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ABSTRACT

Gaining a comprehensive understanding of turbulent flows still
poses one of the great challenges in fluid dynamics. A well-
established approach to advance this research is the analysis of the
vortex structures contained in the flow. In order to be able to per-
form this analysis efficiently, supporting visualization tools with
clearly defined requirements are needed. In this paper, we present
a visualization system which matches these requirements to a large
extent. The system consists of two components. The first compo-
nent analyzes the flow by means of a novel combination of vortex
core line detection and the λ2 method. The second component is
a vortex browser which allows for an interactive exploration and
manipulation of the vortices detected and separated during the first
phase.

Our system improves the reliability and applicability of existing
vortex detection methods and allows for a more efficient study of
vortical flows which is demonstrated in an evaluation performed by
experts.

CR Categories: I.3.3 [Computer Graphics]: Interactive
Rendering—Flow Visualization;

Keywords: Flow Features, Vortex Detection, Interactive Manipu-
lation, 3D Vector Field Visualization

1 INTRODUCTION

Numerical flow simulation using supercomputers and experimental
techniques like PIV (Particle Image Velocimetry) and LDA (Laser
Doppler Anemometry) are valuable instruments for the develop-
ment of new products in the car manufacturing and aerospace in-
dustry and other research areas where understanding of gaseous or
liquid flows is required. In general, the value of these numerical
and experimental flow simulations depends on the resolution of the
computational grid and the number of velocity vectors that could be
measured, respectively. Accordingly, much effort has been put into
improving these simulation and measurement techniques, thereby
pushing the size of the resulting data sets into regions where human
cognition no longer suffices as a data analysis tool for the raw data.
Some sort of flow visualization is, therefore, required for converting
the raw data into a more meaningful representation. In the follow-
ing, the term flow visualization is used synonymously to numerical
flow visualization using streamlines, isosurfaces, etc. in contrast
to physical flow visualization, the process of visualizing physical
flows of gases and liquids.

Visualizing the original untransformed data, however, is often
insufficient for obtaining the desired insight. Fig. 1, bottom, shows
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Figure 1: Advanced flow visualization by λ2 vortices (colored with
velocity magnitude, top) and conventional flow visualization using
isosurfaces, stream ribbons, and cutting planes. Despite the addi-
tional insight gained from vortex visualization, analyzing the flow is
nevertheless difficult since the structures are neither clearly separated
nor is it clear how they interact and evolve.

a turbulent flow visualized with the commercial flow visualization
package PowerVIZ [4]. For this data set, streamlines become almost
useless due to a dominant velocity component along the longitudi-
nal axis and the researcher is forced to analyze the flow based on
the limited information revealed by the cutting planes and the iso-
surface computed on velocity magnitude.

As a result, recent flow visualization techniques often resort to
visualizing meta data, i.e., data that is obtained by transforming
the raw data—here: vector field—into a different and often more
compact representation. Critical points and flow topology [7, 6],
separation lines and surfaces [11], shock waves [12, 15], and vor-
tices [9, 19, 22] are some well-established examples of this category
of advanced flow visualization which use data reduction as a means
for eased flow field analysis.

Of special importance is the detection and visualization of vor-
tices since they carry most of the energy of vortical flows and, thus,
contribute considerably to the flow evolution in future time steps.
The method that is currently considered to be most effective for de-
tecting vortical structures in incompressible flows (maybe except
for flows with strong axial stretching, see [25]) is the λ2 method
proposed by Jeong and Hussain [9]. This λ2 method can also be im-



plemented very efficiently—even on programmable graphics hard-
ware as was recently demonstrated [23]—and is, thus, favored by
many researchers working on fluid dynamics.

Unfortunately, in contrast to methods for detecting vortex cores
which automatically obtain a segmented visualization, the λ2
method only produces a scalar field usually visualized by an iso-
surface. As a result, analyzing visualizations of λ2 vortices is of-
ten more difficult than analyzing the results of less reliable but
automatically segmenting core-detection approaches. In fact, for
highly-turbulent flows a “can of worms” is obtained which hardly
reveals the important information sought by fluid dynamics engi-
neers (Fig. 1, top).

