one zero). As briefly explained before, due to the influence of
the shock, new instabilities at higher frequencies are formed near the interaction zone. Those
refer to a third mode, which can be concluded from the two zeros (dashed lines in figure 7 at
R, =1300).

Larger-Disturbances Development We now discuss the non-linear behaviour of the same
configurations used in earlier sections. For Ma = 4.5, results for fundamental, subharmonic
and oblique disturbance scenarios were shown in [1]. It turned out, that independent from the
disturbance scenario a strong increase of the so-called streak or vortex modes (0, k) could be
observed downstream shock impingement. However, the amplitude was too small, so vortices
could not be observed in the total flow. In the literature the occurrence of such vortices is
typically explained with a Gortler mechanism, triggered by the concave curvature near reat-
tachment ([4, 6]). Figure 8 shows maximum temperature amplitudes of the direct numerical
simulation in the oblique case scenario, which were obtained by a timewise Fourier analysis over
one disturbance period. For comparison, results of the case without impinging shock wave are
given as well, represented by the solid lines with the filled circle symbols. The wall-condition
is adiabatic here. In the oblique disturbance scenario, we have a single three-dimensional dis-
turbance wave, of which the parameters are given in the plot. In figure 8 we can see, that
downstream shock-impingement, a strong growth of all generated disturbance modes occurs.
The highest amplitude is reached by (0, 2), which represents the first directly generated streak-
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Ma=6, 6=12°, insulated wall, oblique scenario, $=10.4, F=0.0001
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Figure 8. Maximum temperature disturbance amplitudes. Lines with symbols represent case
without shock. ¢ = 12°, insulated wall, oblique disturbance scenario. Spanwise wave number
(3 = 10.4, disturbance frequency F =1-107%.

or vortex mode. Compared to the case without shock, the amplitudes of the disturbance modes
in the case with shock exceed the corresponding amplitudes in the case without shock by several
orders of magnitude.

Figure 9 shows maximum temperature amplitudes of the case with T;, = 300K . We observe
a similar behaviour compared to the insulated case. However, maximum amplitudes reach
smaller values in the case with T, = 300K. In the case with T,, = 300K, the amplitude of
(0,2) is increased by a factor of ~ 47 from the beginning of its rise, while in the insulated
wall-case, this factor is ~ 63. It has to be noted that the initial amplitude of the disturbances
is slightly smaller in T, = 300K, compared to the adiabatic case.

Figure 10 shows the single vortex mode (0,2) for the adiabatic case at R, = 1600, a
location where it already reaches considerable amplitudes. The left picture shows the spanwise
disturbance velocity field and selected streamlines. The right picture gives the wall-normal
distributions of the disturbance velocity components v’ in wall-normal direction and w' in
spanwise direction. From the streamlines in the left picture of figure 10 we see four counter-
rotating vortices with their cores at y ~ 1.5. If we add the largest vortex modes and the
changes to the base-flow, which are represented by (0,0), to the base-flow, we again have four
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Figure 9. Maximum temperature disturbance amplitudes. o = 12°, T,, = 300K, oblique
disturbance scenario. Spanwise wave number 3 = 10.4, disturbance frequency F =110~
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Figure 10. Spanwise disturbance velocity component (grey colour map) and selected streamlines
are given in the left picture, while in the right picture, the wall-normal disturbance velocity
distributions of w’ and v’ are shown. Single (0,2)-mode, 0 = 12°, R, = 1600, insulated
wall, oblique disturbance scenario. Spanwise wave number § = 10.4, disturbance frequency
F=1-10""

counter-rotating vortices, which can be seen in figure 11.

In the case without shock (figure 13), the single (0, 2)-mode has a different shape. Instead of
one single vortex in wall-normal direction, two vortices are present. As expected, the maximum
values of the disturbance velocity components v' and w' are significantly smaller, compared to
the case with shock. In the total flow, there are no vortices in the case without shock, which
can be seen in figure 12.

Figure 14 gives an explanation for this. Wall normal base-flow velocity components are
given for both the cases without impinging shock wave (left picture) and o = 12°. While in
the case with shock, the magnitude of the v-component of the base flow is exceeded by the
according disturbance velocity component around the vortex core, this is not the case without
impinging shock wave. For both the upper and lower vortices in figure 13, the magnitude of
the base flow is one order of magnitude higher than the disturbance amplitude . While the
behaviour of the total flow in the case with o = 12° is dominated by the (0,2), in the case
without shock it is still the base flow, which is dominating.
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Ma=6, 6=12°, insulated wall, R,=1600, oblique, base flow + (0,0) + (0,2) + (0,4)

Figure 11. Spanwise disturbance velocity component (grey colour map) and selected streamlines
of the total flow are given. o = 12°, R, = 1600, insulated wall, oblique disturbance scenario.
Spanwise wave number § = 10.4, disturbance frequency F = 1-10~%.



16 Pagella, Rist

Ma=6, R,=1600, no shock, base flow + (0,0) + (0,02) + (0,4)

Figure 12. Spanwise disturbance velocity component (grey colour map) and selected streamlines
of the total flow are given. No shock, R, = 1600, insulated wall, oblique disturbance scenario.
Spanwise wave number § = 10.4, disturbance frequency F = 1-10~%.
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Ma=6, 6=12°, R =1600, insulated wall, oblique, (0,2)
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Figure 13. Spanwise disturbance velocity component (grey colour map) and selected streamlines
are given in the left picture, while in the right picture, the wall-normal disturbance velocity
distributions of w' and ¢’ are shown. Single (0,2)-mode, no shock, R, = 1600, insulated

wall, oblique disturbance scenario. Spanwise wave number § = 10.4, disturbance frequency
F=1-10"*
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Figure 14. Wall-normal velocity distribution of the base flow at R, = 1600 for the case without
shock (left picture) and o = 12°.
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5. Conclusion

Numerical simulations for a boundary layer at Ma = 6, T, = 78K with impinging shock
wave (shock angle 0 = 12°) both for a constant wall-temperature of T, = 300K and insulated
wall conditions have been presented. In the base flow, wall-cooling decreases the length of
the separation bubble. In the underlying case, the length of the separation bubble could
be decreased to 60% of the corresponding value with insulated wall. For small disturbance
amplitudes, first mode instabilities have been completely stabilised with wall cooling. However,
cooling caused a significant destabilisation of the second mode. In the investigations with larger
disturbance amplitudes, in both cases vortices could be identified in the oblique breakdown
scenario. In a similar case without shock-boundary layer interaction, vortices are not present,
because of a different shape and smaller magnitude of the (0, 2)-mode and the v-component of
the base flow velocity counteracting the formation of vortices in the case without shock. As
in the linear case, the maximum disturbance amplitudes in the oblique scenario reach higher
values for the insulated case.
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