Thus, what is actually needed is an effective method for separat-
ing λ2 vortices and, furthermore, a tool—a vortex browser—which
allows for an interactive exploration of the flow by manipulating
and examining individual vortices. In this paper we present such a
tool and an algorithm for vortex separation to accomplish this task.
The development of both the algorithm and the custom exploration
tool was driven by actual requirements of fluid dynamics engineers
cooperating with computer scientists in a nation-wide project dedi-
cated to the fundamental research and comparison of experimental
and numerical methods for the analysis of turbulent flows. The re-
sulting tool was successfully evaluated by this group of experts.

Our exposition is organized according to the components of the
system. Sec. 2 gives related work; Sec. 3 elaborates on the sepa-
ration algorithm, followed by Sec. 4 which gives a description of
the vortex browser. An evaluation of the system demonstrating its
effectiveness is given in Sec. 5. The paper concludes in Sec. 6.

2 RELATED WORK

Most similar to what is accomplished in this work is the visiometric
approach to visualization proposed by Silver and Zabusky [21] and
Fernandez et al. [5]. In both works, systems are presented to visual-
ize, recognize, identify, classify, and automatically track observable
flow field features to give researchers new insight into what is hap-
pening in the data and to allow for the formulation or verification
of theories describing the visualized process. Object identification
in these papers is done by a region-growing approach, e.g., thresh-
olding on vorticity magnitude. This approach was later applied to a
λ2 scalar field by Rist et al. [17] to identify and separate vortices.

None of these approaches take advantage of domain knowledge
and all of them exclusively depend on scalar values—for the clus-
tering algorithm it makes no difference whether the scalar field has
been derived from MRI images or from the λ2 method to detect
vortices. In any case, the same structures will be extracted. From a
researcher’s point of view it makes a difference since structures in
the flow field might actually be connected while medical structures
might be hindered from merging by tissue. Thus, the accuracy of
feature extraction may be reduced if domain knowledge is not taken
into account.

However, while identifying features and providing means to un-
derstand these features are both important, the effectiveness of the
latter depends on the sophistication of the former. In contrast to
Silver and Fernandez who employ rather basic object identification
algorithms and who lay their foci on the understanding issue, this
paper strives to improve the feature identification using a combina-
tion of the λ2 method (to which the visiometric approach is only
insufficiently applicable) and the algorithm proposed by Banks and
Singer [2, 22]. In addition, we provide a basic accompanying flow
exploration tool for illustration purposes. And this differentiates
our work from the plethora of publications on vortex identification.

3 VORTEX SEPARATION

3.1 Basic Idea

As motivated in Sec. 1, the λ2 method is popular due to its reliability
in detecting vortices and the simplicity of the operations involved
in the computation. This section will elaborate on this issue and
point out the strengths and weaknesses of the algorithm. For this
purpose, it is helpful to classify the λ2 method according to the
criteria defined by Jiang et al. [10]. The taxonomies used are:

1. The number of grid cells involved in the computations re-
quired for detecting a single vortex.

2. The algorithm’s ability to work reliably even when a constant
delta is added to the velocities of the original vector field, also
referred to as Galilean invariance.

3. The vortex definition underlying the detection algorithm.

Whether a detection method is well-accepted or not depends largely
on how the algorithm matches the above criteria. For example, an
algorithm that needs to examine grid points distributed all over the
volume in order to detect a single vortex will exhibit a large mem-
ory foot print and thus be computationally more expensive than al-
gorithms which only have to examine neighboring grid cells. And
an algorithm which will no longer work when a delta is added to
the velocities will be unable to detect vortices in time-varying data
where swirling motion is only seen from within a moving reference
frame. Finally, an algorithm which only detects vortical regions
cannot generate a flow field representation as compact as that pro-
duced by a method returning a list of vortex cores and thus might
have to be declined when visualizing large data sets.

To classify the λ2 method, one needs to examine the algorithm
in detail. Let
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be a 3D velocity field from which vortices are to be extracted. For
every grid point of this vector field the Jacobian or velocity gradient
tensor J = ∇u is then computed and decomposed into a symmetric
part S = (J + JT )/2 and an antisymmetric part Ω = (J− JT )/2:
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Seen from a physical point of view S denotes the strain-rate tensor
and Ω the rotation tensor. Both S and Ω are squared and added to
obtain a new 3×3 matrix. This matrix is real and symmetric and
thus has exactly three real eigenvalues. These eigenvalues are com-
puted and sorted in decreasing order: λ1≥ λ2≥ λ3. A vortex is then

foreach remaining seed point p0
if p0 is not in any previous vortex

while the vortex skeleton continues
(1) determine vorticity ωi at position pi
(2) integrate vorticity ωi to predict new position pi+1
(3) determine vorticity ω i+1 at prediction pi+1
(4) pi+1 is the point of minimum pressure

in the plane P⊥ω i+1 (correction step)
(5) i← i+1

Figure 2: The predictor-corrector vortex detection algorithm pro-
posed by Banks and Singer [2, 22].



Figure 3: Comparison of λ2 isosurface and vortex structures detected and separated with the proposed approach. The left image shows the
λ2 isosurface, the right image the separated vortices. As seen in the middle image (showing both the isosurface and the separated vortices),
significant differences between the two visualizations are only seen in the boundary region. The shape of these structures, however, indicates
that they correctly have not been classified as vortices.

defined as a connected region where two of the eigenvalues are neg-
ative. For visualization—as the name of the method implies—the
second largest eigenvalue is picked. Since λ2 is a scalar and since
for every grid point a corresponding λ2 value can be computed,
the λ2 method transforms the original vector field into a scalar vol-
ume which can then be visualized by any volume visualization tech-
nique, most commonly isosurfaces (Fig. 1, top). The more negative
the chosen isovalue, the stronger the vortices that will be seen. A
zero isovalue captures all vortices contained in the data set.

Obviously, the computation of λ2 values requires only the Jaco-
bian which can be easily computed by central differences from the
six direct neighbors1; thus, the algorithm is local and computation-
ally cheap. Furthermore, velocity is not directly used to compute
the scalar field but rather its derivative (the velocity gradient ten-
sor) so constant deltas when added to the vector field cancel each
other, i.e., the method is also Galilean invariant. And finally, the
output of the λ2 method is a scalar field rather than a list of core
lines so that the method sees vortices as regions.

The latter is both good and bad: on the one hand a vortex has no
defined extent so discarding the concept of a vortex core is valid; but
on the other hand, vortical regions smoothly merge into each other
such that vortices in the proximity of other vortices may be mis-
leadingly seen as a single structure. It becomes clear that the major
drawback of the λ2 method is its inability to separate vortices. And
it also becomes clear that there is a well-justified demand for an
improved vortex detection method combining the benefits of the λ2
method with the benefits of line-oriented vortex detection methods.

Our approach to alleviate this drawback is to combine the λ2
method with a core line detector. We chose the predictor-corrector
approach proposed by Banks and Singer [2, 22]. This method is
based on the assumption that pressure minima at vortex cores define
seed points for tracing core lines and that vorticity defines the cor-
responding vortex core direction in these locations. Accordingly,
by integrating along the vorticity vector a prediction for the next
vertex along the core can be made and the guess corrected by mini-
mizing pressure in the plane perpendicular to the vorticity vector at
the predicted position (Fig. 2). In order to obtain tubular structures,
cross-sections can be determined by radially sampling the pressure
field in the planes perpendicular to the vortex core. Overall, this
vortex detection approach is robust (due to its self-correcting na-
ture) and very intuitive. But it also has a drawback: It does not
work at low Reynolds numbers [9].

On the contrary, the λ2 criterion lacks the capability to produce
a list of separated vortices but it is able to capture the pressure min-
imum in a plane perpendicular to the vortex axis for both low and

1We assume uniform grids for our discussion.

high Reynolds number flows. The λ2 method, therefore, perfectly
complements the algorithm proposed by Banks and Singer if pres-
sure is being replaced by the λ2 scalar field. And since pressure is
hard to compute from a velocity field—or even unavailable at all
in many experimentally obtained data sets—while λ2 is not, this
combination not only improves the reliability of existing vortex de-
tection, it also widens the applicability of the methods.

3.2 Initialization

The algorithm proceeds by growing core lines from a set of selected
seed points. In order to obtain a countable number of seed points,
these initial seed points must lie on the grid; thus, the initial set
contains as many seed points as there are grid points—for typical
flow data sets millions or even tens of millions elements. Check-
ing all of them would be extremely expensive. However, with the
Banks/Singer method used in conjunction with λ2 values, the initial
set can be significantly reduced. This reduction defines the initial-
ization phase.

There are three classes of grid points: Grid points with positive
λ2 values, grid points with negative λ2 values which are not local
minima, and grid points to which none of the previous applies.

The first group can readily be discarded since positive λ2 val-
ues indicate non-vortical regions so no vortices will be found there.
These grid points are assigned to the class NO_VORTEX.

Grid points which do not define local minima can also be dis-
carded since they will be processed when tracing the core (Sec. 3.4).
They are assigned to the class UNDECIDED.

Thus, what remains are grid points with negative λ2 values defin-
ing local minima. Whether these grid points will serve as starting
points for vortex cores is unclear since again they might be elim-
inated if enclosed in a vortex tube. These grid points, therefore,
define the class POTENTIAL_SEED.

The 229×116×250 data set shown in Fig. 3 has a total of
6,641,000 grid points. Of these, only 1,335 qualify as potential
seed points. 273,571 grid points fall into the class UNDECIDED. The
remaining vertices—95.8 percent—can be discarded.

3.3 Growing the Skeleton

The process of growing the vortex core line is almost identical to
the original implementation by Banks and Singer and differs only
in implementation details. The description is, therefore, kept short.

For each core line, a seed point has to be picked first. We choose
the seed point with the smallest λ2 value. Since more negative λ2
values indicate stronger swirling motion this strategy in general re-
sults in stronger and larger vortices and will immediately generate



Figure 4: Photograph of actual K-type transition with physical vortex
visualization using smoke inserted into the boundary layer [16]. In
the upstream region of the flow near the trip wire (bottom), the
Λ-vortices with the characteristic Ω-shaped heads are clearly visible.

a list of vortices sorted by strength. The initial seed point is then
refined by minimizing λ2 on the plane defined by the vorticity vec-
tor at the original seed point. Starting from the (refined) seed point,
the skeleton is then grown in both directions.

We first take a step along the vorticity vector (or its negative, de-
pending on the traced direction). For the new position we have to
check, first, whether the position lies inside any of the vortex tubes
already found and, second, whether the position lies inside the vor-
tex tube currently built. In either case, the skeleton is terminated
and the vortex just found is added to the vortex list. Similar to the
Banks/Singer method we next determine the core direction at the
predicted position and again minimize the λ2 value in the plane de-
fined by this direction. Since in general the new position will not lie
on a grid point, the quality of the structure extraction is significantly
influenced by the quality of the interpolated λ2 values and vorticity
vectors. Therefore, a four-point Lagrange interpolation is used for
this purpose. The λ2 minimization problem in turn is solved with a
direct search approach [8] since this relieves us from the burden of
having to compute gradients using computationally expensive La-
grange interpolations.

If the angle between the predicted vortex core direction and the
direction at the λ2 minimum does not exceed a given threshold the
correction is accepted. In either case, the vortex cross section at
the core line vertex is then determined by radially sending out rays
lying in the plane perpendicular to the vortex core and sampling
the λ2 volume until the user-specified λ2 isovalue is exceeded. As
proposed by Banks and Singer the distances to the surface points
are stored in a radii table for efficient encoding. Since this table
represents a periodic function it can be approximated by a Fourier
series which is an efficient way for storing the cross sections with-
out loosing the ability to reconstruct them to any desired accuracy
for visualization.

If the cross section area falls below a given threshold (very close
to zero) the vortex tube is considered to be closed and the skeleton
growth terminates. The growth is also terminated if the vortex core
length exceeds a pre-defined value to enforce core line termination
where the core has run into a spiral.

3.4 Seed Point Elimination

A vortex core will rarely directly hit a grid point. It is, therefore,
necessary to eliminate potential seed points in a post-processing
step once a new vortex has been detected. This is accomplished
by iterating over the individual slabs composing the vortex tube
and performing sign tests of potential seed points with respect to
the triangles comprising the slab surface. By computing the slab
bounding box prior to performing the test, the number of potential
seed points requiring testing is reduced.

3.5 Results

Fig. 3, right, shows the result of the vortex detection applied to a
DNS data set of K-type transition experiments [1]. For comparison,
Fig. 4 shows a photograph of this kind of transition2. The photo
was shot during an experiment in which smoke was inserted into
the boundary layer to physically visualize vortices [16].

2Actual measurements of physical flows take several months or even
years. Experimental data of a flow recorded under conditions equivalent
to those used for the numerical simulation that provided the data for our
system evaluation are not yet available.

Figure 5: Visualizations obtained using an eigenvector-based estima-
tion of the core line direction and λ2 values for determining core ver-
tices. The lower image again shows a comparison of the λ2 isosurface
and the vortex structures detected with the eigenvector approach.



Figure 6: Particle trace computed on the velocity field. While in
general the trace encloses the vortex core, in some regions it travels
parallel to the core line (see close-ups).

The computations for this 229×116×250 data set took 138 sec-
onds on a PC equipped with an AMD 1.2 GHz processor and
512 MB memory. The program detected a total of 331 vortices. Red
color was assigned to the vortex structure found first which—due to
the seed point selection looking for the most negative λ2 value—is
also the strongest vortex. The weaker a vortex, the greater the hue
value of the respective color in HSV space.

When comparing the result to a standard λ2 isosurface com-
puted for the same isovalue that was chosen for determining cross
sections, it becomes apparent that the visualizations match very
closely. There are only two differences. First, some structures near
the volume boundary are missing in the separated visualization and,
second, some additional very fine structures evolve from the vortex
tails.

The structures referred to in the first case are caused by inaccu-
rate derivatives at the volume boundary. However, as the shape of
these structures already implies, it is very improbable that in these
regions “instantaneous streamlines mapped onto a plane normal to
the vortex core exhibit a roughly circular or spiral pattern”, as one
popular definition of vortices demands [18]. Therefore, the struc-
tures should not be classified as vortices. And they are not—as is
seen in the image—so errors made during the λ2 computation do
not find its way into the final visualization.

In the second case, the additional fine structures are vortex core
lines that have been obtained by setting the cross section area to a
larger value, allowing for skeleton growth also beyond vortex tails.
This is another benefit when applying the Banks/Singer vortex de-
tection method to a λ2 scalar field since it enables the researcher
to identify connected structures hitherto visualized as separate vor-
tices.

If a higher accuracy is required, the system can be configured to
better approximate the vortex tube cross sections and, accordingly,
to better match the isosurface, thereby eliminating isolated bluish
spots in the comparative visualizations showing both the isosurface
and the vortex tubes. For the given images, 10 rays were used for
sampling the λ2 field, five coefficients where saved for the Fourier
series, and 16 samples were used for displaying the vortex geome-
try.

Sujudi and Haimes propose to use the eigenvector correspond-
ing to the real eigenvalue of the Jacobian instead of vorticity for
estimating core directions [24]. The eigenvector, however, is not
uniquely defined with respect to sign and thus cannot be used as-is

Figure 7: Manipulating the vortex set. Top: Hiding the three central
Λ-vortices and selecting a single vortex for closer examination. Bot-
tom: Inverting the selection. Using the colored buttons individual
hidden vortices can be temporarily or permanently re-inserted.

for following the vortex core. We propose a simple solution to this
problem in that we re-orient the eigenvector based on the sign of
the dot product of the eigenvector and the vorticity vector. Fig. 5
shows visualizations obtained with this approach. The result hardly
differs from what is obtained with a vorticity-based estimator and
there is only a small discrepancy in the number of detected vortices:
309 vs. 331. In consideration of the high complexity involved in the
computation of eigenvectors, using vorticity still seems a valid al-
ternative.

To further verify the quality of the presented approach, Fig. 6
shows a single Λ-vortex extracted from the K-type transition data.
For the image, a particle probe was placed near the detected vortex
core and a trace computed by integrating the velocity field. Ideally,
the resulting trace should exactly enclose and follow the core line
detected during the vortex segmentation process. In the example,
this requirement is essentially fulfilled and inaccuracies are only
seen on a short core segment where the particle travels parallel to
the vortex core (see close-up). The particle leaves the core through
the appendix shown in the upper right corner near the Ω-shaped
vortex segment. This is correct behavior and must be accounted to
the strong velocity component along the longitudinal axis. As for
the interpolations involved in tracing the core line and determining
the vortex tube cross sections, a four-point Lagrange interpolation



Figure 8: Use of slices. Slices can be used to display vector plots
of the velocity field and to clip unwanted regions (top) and to ob-
tain dense representations of associated scalar fields like velocity or
vorticity magnitude, λ2 values, or—as shown in the image—shear
stress.

(in contrast to a less costly trilinear interpolation) is required in
order to obtain accurate results.

4 THE VORTEX BROWSER

The vortex set shown in Fig. 3 comprises 331 vortices. This in-
cludes weak and strong vortices, vortices with short and long cores,
and vortices which cover small and large regions of the simulation
volume. Obviously, some filtering must be applied before the data
can be thoroughly and efficiently analyzed. This is accomplished
with the second component of our system, the vortex browser.

4.1 Aims

The research of fluid dynamics engineers is directed towards an in-
creased understanding of fluid dynamics. This understanding refers
to both fundamental questions as well as to specific applications
where the flow around an actual device (automobile, airplane wing,
etc.) has to be examined in order to, e.g., improve efficiency or
to reduce noise generation. To gain this insight, fluid dynamics
engineers like to study the interactions of different fluid flow en-
tities and to view and take into consideration meta data. Typical

questions arising in practice are: What is the volume of a certain
structure? What is its swirling strength, circulation, and vorticity?
How about induced velocity, vortex stretching, and dissipation?

4.2 Vortex Manipulation

None of the above questions can be answered when considering the
vortex set in its entirety; thus, means are required to manipulate the
vortex. For this purpose, the individual vortices are inserted into
a custom scenegraph which allows for simple manipulations like
picking and transformations. This, however, is insufficient since re-
searchers either want to see a certain vortex or do not want to see
certain vortices being irrelevant for the special application or ob-
scuring the region of interest. Our system, therefore, provides hid-
ing and inversion functionality (Fig. 7). In the top image, the cen-
tral Λ-vortices have been hidden. Another vortex—one that would
have been visualized as two separate structures with standard λ2
isosurfaces—has been dragged out of the flow and is shown (with
a selection box) in the front. Its volume is shown in the lower right
corner. In the bottom image the selection has been inverted in order
to allow for a closer examination of exactly the hidden vortices. In
either case, for each hidden vortex a button colored with the respec-
tive vortex color is inserted. By moving the mouse cursor over any
of these buttons, the corresponding vortex is shown at its original
location. By clicking the buttons, the corresponding hidden vortex
is permanently re-inserted into the visualized vortex set. Of course,
the buttons can be disabled if desired.

Manually defining the vortex set may become tedious if there
are dozens or even several hundreds of vortices. However, since the
flow dynamics is dominated by the largest vortices, this task can be
partially automated. In the system, this functionality is provided by
means of a length filter which can be used to eliminate smaller and
weaker vortices.

4.3 Visualization Techniques

From an information visualization point of view the above function-
ality defines the focus. The vortices, however, have been extracted
from a flow field and this context should not be lost. One software
feature to provide context information has already been shown in
Fig. 6. The user can freely position a particle probe inside the sim-
ulation volume and integrate both along the velocity field and the

Figure 9: Combined visualization of separated vortices and slices
showing both scalar field data (shear stress) and a LIC representation
of the velocity field.



vorticity field.
Regarding the former one, it should be noted that no real parti-

cle will actually follow the present streamlines because the velocity
field changes with time. However, the deviation of instantaneous
streamlines from path lines of real particles depends on the tempo-
ral rate of change of the flow. The latter is smaller near the “legs”
of the Λ-vortex and higher where many “tangled” vortices interact.
Therefore, the interactive streamline tool is still useful in the first
part of the data field to get a qualitative understanding of the flow
but dangerous or even misleading in the second. Thus, a more reli-
able probe like the vorticity line probe is needed.

So-called “vorticity lines”, i.e. field lines of the instantaneous
vorticity field, are (by definition) everywhere parallel to the vor-
ticity vector. This means that they should follow the vortex axis
and shear layers everywhere in the flow. However, using vorticity
lines alone as a means of visualization would not be advantageous,
because they have the disadvantage that no distinction is made be-
tween vortices and shear layers, and that regions with small vortic-
ity cannot be distinguished from regions with large vorticity. On
the other hand, when used in an interactive manner together with
the extracted vortices, they provide a useful tool to check the phys-
ical accuracy of our vortex identification and extraction. In contrast
to field lines of the instantaneous velocity field (streamlines) vortic-
ity lines are Galilean invariant such that they can be used with more
confidence in an unsteady flow situation, as the one discussed here.
Therefore, using the particle probe with the velocity field can, at
best, show regions of strong attraction (like the strong vortex tubes)
in a qualitative manner in contrast to an integration of the vorticity
field which is quantitatively accurate.

Since particle traces give only meaningful information when po-
sitioned carefully—which, in particular, also applies to vorticity
lines [14]—a more intuitive technique is needed to visualize the
velocity and vorticity fields. For this purpose, movable slices with
vector plots of variable resolutions have been integrated into the
system. Although this visualization is simple and dated, it is nev-
ertheless the most often used technique in physical flow visualiza-
tion. Fig. 8, top, shows a screenshot of the visualization technique
applied to K-type transition data. As seen in the images, the slices
can also be used to clip unwanted parts of the visualization and to
obtain a dense representation of any scalar field associated with the
vector field, like, e.g., shear stress. When vector plots are insuf-
ficient, dense representations of the original vector field are often

Figure 10: Combined visualization of separated vortices, particle
probe integrating the velocity field, semi-transparent slice showing
a vector plot of the velocity field, and shear layers.

Figure 11: Stereo visualization of vortex set to help in understanding
and identifying complex interwoven structures. To be viewed with
red/cyan anaglyph glasses.

more useful. Therefore, line-integral–convolution (LIC) visualiza-
tions of the flow projected onto any movable slice can be shown [3].
Fig. 9 gives another example of movable slices and the use of LIC.

Shear stress is of special importance for the understanding of
vortices. A fluid volume flowing along an object boundary is non-
uniformly decelerated by friction with the wall. This in turn induces
shear stress and finally swirling motion. Once the rotating fluid
volume separates from the wall, a new vortex is born. The system
allows the researcher to mix the visualization of separated vortices
with an isosurface visualization of this important phenomenon. An
example is shown in Fig. 10. The required shear layer computations
are based on the second invariant I2 of the strain-rate tensor S [13]:

I2 =
1
2
(SiiS j j−Si jSi j)

= S11S22 +S22S33 +S11S33−S2
12−S2

13−S2
23 .

Since the strain-rate tensor is required for computing the λ2 scalar
field, anyway, computing the shear layer is virtually a by-product
which comes for free.

As the visualizations in Figs. 3 might suggest, visualizing vor-
tical flows results in very complex geometries. Depending on the
chosen isovalue, the mesh of interwoven structures may be hard to
analyze. Dissecting the set using the tools described above can al-
leviate the situation but it fails to ease the understanding at the very
beginning. Therefore, a red/cyan anaglyph mode can be enabled
making it easier for the researcher to mentally visualize the flow
field and to perform his work. Fig. 11 gives a screenshot.

5 EVALUATION

The present work was developed in close cooperation with fluid
dynamics engineers and has been evaluated by this group of experts
and practitioners. Both benefits and problems of the system were
found.

The main benefit was found to be the novel combination of re-
liable vortex detection (showing also connected components) and
selective visualization, a combination allowing for a great com-
plexity reduction necessary for analyzing current simulation data.
Once vortices have been extracted, the structures can be picked,
hidden, extracted, and freely moved and rotated. Of course, the lat-
ter is standard functionality also found in more general visualization



packages used so far (Tecplot, COVISE) and, indeed, the vortex de-
tection part can be decoupled from the system to provide a set of
vortices to be visualized with standard tools. However, in contrast
to standard tools our system is problem– and meta-data–oriented;
thus, analyzing flows with our tool was found to be significantly
more efficient than with general tools, both from a usability point-
of-view (intuitive, adapted user interface) and a technical point-of-
view (speed).

Furthermore, the program does not require advanced graphics
hardware features like programmable vertex or fragment proces-
sors or specific operating systems and can be used with virtually
any workstation—a property not to be underrated in environments
where most computations are performed on supercomputers and
local computing hardware is predominantly acquired for computa-
tionally cheap post-processing. Accordingly, the possibility to view
the visualizations in stereo using inexpensive red/cyan glasses was
preferred over more sophisticated stereo technology requiring more
expensive and less ubiquitous technology.

On the other hand, albeit the system can help to make the work
of fluid engineers more efficient, it was also found that more meta
data was needed and that the amount of data and structures was still
too large for a straightforward analysis.

6 CONCLUSION

We have presented a novel algorithm for detecting and separating
vortices from 3D vector fields. The resulting vortex set can be
filtered to concentrate on the most relevant structures and the ex-
tracted vortices can be manipulated individually. Various visual-
ization techniques were combined in order to improve the analysis
possibilities. The system has been found by a group of experts to
be of great value for analyzing vortical flows but it fails to reduce
the original data to a level making processing trivial.

Since unsteady flows must currently be analyzed by processing
the different time steps separately, incorporating automatic feature
tracking as proposed by Silver and Wang [20] will be an important
step towards a more useful tool. Furthermore, additional visualiza-
tion techniques should be evaluated—like, e.g., texture advection
which, however, currently fails to produce satisfying visualizations
when applied to 3D data—as well as additional quantification func-
tionality to distract the researchers from fancy images and let them
concentrate again on the physics.
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